TABLE OF MARKS OF FINITE GROUPS

M. GHORBANI*, AND F. ABBASI-BARFARAZ

Abstract

Let G be a finite group and $\mathcal{C}(G)$ be a family of representative conjugacy classes of subgroups of G. The matrix whose H, K-entry is the number of fixed points of the set G / K under the action of H is called the table of marks of G, where H, K run through all elements in $\mathcal{C}(G)$. In this paper, we compute the table of marks and the markaracter table of groups of order $p q r$, where p, q, r are prime numbers.

1. Introduction

All groups considered in this paper are finite. The concept of table of marks was introduced by William Burnside [3], as a tool to classify G-sets up to equivalence. Similar to the character table of G which classifies the matrix representations of G up to isomorphism, the table of marks of G classifies permutation representations of G up to equivalence. This table encodes a wealth of information about the subgroup structure of G in a compact way. In other words, the table of marks of a group is a useful invariant that provides a considerable amount of data about the group.

Let G be a finite group acting transitively on a finite set X. Then, it is a well-known fact that X is G-isomorphic to a set of right cosets $G / H=\left\{H\left(e=g_{1}\right), \ldots, H g_{m}\right\}$, for some subgroup H of G. Moreover, two transitive G-sets G / H and G / K are G-isomorphic if and only if H and K are conjugate (see [4] for more details). For every element $g \in$ G, the fixed point of g in X is defined as Fix $_{X}(g)=\left\{x \in X ; x^{g}=x\right\}$.

[^0]Similarly, for a subgroup H of G the fixed points of H is $F i x_{X}(H)=$ $\left\{x \in X ; \forall h \in H, x^{h}=x\right\}$. In this context, the mark of a subgroup H of G on X is the number of fixed points of H under the action of G on X, denoted by $\beta_{X}(H)$. If H_{1}, \ldots, H_{r} is a list of representatives of the subgroups of G up to conjugacy, the table of marks of G is then the $r \times r$-matrix

$$
M(G)=\left(\beta_{G / H_{j}}\left(H_{i}\right)\right)_{i, j=1,2, \ldots, r}
$$

In other words, assume that the set of orbits of this action is $\left\{G_{i}^{G}\right\}_{i=1}^{r}$, where $G_{1}(=e), G_{2}, \ldots, G_{r}(=G)$ are representatives of the conjugacy classes of subgroups of G and $\left|G_{1}\right| \leq\left|G_{2}\right| \leq \cdots \leq\left|G_{r}\right|$. The table of marks of G is the square matrix $M(G)=\left(m_{i j}\right)_{i, j=1}^{r}$, where $m_{i j}=\beta_{G / G_{j}}\left(G_{i}\right)$. This table has substantial applications in chemistry, specially in isomer counting [1]. For the main properties of this matrix, we refer the reader to the interesting paper of Pfeifier [14].

Let G and H be finite groups and α be a function from $\mathcal{C}(G)$ to $\mathcal{C}(H)$. We say that α is an isomorphism between the tables of marks of G and H if α is a bijection and also $\beta_{H / H_{i}}\left(H_{j}\right)=\beta_{G / G_{i}}\left(G_{j}\right)$ for all subgroups H_{i} of H and G_{i} of G. An isomorphism between tables of marks of two groups preserves many algebraic properties of related groups, such as the order of subgroups, the order of their normalizers, the number of elements of a given order, the number of subgroups of a given order, the number of normal subgroups of a given order, etc. It sends cyclic groups to cyclic groups and elementary abelian groups to elementary abelian groups. It also sends the derived subgroup of G to the derived subgroup of H, maximal subgroups of G to maximal subgroups of H, Sylow p-subgroups to Sylow p-subgroups and the Frattini subgroup of G to the Frattini subgroup of H.

Suppose G is a finite group, H is a subgroup of G and $\left\{e=g_{1}, \ldots, g_{m}\right\}$ is a transversal of G with respect to the subgroup H. Define the permutation $\rho_{g}: G / H \longrightarrow G / H(g \in G)$ given by $\rho_{g}\left(H g_{i}\right)=H g_{i} g$. Set $R(G / H)=\left\{\rho_{g} \mid g \in G\right\}$. Then, the permutation representation $R(G / H)$ of degree $m=|G| /|H|$ is called a coset representation of G by H. Clearly, this representation is transitive.

