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TABLE OF MARKS OF FINITE GROUPS
M. GHORBANI*, AND F. ABBASI-BARFARAZ

ABSTRACT. Let G be a finite group and C(G) be a family of repre-
sentative conjugacy classes of subgroups of G. The matrix whose
H, K-entry is the number of fixed points of the set G/K under
the action of H is called the table of marks of G, where H, K run
through all elements in C(G). In this paper, we compute the table
of marks and the markaracter table of groups of order pgr, where
p, g, r are prime numbers.

1. INTRODUCTION

All groups considered in this paper are finite. The concept of table
of marks was introduced by William Burnside [3], as a tool to classify
G-sets up to equivalence. Similar to the character table of G which
classifies the matrix representations of G up to isomorphism, the table
of marks of G classifies permutation representations of G up to equiva-
lence. This table encodes a wealth of information about the subgroup
structure of G in a compact way. In other words, the table of marks
of a group is a useful invariant that provides a considerable amount of
data about the group.

Let GG be a finite group acting transitively on a finite set X. Then,
it is a well-known fact that X is G—isomorphic to a set of right cosets
G/H ={H(e=q1),...,Hgnm}, for some subgroup H of G. Moreover,
two transitive G—sets G/H and G /K are G—isomorphic if and only if
H and K are conjugate (see [] for more details). For every element g €
G, the fixed point of g in X is defined as Fizx(g) = {z € X;29 = z}.
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Similarly, for a subgroup H of G the fixed points of H is Fixx(H) =
{x € X;Vh € H,2" = z}. In this context, the mark of a subgroup H
of G on X is the number of fixed points of H under the action of G on
X, denoted by fx(H). If Hy,...,H, is a list of representatives of the
subgroups of GG up to conjugacy, the table of marks of GG is then the
r X r-matrix

M(G) = (5G/Hj(Hz‘))z‘,j:m,...,r.

In other words, assume that the set of orbits of this action is {G¢}7_,,
where G1(= e€),Gs,...,G,.(= G) are representatives of the conjugacy
classes of subgroups of G and |Gy < |Go| < --- < |G,]. The ta-
ble of marks of G is the square matrix M(G) = (my)j -, where
mi; = Basa,(Gi). This table has substantial applications in chem-
istry, specially in isomer counting [!]. For the main properties of this
matrix, we refer the reader to the interesting paper of Pfeifier [11].

Let G and H be finite groups and « be a function from C(G) to C(H).
We say that a is an isomorphism between the tables of marks of G and
H if o is a bijection and also By, u, (H;) = Ba/q,(G;) for all subgroups
H; of H and G; of G. An isomorphism between tables of marks of two
groups preserves many algebraic properties of related groups, such as
the order of subgroups, the order of their normalizers, the number of
elements of a given order, the number of subgroups of a given order,
the number of normal subgroups of a given order, etc. It sends cyclic
groups to cyclic groups and elementary abelian groups to elementary
abelian groups. It also sends the derived subgroup of G to the derived
subgroup of H, maximal subgroups of G to maximal subgroups of H,
Sylow p-subgroups to Sylow p-subgroups and the Frattini subgroup of
G to the Frattini subgroup of H.

Suppose G is a finite group, H is a subgroup of G and {e = ¢1,...,gm}
is a transversal of G with respect to the subgroup H. Define the per-
mutation p, : G/H — G/H (g € G) given by p,(Hg;) = Hgg.
Set R(G/H) = {p, | g € G}. Then, the permutation representation
R(G/H) of degree m = |G|/|H| is called a coset representation of G
by H. Clearly, this representation is transitive.

Pfeiffer [11] described a procedure for the construction of the table
of marks of a finite group from the table of marks of its maximal sub-
groups. This semi- automatic procedure has proven for simple groups
up to a certain order, and has been used extensively in building the
GAP library of tables of marks, see [11]. Here, we compute the table of
marks of groups of order pgr and then we determine all isomorphisms
between them.
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2. MAIN RESULTS

At the beginning of this section, we study some elementary properties
of the table of marks.

Theorem 2.1. [2] Suppose G is a finite group, M(G) = (my;) and
C(G) = {G1,Gs,...,G.} are all non-conjugate subgroups of G, where

) my; divides my, for all1 <i,j <r,
) ma =[G : Gy, forall1 <i<r,
) mi = [Na(Gi) : Gil,

e) if G; is a normal subgroup of G, then m;; = [G : G;] whenever
G; C Gy and zero otherwise.

As an immediate consequence of Theorem 2.1, the table of marks of
the cyclic group Z, is as reported in Table 1.

Table 1. The Table of Marks of Cyclic Group Z,,.

MGG, Gy
G/Gy | 1 1

Let p be a prime number and ¢ be a positive integer such that ¢|p—1.
Define the group F,, to be presented by F,, = (a,b : a® = b? =
1,07 tab = a*), where u is an element of order ¢ in multiplicative group
Zy [13, Page 290]. It is easy to see that [}, is a Frobenius group of
order pq.

Theorem 2.2. Let p and q be two prime numbers such that p > q.
The table of marks of group F, , is as reported in Table 2.

Proof. 1t is not difficult to see that the group £}, ; has four non-conjugate
subgroups Gy = (e), Gy = (a), G3 = (b), and G4 = G. By using The-
orem 2.1 (c), we have my; = pq, mo; = p, ma; = q and my; = 1. By
Theorem 2.1 (a), we have myy = my3 = mgs = 0 and by Theorem
2.1 (b), one can deduce that mgs = my3 = myy = 1. On the other
hand, by using Sylow Theorem, it is clear that the Sylow p-subgroup
of F,, is normal and by using Theorem 2.1 (e), we get mg2 = 0 and

m33:pQ/P:(I~ O

Table 2. The Table of Marks of Group £}, .
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M(G) |Gy Gy Gz Gy
G/Gilpg 0 0 0
G/G,
G/Gs
G/G,

1 0 0
0 ¢g O
1 1 1

—_ 3

2.1. Computing the Table of Marks. Suppose G(p,q,7) is the set
of all groups of order pqr, where p, ¢ and r are prime numbers. Holder
in [12] classified all groups of order pgr. It can be proved that up to
isomorphism, all groups of order pgr are:

Case 1. p = ¢ = r, there are five groups of order p* as follows:
— P =2 Zys,
- P2 = Zp X Zp27
— Py =72y, X Ly X Ly,
- P = Zp bl Zp27
— P =7, % (Z, X Zp).
Case 2. p > ¢ > r, then all groups of order pqr are
- Gl = qurv
— Gy =7, x F,,(qlp— 1),
— G3=Zyx F,,.(rlp—1),
— Gy =7y x Fy(rlg—1),
— G5 = Fpg(grlp— 1),
— Giys & {(a,byec : a?P = b = ¢ = l,ab = ba,c tbe =
b, ctac = a"), where r|p — 1,q — 1,0(u) = r in Zy and
o(v)=rinZ; (1<i<r—1).
Case 3. p < q and r = p, then all groups of order p?q are
— L1 = Zypy,
— Ly =2y X Ly X Ly,
— Ly = Zy x Fyyp (plg — 1),
— Ly = Fype (g = 1),
— Ly~ {(a,b:a” =0 =1,a""ba =b*, o? =1 (mod q)).
Case 4. ¢ < p and r = p, then all groups of order p?q are
- Ql = Zp2q7
— Q2 = Ly X Ly X L,
— Qs =Zy X Fyq (qlp — 1),
- Q4 = FpQ,q (q|p2 - ]-)a

- Qs = (a,byc 1 a? = b = & = lyac = ca,brab =
a®,b~tcb =, a?=1 (mod p),r =1,....,q — 1),
- Q¢ = (a,b,c : a? = b = ¢ = l,ac = ca,b”tab =

a®c®P b~leb = afc®), where o + VD = 0¥V 5 is a
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primitive element of GF(p?), ¢tp — 1, and ¢ # 2 whereas
qlp+ 1.

Suppose p is a prime number and G = P;. Then, the group Z,s =
(a) has four non-conjugate subgroups such as Gy = (¢), Gy = (a”’),
G3 = (a”), and G4 = (a). The table of marks of Z,s is as given in
Table 3.

The subgroups of order p in group G = Z, x Z,2 = (a,b) are {e} X Z,
and (a,v’?), where (0 < j < p—1). We show them by Hi,..., Hyy1.
On the other hand, there are p + 1 non-conjugate subgroups of order
p?, namely Gy = {e} xZ,2, Gy = Z, x Z, and G; ; = (a’, V) (1 < 4,5 <
p —1). We show them by Gy,...,G,y1. Since G is an abelian group,
all subgroups are normal and then by Theorem 2.1 (e), all diagonal
entries can be computed easily. Also, we note that H; C G; (1 <i <
p+1),and so myp =p (p+2 <i < 2p+ 3). We can easily see that
H, CGy(1<i<p+1),and so mys; =p (3 <j <p+2). The other
entries of the table are zero. The table of marks of this group is given
in Table 4.

In continuing, let H be a non-abelian group of order p* and exponent
p?. Then H has the following presentation:

1

(x,y:a? = P =1,y toy = 2P+,

Clearly, |Z(H)| = p and H has two non-conjugate subgroups of order
p, namely Hy = Z(H) and Hs = (y). It is clear that (y) is not normal
in H. Hence, my = Mgy = ms; = p*. Since |Ny(Hs)| = p?, one can
see that mgz = p. On the other hand, there are p + 1 subgroups of
order p? containing Z(H), denoted by Hy,..., Hyys. All of them are
normal in H and therefore the table of marks of H is as reported in
Table 6.

Finally, suppose G is a non-abelian group of order p* (p > 3) with
exponent p with the following presentation:

(x,y,z 2P =yP = 2P =1, xy = yx, 2y = yz, 02 = zay).

It is not difficult to see that all subgroups of order p of G are
(i), (297), (2'29), (2'27) and (2'y/2*) (1 < i,j,k < p—1). But
all non-conjugate subgroups of this form are (y), (z), (z), (z'27) and
the number of such subgroups is p — 1+ 3 = p + 2. Let us show
them by Hi,...,H,s. For 2 < i < p+ 2, |Ng(H;)| = p? and
N¢(Hy) = G. By using Theorem 2.1, m; = p (3 < i < p+ 3),
and may = p?. On the other hand, all non-conjugate subgroups of
order p? are (z',27)(1 < i,j5 < p—1) and (z,y). Hence, there are
p — 1+ 2 = p+ 1 non-conjugate subgroups of this form. We denote
them by Gi,...,Gpr1. For 1 < i < p+ 1, we have Ng(G;) = G
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and by using Theorem 2.1, my; = p (p+4 < i < 2p+4). Since for
1 <i<p+1, G;is anormal subgroup of G and H; C G;, by using
Theorem 2.1, m;s = p (p+ 4 < i < 2p+4) and the other entries are
zero. The table of marks of this group is reported in Table 7. Thus,
we proved the following theorem.

Theorem 2.3. The tables of marks of a group of order p> up to iso-
morphism are given in Tables 3-7.

Theorem 2.4. Let p, q and r be prime numbers such that p > q > r
and G € G(p,q,r). Then, the table of marks of G is isomorphic with
one of Tables 8-11.

Proof. If G = (G4, then the table of marks of G' can be computed by
Theorem 2.1 (see Table 8). If H is isomorphic to Gy = (¢) x (a, b), then
all non-conjugate subgroups of H are H; = (e), Hy = (¢), H3 = (D),
Hy = (b,c), Hs = (a), Hs = {(a,c), H; = (a,b) and Hg = H. Applying
Theorem 2.1 yields the first column of the table. Also, we have maqs =
Pq, m3z =1, myy = 1, ms5 = qr, mgs = ¢, and m77 = r. Since ac = ca
and bc = c¢b, we conclude that Ny(Hs) = H. On the other hand, let
g = c*a’ € G be an arbitrary element such that ¢g~'Hsg = Hz. Then
we can easily see that i = 0 and so Ny(H;3) = (b,c¢). By a similar
argument, we get Ny(H,) = Hy and Ny(Hs) = Ny(Hg) = Ny(Hy) =
H. It is clear that msy = Bu/m,(H2) = 0, mas = Buyu,(H2) = p and
mas = Bu/m,(Hs) = 1. Since, the subgroups H;, Hg, H; are normal,
by using Theorem 2.1 (e), we can show that msy, = ms3 = msy = 0,
Me2 = Mgy = ¢, Mgz = Meg = 0, My = myy = myg = 0 and my3 =
mzs = r. The table of marks of this group is reported in Table 9.

The table of marks of two groups G = Z, X F,,(r|p — 1) and G4 =
Zy, x Fy,(r|qg — 1) are isomorphic with Table 7. If K is isomorphic to
G5, then the table of marks of K can be resulted from Theorem 2.2
(see Table 10). It remains to compute the table of marks of group G, .
Let P~ G5 (1 <i<r—1). Then it is easy to see that (a*) = (a'),
(b) = (b%), (™) = (c"), (b'a*) = (b*a’), (c"a") = (c"d') and (b'c™) =
(b°c"), where 1 <k, l<p—1,1<t,s<g—land 1 <m,n<r-—1
Therefore, all non-conjugate subgroups of P are P, = (e), P» = (c),
Py = (b), Py = (a), Ps = (bc), Ps = (ac), P = (ab), and Py = P. One
can easily check that Np(P2) = P2, Np(P;) = Np(P,) = Np(P;) = P,
Np(Ps) = Ps and Np(Ps) = Fs. So, by applying Theorem 2.1, the
entries of the diagonal and the first column of the table of marks can
be computed. Since p, ¢, r are distinct prime numbers, we have mg, =
Myz = Myz = Msg = Mez = Mgs = Mgz = Mys = My = 0. Finally,
ab = ba, ¢ tbc = b*, and ¢ tac = a* yield the subgroup P; is normal,
and the proof is complete. O
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Theorem 2.5. Let p and g be two prime numbers such that ¢ > p, plqg—
1 and G € G(p*,q). Then, the table of marks of G is isomorphic with
one of Tables 12 - 16.

Proof. We can prove that the group G = Z,2, has five non-conjugate
subgroups such as Gy = (e), Go = ("), G3 = (b), G4 = (a), G5 =
(a,b”), and G¢ = G. Hence, the table of marks of this group follows
from Theorem 2.1 (see Table 12). All non-conjugate subgroups of order
pof G =127Z,x7Zy,xZyare H; = (¢,a) (1 <i,j <p-1). It
is not difficult to see that there are exactly (p — 1)(p —1)/(p—1) =
p— 1 non-conjugate subgroups of this form. In addition, two subgroups
{e} X Z,, and Z, x {e} are of order p. In general, there exist p+ 1 non-
conjugate subgroups of order p. Let us show them by Hy,..., Hpi.
For 1 < j < p+1, we have Ng(H;) = G and by using Theorem 2.1,
we get my; = pg (2 < i < p+2). On the other hand, the subgroups
Gi;= (V) (1<i<p-—1), (1 <j<qg-—1)are of order pg. In this
case, one can find (p—1)(¢—1)/kp = p— 1 non-conjugate subgroups of
this form. Moreover, {e} X Z,, and Z, x Z, are subgroups of order pgq
and hence G has exactly p + 1 subgroups of order pg. We show them
by Gi,...,Gpp1. For 1 < j < p+ 1, we have Ng(G;) = G and by
using Theorem 2.1, we have m;; = p (p+5 < i < 2p+5). The other
entries of this table can be derived from Theorem 2.1 (e). It is not
difficult to see that the Sylow ¢g-subgroup @ and the Sylow p-subgroup
P are normal subgroups of Z, x Z,, and by using Theorem 2.1, the
p + 3-th and p + 4-th column and row of the table can be derived. For
p+5<i<2p+5and2<j <p+2 since H; C G, we have m;y = p
and the other entries are zero. The table of marks of this group is as
reported in Table 13.

The subgroups H; ; = (¢',V/) (1<i,j <p—1)of G=17Z, x F,, are
of order p, and so there are exactly (p—1)(p—1)/(p—1) = p— 1 non-
conjugate subgroups of this form. In addition, two subgroups {e} x Z,
and Z, x {e} are of order p, and hence there exist p + 1 non-conjugate
subgroups of order p. Let us denote them by H,..., H,;;. We claim
that for i € {1,...,p+ 1}, we have Ng(H;) = (¢, b). Set H; = (c",b*)
and suppose the element ¢ = c*b’a’ is an arbitrary element such that
g 'H,g = H;. Hence, g7'H;g = a ‘H;a® = (¢",b**a=""*%) and so
a~™* = 1. This leads us to conclude that —iu® +1i = 0 (mod q).
Consequently, the following cases hold:

Case 1. ¢ | i, then i = 0 and so g = c*t/. By using Theorem 2.1,
we get my; =p (3<i<p+2).

Case 2. ¢ | u®* — 1, hence s = p and so H; = (¢"). This implies that
Mo = Pg.
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On the other hand, G;; = (¢, a?) (1 <i<p—1)and (1 <j<g-—1)
are of order pg. It is not difficult to prove that there are (p — 1)(q —
1)/kp = p — 1 non-conjugate subgroups of this form. Moreover, {e} x
F, , and Z, x Z4 are subgroups of order pg and hence G has exactly p+1
subgroups of order pg, denoted by Gy, ...,Gpy1. Forie {1,... . p+1}.
We have |G : G;] = p and so G; is normal. According to Theorem 2.1,
we have m; = p (p+5 <1 < 2p+5) and the other entries of this table
can be computed from Theorem 2.1 (e). But Sylow g-subgroup @ is a
normal subgroup of GG, where () C G; and so by using Theorem 2.1, we
get myiapra = p* Mipia = p (p+5 < i < 2p+5) and the other entries
are zero. The Sylow p-subgroup of G is P = (b, ¢), so if g = *¥/a' € G
is an arbitrary element, then ¢g7'Pg = a 'Pa’ = (b*a="* ¢), and
hence a~"™*" = 1. This leads us to conclude that —iu®+i = 0 (mod q).
Since ¢ { u—1, we have ¢ | 4 and thus i = 0. This implies that g = c*t/.
By using Theorem 2.1 and above discussion, the p + 3-th column and
row of the table can be computed easily. For p+5 < i < 2p+ 5 and
2 <j <p+2,since H; C Gj, we can verify that m;, = p and the other
entries of this row are zero. The table of marks of this group is given
in Table 14.

One can verify that the non-conjugate subgroups of H = Fj > are
Hy={e), Hi={V |[k=porl), (2<i<3), H = {(a), Hs = {(a,b’)
and Hg = H. Consider the table of marks M = M(H) = (my;), the
first column of this table can be computed from Theorem 2.1 (¢). The
normalizer of Hj is equal to (b). For an arbitrary element g = b°a” € H,
we have g7 Hyg = a™"Hoa" = (b*?a™""*") and so a """ = 1, which
yields that —ru” +r = 0 (mod q). Thus ¢ divides r and then r = 0 or
g = b°. By using Theorem 2.1, we have mgys = p and the normalizer
of Hj is equal to (b). Hence, we have mg3 = 1. According to Sylow
Theorem, H, is normal subgroup of F, . and by using Theorem 2.1,
we get myy = p? and my; = 0 (2 < j < 3). Since [H : Hs] = p while p
is the smallest prime number which divides the order of group, clearly
Hj; is a normal subgroup of H, and so by using Theorem 2.1 (e), we
get mso = msy = mss; = p. The other entries of this row are zero and
the table of marks of F| . is as reported in Table 15.

In continuing, consider group G with the following presentation:

G={ab:a” =b"=1,a""ba =b*, o =1 (mod q)).
It is not difficult to see that all non-conjugate subgroups of G are
K1 = <6>, K2 = <CLp>, Kg = <CL>, K4 = <b>, K5 = <(1p,b> and K6 =G.
The first column of this table can be derived from Theorem 2.1 (¢). We

have Ng(K3) = G and so mgs = pg. On the other hand, Ng(K3) = K3
yields that mg3 = 1. Since Ky C K3, we conclude that mg, = ¢q. By



TABLE OF MARKS OF FINITE GROUPS 35

Sylow Theorem, K, is a normal subgroup of G' and by using Theorem
2.1, we have myy = p* and my; = 0 (2 < j < 3). Since [G : K5] =p
and p is the smallest prime number that divides the order of group,
hence K3 is normal subgroup of G. Therefore, by Theorem 2.1 (e), we
conclude that mgsy = msy = mss = p and the other entries of this row
are zero (see Table 16). O

Theorem 2.6. Letp and g be two prime numbers such thatp > q, q|p—
1 and G € G(p*,q). Then, the table of marks of G is isomorphic with
one of the Tables 17-21.

Proof. The table of marks of groups )1 and ()2 can be derived from
Theorem 2.5 (see Tables 12, 13). Suppose that G = (3. Then one
can easily check that H;; = (c',a’) (1 < i,j < p— 1) are subgroups
of order p. It is not difficult to see that there are exactly (p — 1)(p —
1)/(p — 1)¢ = k non-conjugate subgroups of this form. In addition,
two subgroups {e} x Z, and Z, x {e} are of order p. In general, there
are k + 2 non-conjugate subgroups of order p. Let us show them by
Hy, = 7Z, x {e},Hy = {e} x Z, and Hs, ..., Hyys. We claim that for
i € {3,...,k + 2}, we have Ng(H;) = (c,a). To do this, suppose
H; = (c",a®) and g = c*ba’ is an element of G such that g ' H;g = H;.
Hence, g 'H;g = b7 H;l/ = (c",a*""), thus by using Theorem 2.1, we
have m;; = p (5 <i < k+4). Since H; and H; are normal subgroups of
G, hence m;; = pq (i = 3,4). On the other hand, all subgroups of order
pq are G = {e} x F,, and Gy = (¢,b) =2 Z, x Z,;. Now, Ng(G,) =
G, since for g = *Va' € G, we have g71G1g = (b~7abl,a"'ba’) =
(a7 b?a~"*). Similarly, we can prove that Ng(Gs) = G5. Hence,
according to Theorem 2.1, we get myis5545 = P, Mirert+6 = 1 and
the other entries of this table can be derived directly. The Sylow p-
subgroup P is a normal subgroup of Z, x F}, , and the latest column
and row of the table can be computed from Theorem 2.1. The Sylow
g-subgroup of Q3 is @ = (b) and we have Ng(Q) = (¢, b), which yields
the second column and row of the table. For i = k+5 and j = 4, since
H, C G, we conclude my454 = p. For @ = k4 6 and j = 3, since
H, C G, we have myy63 = p. It then follows that all non-conjugate
subgroups of H = F2 , are Hy = (e), Hy = (b), H3 = (a”), Hy = (a”,)),
H; = (a) and Hs = H. The first column of M (F)2,) can be derived
from Theorem 2.1 (¢). On the other hand, for g = ¥a’ € H, we have
g Hyg = (a™"ba’) = (b*a~"*") and so Ny(Hs) = H,. This yields that
Mo = 1. Also, for subgroup Hs, we have g~ 'Hsg = (b=7aPt’) = (a/*"),
thus Ng(H3) = H and so mss3 = pq. On the other hand, g~ 'H,g =
(b~aPt?, a"ba’) = (a’”,b*a~"*") and we conclude Ny (H,) = Hy or
myq = 1. Since p and ¢ are prime numbers, by Theorem 2.1, we have
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mys = 1 and my3 = p. By using Sylow Theorem, we can show that
Hjy is normal subgroup of Fj2 ,, and so the fifth row of this table can
be resulted from Theorem 2.1 (e). The subgroups of order p in Q5 are
H;; = {(ca) (1 <i,j <p-—1). It is not difficult to see that there
are exactly (p — 1)(p — 1)/(p — 1)¢ = k non-conjugate subgroups of
this form. In addition, two subgroups {e} x Z, and Z, x {e} are of
order p. In general, there are k + 2 non-conjugate subgroups of order
p denoted by Hy = {e} x Z,, Hy = Z, x {e}, Hs, ..., Hy1a. We claim
that for i € {3,...,k + 2}, we have Ng,(H;) = (c,a). To do this,
suppose that H; = (¢",a®) and g = c*t/a’ € Qs is an arbitrary element
such that ¢g~'H;g = H;. Hence, g~ H;g = b=/ H;b? = (c",a*"’), thus by
using Theorem 2.1, we get m;; = p (5 <i < k+4). Since H; and H,
are normal subgroups of @5, hence m;; = pq (i = 3,4). On the other
hand, all subgroups of order pq are Gy = (¢,b) and Gy = (a,b). For
g = c"va" € Qs, we have g7'G,;g = G;, thus Ng.(G;) = G; (i = 1,2)
and so according to Theorem 2.1, we have myis5 445 = Mit6r+6 = 1.
The other entries of this table can be derived from Theorem 2.1. But
the Sylow p-subgroup P is a normal subgroup of ()5 and thus by using
Theorem 2.1, the latest column and row of the table can be computed.
The Sylow g-subgroup Qs is Q = (b) and for g = c*bt/a’ € Q5 we have
g 'Qg = @, s0 mgy = 1. Since Hy C Gy, it follows that my, 54 = p and
since H; C Gy, we have my463 = p. Also, the other entries are zero,
and so M(Qs) is as given in Table 19.

The subgroups H,; = (¢",a’) (1 < 4,57 < p—1) of group G = Qs
are of order p. The number of non-conjugate subgroups of this form
is exactly (p — 1)(p — 1)/(p — 1)¢ = k. We denote these subgroups
by Hy,...,Hy. Let H; = (c",a®) and suppose g = c*ba’ € Qg is an
arbitrary element such that ¢~'H;g = H;. Hence, g"'H;g = b7 H;t) =
(¢",a*"") and so Ng,(H;) = (c,a). By using Theorem 2.1, we can verify
that m;; = p (3 <4 < k+2). On the other hand, G has no subgroup of
order pq and the Sylow p-subgroup P of (Jg is normal. Now, Theorem
2.1 yields the latest row and column of Table 21. The Sylow ¢-subgroup
of Qg is Q) = (b) and we can prove that Ng,(Q)) = @Q. Hence, the second
column and row of Table 21 can be derived. O

2.2. Computing the Markaracter Table. The matrix M C(G) ob-
tained from the table of marks M(G) of group G in which we select
rows and columns corresponding to cyclic subgroups of G is called the
markaracter table of G. It is merit to mention here that the markarac-
ter table of a finite group was firstly introduced by Shinsaku Fujita to
discuss marks and characters of a finite group in a common basis, see
[1, 5]. Fujita originally developed his theory to be the foundation for
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enumeration of molecules [1]. We encourage the interested readers to
consult papers [, 6, 7, 8, 9] as well as [2, 1], for more information on
this topic.

Suppose A and B are m x n and p X ¢ matrices, respectively. The
tensor product A® B of matrices A and B is the mp x nq block matrix:

allB st (ZlnB
A®B = U
amB - agmnB
Theorem 2.7. [15] Let p be a prime number, q be a positive integer

ay Qa2

such that q|lp—1 and ¢ = ¢ q5* . .. ¢% be its decomposition into distinct
primes q1 < go < -+ < qs. Suppose T(n) denotes the number of divisors
of n and dy, ..., d.q) are positive divisors of q. Then, the markaracter
table of the Frobenius group F,, can be computed as reported in Table
22.

Lemma 2.8. Suppose G and G5 are two finite groups with co-prime
orders. Then, the markaracter table of G1 x Gy is tensor product of

MC(Gy) and MC(G3).

Proof. Let A, Ay and As be the set of all non-conjugate cyclic subgroups
of G1 X Go, Gy and Go, respectively. Suppose that U = (u) € A; and
V = (v) € Ay. Then U x V is a cyclic group generated by (u,v).
So, U x V is conjugate with a cyclic subgroup in A. On the other
hand, if H = (h) € A, then h = (u,v) such that v € G, v € Gy and
gcd(o(u),0(v)) = 1. Then, there are U € A; and V € A, conjugate
with (u) and (v), respectively, such that H = U x V. Therefore,

Theorem 2.9. Suppose G is a group of order p>. Then, the markar-
acter table of G is given in Tables 23-25.

Proof. If G = Z,s, then clearly MC(G) = M(G). When G = Z, X Zy2,
by using Theorem 2.3, all non-conjugate subgroups are cyclic. So,
MC(G) = M(G). In this case, we have G = Z, X Z, X Zj,, all non-
conjugate subgroups of order p are cyclic and since these subgroups are
normal, the markaracter table of G can be computed from Theorem
2.3. The markaracter tables of two non-abelian groups of order p? can
be derived from Tables 6,7, respectively. 0

Let G be a cyclic group of order n = p{*...a%". Then, Lemma 2.8
shows that

MC(Zn) = MC(ZI;IH) ®...®MC(Zpgr).
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Theorem 2.10. The markaracter table of a group of order pgr (p >
q > ) is equal with one of the following matrices:
i) MC(Gh) = MC(Z,) ® MC(Zy) ® MC(Z,),

ii) MC(Gy) = MC(F, ) ® MC(Z,)(q|p — 1),

i) MC(Gs) = MC(Fp;) @ MC(Zg)(rlp = 1),

iv) MC(G4) = MC(F,,) ® MC(Z,)(r|qg — 1),

v) If qrlp — 1 then MC(G5) = MC(F, ),
vi) If rlp—1,q — 1, then the markaracter of G5 is as reported in

Table 24.

Proof. Let G be a group of order pgr. If G is isomorphic to one of
groups G, ..., Gy, then by applying Lemma 2.8, the proof is clear. If
G is isomorphic to G5, then the markaracter of G can be computed
from Theorem 2.7. It remains to compute the markaracter table of
groups G5 (1 < i < r —1). Letting G = G, it is easy to see that
(a®) = (a®), (B°) = ("), () = () and (b'a”) = (b a®), where 1 <
a,Bv,p<p—1,1<6nup<g—1land 1 <60\ <r—1. Therefore,
all non-conjugate cyclic subgroups of G are (e), (a), (b), (ab), (c). Let
H, = (e), Hy = (c), H3 = (b), Hy = (a) and H; = (ab). One can easily
check that NG(HQ) = Hg and NG(Hg) = Ng(H4) = Ng(HE,) = (G.
Hence, by Theorem 2.1, all entries of the diagonal and the first column
of markaracter table can be derived. Since p,q,r are distinct prime
numbers, according to Theorem 2.1, we have msz; = myy = myz =
mse = 0. Finally, the relations ab = ba, ¢ 'bc = b* and ¢ lac = a¥
yield that the subgroup Hjy is normal. This completes the proof. [

In continuing, we determine the markaracter table of groups of order
P*q.
Theorem 2.11. Let p and q be two prime numbers such that q¢ >

p, plg — 1 and G € G(p?,q). Then, the markaracter table of G is
isomorphic with one of Tables 26 - 30.

Proof. Let G = Ly. Since L is cyclic, then clearly MC(Ly) = M(Z,2,)
(see Table 26). All cyclic subgroups of Ly are H;; = ((¢',a’)) (1 <
i,j <p—1), where & = a? = 1,ac = ca and {e} x Z,, Z, x {e}. We
show them by Hi,... H,,1. On the other hand, all cyclic subgroups of
order pg of G are G;; = ((¢',0)) 1 <i<p—-1),(1<j<qg-1),
where ¢ = b7 = 1,bc = cb and {e} X Z,,, Z, X Z,. We show them
by Gi,...,Gps1. Also, the Sylow g-subgroup @ is cyclic. So, by using
Theorem 2.5, the markaracter table of Ly is as given in Tasble 27.

All cyclic subgroups of order p in L3 are L; j = ((¢",t’)) (1 <i,j <
p—1), where ¢ =0 = 1,bc = cb and {e} x Z,, Z, x {e}, denoted by
G1,...,Gpt1. The other cyclic subgroups of Ls are G2 = @), where
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@ = (a) is Sylow g-subgroup and G,+3 = (¢, b). By using Theorem 2.5,
MC(Ls) is isomorphic with Table 28.

All cyclic subgroups of Ly are G = (e), G; = ( V¥ |k = p or 1),
(2 < i < 3) and G4 = (a). So, the markaracter table can be derived
from Theorem 2.5 (see Table 29).

Finally, all cyclic subgroups of Ly are H; = (e), Hy = (a?), H3 = (a),
Hy = (b) and H; = ((a?,b)). The markaracter table of L5 can be
derived from Theorem 2.5 (see Table 30). O

Theorem 2.12. Let p and g be two prime numbers such that p > q,
qlp—1 and G € G(p*,q). Then, MC(Q1) = M(Q:) and the markar-
acter table of groups QQa, ..., Qe are as reported in Tables 31-33.

Proof. All cyclic subgroups of F2 , are G = (e), G2 = (b), G3 = (a?)
and G4 = (a). So, the markaracter table is as given in Table 31. All
cyclic subgroups of order p of Q5 are Hy, Hy, Hs, ..., Hy. o, as defined
in Theorem 2.6. On the other hand, the Sylow g-subgroup @ = (b) and
(e) which are cyclic subgroups of )5. The markaracter table of F
can be derived from Theorem 2.6 (see Table 32). Finally, in group Q,

the cyclic subgroups are (e), Hy, ..., Hy, as introduced in Theorem 2.6

together with Sylow g-subgroup @ = (b). So, the markaracter table is

as given in Table 33. O
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Appendix.
The Table of Marks and Markaracter Table of Groups

Table 3. The Table of Marks of the Cyclic Group of Order p?.

M(Zy) |Gy Gy Gs Zyp
Zps/Gi PP 0 0 0
Zy/Ge | P p* 0 0
Zyp/Gs | p p p 0
Zp|Zp| 1 1 1 1

Table 4. The Table of Marks of Group Z, X Z2.

M(Zp X sz) <> Hl H2 R Hp+1 Gl G2 e Gp+1 G
G/() p?P 0 0 ... 0 0O 0 ... O 0
G/H, pP p2 0 ... 0 O 0 ... 0 0
G/H, pP 0 p* ... 0 o 0 ... 0 0

G/H,1 pP 0 0 ... p? 0O 0 ... O
G/Gy p p 0 ... 0 p 0 0 0
G/Gs p p p ... P 0 »p 0 0
G/Gpia p p 0 ... 0 0O 0 ... p 0
G/G 1 1 1 ... 1 1 1 ... 1 1
Table 5. The Table of Marks of Group Z, x Z;, X Zj.
M(Zp X Zp X Zp) <> Hl H2 ce Ht Gl G2 R Gt G
G/() p> 0 0 ... 0 0 O ... 0 O
G/H, p P p2 0 ... 0 O O ... 0 O
G/H, p? 0 p? 0O 0 0 ... 0 0
G/H, p> 0 0 p> 0 0 0
G/Gl D p 0O ... 0 p O 0
G/Gy p p p ... p 0 p 0 0
G/G, p p 0 ... 0 0 0 ... p O
G/G 1 1 1 ... 1 1 1 ... 1 1

Table 6. The Table of Marks of Group Z, X Z2.
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M(H) |H, H, Hs Hy H; ... Hyy H
H/H [p» 0 0 0 0 ... 0 0
H/Hy | p* p* 0 0 0 0 0
H/Hy; |[p> 0 p 0 0 0 0
H/H | p p 0 p 0 0 0
H/Hs | p p p 0 p 0 0
H/Hys|p p 0 0 p
HH |1 1 1 1 1

Table 7. The Table of Marks of Group Z, X (Z, X Z,).

M(G) <> H1 H2 H3 Ce Hp+2 Gl G2 . Gp+1 G
G/0 [»» 0 0 0 .. 0 0 0 ... 0 0
G/H, |p® p> 0 0 0 0 0 0 0
G/Hy |p> 0 p 0 0 0 0 0 0
G/H3 p2 0 0 D 0 0 0 0 0
G/H,s | P* 0 0 D 0
G/Gy |p p p O p 0 0 0
G/Gy |p p 0 p 0 0 »p 0
G/Gpri|lp p 0 0 ... p 0O 0 ... p
G/G 1 1 1 1 1 1 1 1

Table 8. The Table of Marks of Group Zyg,.

M(Zpy) | G Gy G Gy G5 Gg Gr Gy
G/Gy |pgr 0O 0 0 O O 0 O
G/Gy |pg p¢ 0 0 O O 0 O
G/Gy |pr 0 pr 0 O 0O 0 O
G/Gy |gr 0 0 gqr 0O O 0 O
G/Gs | p p»p p»p 0 p 0 0 0
G/Gg g q 0 ¢qg 0 ¢g 0 0
G/G; | r 0 r r 0 O r 0
G/Gg 1 1 1 1 1 1 1 1

Table 9. The Table of Marks of Group Z, x F,, (¢|lp — 1).
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M(Zr X Fp,q) H, H, H3 Hy H5 HG H7 Hg
H/H. |pgr 0 0 0 0 0 0 0
H/H, pq pg O O O 0O O O
H/H; pr 0 r O O 0O 0 O
H/H, p p 1 1 0 0 0 0
H/H; gr- 0 0 O g O O O
H/Hg ¢ ¢ 0 0 ¢ ¢q 0 O
H/H; r 0 r» O r 0 r O
H/Hg 1 1 1 1 1 1 1 1

Table 10. The Table of Marks of Group F), 4 (¢r|p —1).

M(Fyp) | K1 Ky K3 K, Ks Ko K; Ks
K/K, |pgr 0 0 0 0 0 0 0
K/Ky |pg ¢ 0 0 0 0 0 0
K/Ks |pr 0 r 0 O 0 0 O
K/IKy |p 1 1 1 0 0 0 0
K/Ks | gr 0 0 0 ¢gr 0 0 O
K/IKe | ¢ ¢ 0 0 g q 0 0
K/Ky | » 0 = 0 r 0 r 0
K/Kg 1 1 1 1 1 1 1 1

Table 11. The Table of Marks of Group G5 (1 <i<r—1).

M(Gys5)| PP P, Py, P, P, P P P
P/P, [pgr 0 0 0 0 0 0 0
P/P, |pg 1 0 0 0 0 0 0
P/Ps pr 0 pr 0 O O 0 O
P/P, |pg 0 0 pg 0 0 0 0
PP, |p 1 p 0 1 0 0 0
P/Ps g 1 0 ¢ 0 ¢qg 0 O
P/P; r 0 r r 0 0 r O
P/ P 11 1 1 1 1 1 1
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Table 12. The Table of Marks of Group Z,,.

Table 13. The Table of Marks of Group Z, X Z,,.
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M(Zyg) | Gi Gs Gs Gi Gs Go
G/Gy |p’¢ 0 0 0O 0 0
G/Gy |pg pg 0 0 0 0
G/Gs ¢ ¢ ¢ 0 0 0
G/Gy | p* 0 0 p2 0 0
G/Gs | p p 0 p p 0
G/Gg |1 1 1 1 1 1

M(Zp X qu) <> H1 H2 Hp+1 P Q Gl G2 Gp_;,_l G
G/ |p%g 0 0 0 0 0 0 0 0 0
G/H, pqg pg O 0 0 0 0 O 0 0
G/H, pg 0 pg 0 0O 0 0 O 0 O

G/H, pg 0 0 pg 0 0 0 O 0 0
G/P qg q q q g 0 0 O 0 O
G/Q p> 0 0 0 0 p> 0 0 0 0
G/G, p p 0 0 0O p p O 0 0
G/Gs p p 0 0 0O p 0 »p 0 O

G/Gp p p O 0 0 p 0 0 p 0
G/G 1 1 1 1 1 1 1 1 1 1
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M(Zp X Fq,p) <> Hl HQ Hp+1 P Q G1 G2 Gp+1 G
G/ [p%¢ 0 0 0 0 0 0 0 0 0
G/H, pqg pg O 0 0O 0 0 O 0 0
G/H, pg 0 p 0 0O 0 0 0 0 0

G/H, pg 0 O P 0 0 0 O 0 0
G/P g q 1 1 1 0 0 0 0 0
G/Q p> 0 0 0 0 p2 0 0 0 0
G/Gy p p 0 0 0O p p O 0 0
G /Gy p p 0 0 0O p 0 »p 0 0

G/Gpa p p 0 p 0 0 p
G/G 1 1 1 1 1 1 1

Table 15. The Table of Marks of Frobenius Group F, 2

M(F,)| H H, Hy; H, Hs Hg
H/H, [p’¢ 0 0 0 0 0
H/Hy, |pg p 0 0 0 0
H/Hy | ¢ 1 1 0 0 0
H/H, |p>* 0 0 p> 0 0
H/H; | p p 0 p p 0
H/Hs |1 1 1 1 1 1

Table 16. The Table of Marks of Group Ls.

M(Ls) | K1 Ks K; K, Ks; Kg
Ls/K, [p’¢ 0 0 0 0 0
Ls/Ky|pg pg 0 0 0 0
Ls/Ks | q q 1 0 0 0
Ls/Ky | p* 0 0 p*> 0 0
Lsy/Ks| p p 0 p p 0
Ls/Kg| 1 1 1 1 1 1
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Table 17. The Table of Marks of Group Z, x F,,, (k=p—1/q).

M(Z,xF,)| 0 Q H Hy, Hy ... His G Go P G
G/ |p%¢ 0 0 0 0 0 0 0 0 0
G/Q p . p 0 0 O 0 0O 0 0 0
G/H, pg 0 pg 0 O 0 0 0 0 O
G/H, pg 0 0 pg O 0 0 0 0 O
G/Hy, |pg 0 0 0 p 0 0 0 0 0
G/Hio |pg 0 0 0 0 p 0 0 0 0
G/G, p p 0 p 0 0 p 0 0 O
G /Gy p 1 p 0 0 0 0 1 0 0
G/P ¢ 0 ¢ q¢ ¢ g 0 0 ¢ 0
G/G 1 1 1 1 1 1 1 1 1 1

Table 18. The Table of Marks of Group F):

M(F.,) | H, H, H; Hy, H, H,
H/H, |p’¢ 0 0 0 0 0
H/H, |p> 1 0 0 0 0
H/Hs |pg 0 pg 0 0 0
H/H, | p 1 p 1 0 0
H/H; g 0 ¢ 0 g¢qg O
H/H; |1 1 1 1 1 1

Table 19. The Table of Marks of Group @5, (k=p—1/q).

M(Qs) | ( Q Hy Hy Hy ... Hyo Gi Gy P Qs
Qs/0 1p’¢ 0 0 0 0 0 0 0 0 0
Qs/Q | p» 1 0 0 0 0 0 0 0 0
Qs/Hy |pg 0 pg 0 O 0 0O 0 0 O
Qs/Hy |pg 0 0 pg O 0 0O 0 0 O
Qs/Hs |pg 0 0 0 p 0O 0 0 0 0
Qs/Hi2\pg 0 0 0 0 p 0 0 0 0
Q5/G1 p 1 0 p O 0 1 0O 0 O
Qs/Gs | p 1 p 0 0 0 0 1 0 0
Qs/P | ¢ 0 q q ¢ g 0 0 ¢ 0
Qs/Qs | 1 1 1 1 1 1 1 1 1 1

Table 20. The Table of Marks of Group Qg, (kK =p —1/q).
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M(Qs) | () Q Hi Hy ... Hus P Qs
Qs/) |p’¢ 0 0 0 ... 0 0 0
Qs/Q p P 1 0 0 0 0 0
Qs/Hi |pg 0 p 0 0 0 0
Qs/H2 | pg 0 0 p 0 0 0
Qo¢/Hp2| pg 0 0 0 p 0 0
Qe/Qs | 1 1 1 1 11 1

Table 21. The Markaracter Table of the Frobenius Group £}, ,.

MC(F,)[Gi Gy Gs ...  Gi ... Grgy Grgu
G/G, g 0 0 . 0 .. 0 0
G/Gy | B dyys O 0 0 0
G/Gs B 0 dyge 0 0 0
G/Gl Z—(Z] mi73 mi74 e dT(q)7i+1 e 0 0

G/GT(Q) P 1 1 vee 1 NN 1 0

G/GT(qu q 0 0 o 0 o 0 q

a d|d
- d;’ 7 1t
where m; { 0 ow.

Table 22. The Markaracter Table of Group Z, X Z, X Z,, t = p* + p+ 1.

MC(Z, xZ, xZ,)| (0 H, H ... O,
G/{) p> 0 0 0

G/H, > p? 0 0

I 0

G/H,
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Table 23. The Markaracter Table of Group Z, X Z,2, t = p + 1.

MC(ZP X Zp2> <> H1 H2 Ht
G/() p> 0 0 0
G/H, p> p* 0 0
G/H, p> 0 p? 0
G/H, p> 0 0 0

Table 24. The Markaracter Table of Group Z, X (Z, X Zy,).

MC(ZP X (Zp X Zp)) <> Hl H2 H3 Hp+2
G/0 # 0 0 0 0
G/H, p2 p?2 0 0 0
G/H, pP 0 p 0 0
G/Hj p» 0 0 »p 0
G/Hp-‘rQ p2 0 0 0 p

Table 25. The Markaracter Table of Group G = G5 of order pgr.

MC(GY| H, H, H, H, H;
G/Hy [pgr 0 0 0 O
G/Hy |pg 1 0 0 0
G/Hy |pr 0 pr 0 O
G/Hy | gr 0 0 gr O
G/Hy | » 0 r r r

Table 26. The Markaracter Table of Group Z,,.

MC(Zypg) | G Ga G5 Ga Gy Gg
G/Gy p’g 0 0 0 0 O
G/Gy PP p2 0 0 0 0
G/Gs |pg O pg 0O 0 O
G/Gy, |p p»p p p 0 0
G/Gs g 0 ¢ 0 ¢ O
G/Gg |1 1 1 1 1 1
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Table 27. The Markaracter Table of Group Z, X Z,,.

MC(ZP X qu) <> Hl HQ Hp+1 Q G1 G2 Gp+1
G/{) p’¢ 0 0 0 0 0 0 0
G/H, pg pg O 0 0 0 O 0
G/H, pg 0 pg 0 0 0 O 0

: : : : : 0 0 0
G/Hpi1 pg 0 0 pg 0 0 0 0
G/Q » 0 0 0 p*2 0 0 0
G/Gy p p 0 0 p p 0 0
G/Gy p p O 0 p 0 p 0
: : : : : 0 0 0
G/Gpia p p 0 0 p 0 0 p

Table 28. The Markaracter Table of Group Z, x F,, = (¢) X (a,b).

MC(Zy x Fyp) | () Gi Gy Gpr1 Gpio Gpys
G/() p’¢ 0 0 0 0 0
G/Gy pqg pg O 0 0 0
G/Gy pg 0 p 0 0 0

GGy pg 0 0 D 0 0
G/Gpa | p* 0 0 0 P 0
G/Gpis p p O 0 p p

Table 29. The Markaracter Table of Frobenius Group £ 2.

MC(F,,2) | Gi Gy Gs Gy
G/G, p’g 0 0 O
G/Gy |pg p 0 0
G/Gy PP 0 0 p?
Table 30. The Markaracter Table of Group Ls.
MC(Ls)| Hi Hy Hs H, Hj
Ls/Hy |p’¢ 0 0 0 0
Ls/Hy |pg pg 0 0 0
Lsy/Hs | ¢ ¢ 1 0 0
L5/H4 p2 0 0 p2 0
Ls/Hs | p p 0 p p
Table 31. The Markaracter Table of Group Z, X Zg,.
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MC(ZP X qu> <> H1 H2 Hp+1 Q G1 GQ Gp-‘rl
G/() p’g 0 0 0 0 0 O 0
G/H, pg pg 0 0 0 0 0 0
G/H, pg 0 pg 0 0 0 0 0

: : : : : 0 0 0
G/Hyi | pg 0 0 pg 0 0 0 0
G/Q P 0 0 0 p> 0 0 0
G/G p p 0 0 p p 0 0
G/G p p 0 0 p 0 p 0
: : ' : 0 0 0
G/Gpr1 p p O 0O p 0 O p
Table 32. The Markaracter Table of Group Z, x F, ,.

MC(ZP X Fq,p) <> Gi Gy Gp+1 Gp+2 Gp+3
G/() p’q 0 O 0 0 0
G/Gy pg pg 0 0 0 0
G/Gs pg 0 p 0 0 0

G/Gpi1 pg 0 0 p 0 0
G/Gss P 0 0 0 P 0
G/Gpis P 0 0 P p

Table 33. The Markaracter Table of Group F):

MC(Fe,) | Gi Gs Gs G
G/Gy |p}¢ 0 0 0
G/Gy | p> 1 0 0
G/Gs |pg 0 pg O
G/Gy ¢ 0 q ¢
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Table 34. The Markaracter Table of Group Qs, (k=p—1/q).

MC(Qs5)| () @ Hy, Hs ... Hpyo
Q5/<> pgq
Q5/Q p2
Qs/Hy | pq
Qs/Hs | pq
Qs/Hs | pq

co oo oo™
=

cocoC cocor O
=

coc of coo

coRWoocoo

Qs/Hrya | g
Table 35. The Markaracter Table of Group Qg, (k=p —1/q).

MC(Qs) | ) Q@ Hi Hy ... Hiio
Qs/() |p°q O 0
Qs/Q | p* 1
Qﬁ/H1 pqg 0
0
0
0

Qs/H> | pq

oo o oo
oo 8 oo o
" O O oo

QG/Hk+2 pq
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