Pfeiffer [14] described a procedure for the construction of the table of marks of a finite group from the table of marks of its maximal subgroups. This semi- automatic procedure has proven for simple groups up to a certain order, and has been used extensively in building the GAP library of tables of marks, see [11]. Here, we compute the table of marks of groups of order pqr and then we determine all isomorphisms between them.

2. Main Results

At the beginning of this section, we study some elementary properties of the table of marks.

Theorem 2.1. [2] Suppose G is a finite group, $M(G)=\left(m_{i j}\right)$ and $\mathcal{C}(G)=\left\{G_{1}, G_{2}, \ldots, G_{r}\right\}$ are all non-conjugate subgroups of G, where $\left|G_{1}\right| \leq\left|G_{2}\right| \leq \cdots \leq\left|G_{r}\right|$. Then;
a) The matrix $M(G)$ is a lower triangular matrix,
b) $m_{i j}$ divides $m_{i 1}$, for all $1 \leq i, j \leq r$,
c) $m_{i 1}=\left[G: G_{i}\right]$, for all $1 \leq i \leq r$,
d) $m_{i i}=\left[N_{G}\left(G_{i}\right): G_{i}\right]$,
e) if G_{i} is a normal subgroup of G, then $m_{i j}=\left[G: G_{i}\right]$ whenever $G_{j} \subseteq G_{i}$ and zero otherwise.

As an immediate consequence of Theorem 2.1, the table of marks of the cyclic group \mathbb{Z}_{p} is as reported in Table 1.

Table 1. The Table of Marks of Cyclic Group \mathbb{Z}_{p}.

$M(G)$	G_{1}	G_{2}
G / G_{1}	p	0
G / G_{2}	1	1

Let p be a prime number and q be a positive integer such that $q \mid p-1$. Define the group $F_{p, q}$ to be presented by $F_{p, q}=\left\langle a, b: a^{p}=b^{q}=\right.$ $\left.1, b^{-1} a b=a^{u}\right\rangle$, where u is an element of order q in multiplicative group \mathbb{Z}_{p}^{*} [13, Page 290]. It is easy to see that $F_{p, q}$ is a Frobenius group of order $p q$.

Theorem 2.2. Let p and q be two prime numbers such that $p>q$. The table of marks of group $F_{p, q}$ is as reported in Table 2.

Proof. It is not difficult to see that the group $F_{p, q}$ has four non-conjugate subgroups $G_{1}=\langle e\rangle, G_{2}=\langle a\rangle, G_{3}=\langle b\rangle$, and $G_{4}=G$. By using Theorem $2.1(c)$, we have $m_{11}=p q, m_{21}=p, m_{31}=q$ and $m_{41}=1$. By Theorem $2.1(a)$, we have $m_{12}=m_{13}=m_{23}=0$ and by Theorem 2.1 (b), one can deduce that $m_{42}=m_{43}=m_{44}=1$. On the other hand, by using Sylow Theorem, it is clear that the Sylow p-subgroup of $F_{p, q}$ is normal and by using Theorem $2.1(e)$, we get $m_{32}=0$ and $m_{33}=p q / p=q$.

Table 2. The Table of Marks of Group $F_{p, q}$.

$M(G)$	G_{1}	G_{2}	G_{3}	G_{4}
G / G_{1}	$p q$	0	0	0
G / G_{2}	p	1	0	0
G / G_{3}	q	0	q	0
G / G_{4}	1	1	1	1

2.1. Computing the Table of Marks. Suppose $\mathcal{G}(p, q, r)$ is the set of all groups of order $p q r$, where p, q and r are prime numbers. Hölder in [12] classified all groups of order $p q r$. It can be proved that up to isomorphism, all groups of order pqr are:

Case 1. $p=q=r$, there are five groups of order p^{3} as follows:

$$
\begin{aligned}
& -P_{1} \cong \mathbb{Z}_{p^{3}} \\
& -P_{2} \cong \mathbb{Z}_{p} \times \mathbb{Z}_{p^{2}} \\
& -P_{3} \cong \mathbb{Z}_{p} \times \mathbb{Z}_{p} \times \mathbb{Z}_{p}, \\
& -P_{4} \cong \mathbb{Z}_{p} \rtimes \mathbb{Z}_{p^{2}}, \\
& -P_{5} \cong \mathbb{Z}_{p} \rtimes\left(\mathbb{Z}_{p} \times \mathbb{Z}_{p}\right) .
\end{aligned}
$$

Case 2. $p>q>r$, then all groups of order $p q r$ are
$-G_{1} \cong \mathbb{Z}_{p q r}$,
$-G_{2} \cong \mathbb{Z}_{r} \times F_{p, q}(q \mid p-1)$,
$-G_{3} \cong \mathbb{Z}_{q} \times F_{p, r}(r \mid p-1)$,
$-G_{4} \cong \mathbb{Z}_{p} \times F_{q, r}(r \mid q-1)$,
$-G_{5} \cong F_{p, q r}(q r \mid p-1)$,
$-G_{i+5} \cong\left\langle a, b, c: a^{p}=b^{q}=c^{r}=1, a b=b a, c^{-1} b c=\right.$ $\left.b^{u}, c^{-1} a c=a^{v^{i}}\right\rangle$, where $r \mid p-1, q-1, o(u)=r$ in \mathbb{Z}_{q}^{*} and $o(v)=r$ in $\mathbb{Z}_{p}^{*}(1 \leq i \leq r-1)$.
Case 3. $p<q$ and $r=p$, then all groups of order $p^{2} q$ are
$-L_{1} \cong \mathbb{Z}_{p^{2} q}$,
$-L_{2} \cong \mathbb{Z}_{p} \times \mathbb{Z}_{p} \times \mathbb{Z}_{q}$,
$-L_{3} \cong \mathbb{Z}_{p} \times F_{q, p}(p \mid q-1)$,
$-L_{4} \cong F_{q, p^{2}}\left(p^{2} \mid q-1\right)$,
$-L_{5} \cong\left\langle a, b: a^{p^{2}}=b^{q}=1, a^{-1} b a=b^{\alpha}, \alpha^{p} \equiv 1(\bmod q)\right\rangle$.
Case 4. $q<p$ and $r=p$, then all groups of order $p^{2} q$ are
$-Q_{1} \cong \mathbb{Z}_{p^{2} q}$,
$-Q_{2} \cong \mathbb{Z}_{p} \times \mathbb{Z}_{q} \times \mathbb{Z}_{p}$,
$-Q_{3} \cong \mathbb{Z}_{p} \times F_{p, q}(q \mid p-1)$,
$-Q_{4} \cong F_{p^{2}, q}\left(q \mid p^{2}-1\right)$,
$-Q_{5} \cong\left\langle a, b, c: a^{p}=b^{q}=c^{p}=1, a c=c a, b^{-1} a b=\right.$ $\left.a^{\alpha}, b^{-1} c b=c^{\alpha^{x}}, \alpha^{q} \equiv 1(\bmod p), x=1, \ldots, q-1\right\rangle$,
$-Q_{6} \cong\left\langle a, b, c: a^{p}=b^{q}=c^{p}=1, a c=c a, b^{-1} a b=\right.$ $\left.a^{\alpha} c^{\beta D}, b^{-1} c b=a^{\beta} c^{\alpha}\right\rangle$, where $\alpha+\beta \sqrt{D}=\sigma^{p^{2}-1 / q}, \sigma$ is a
primitive element of $G F\left(p^{2}\right), q \nmid p-1$, and $q \neq 2$ whereas $q \mid p+1$.
Suppose p is a prime number and $G=P_{1}$. Then, the group $\mathbb{Z}_{p^{3}}=$ $\langle a\rangle$ has four non-conjugate subgroups such as $G_{1}=\langle e\rangle, G_{2}=\left\langle a^{p^{2}}\right\rangle$, $G_{3}=\left\langle a^{p}\right\rangle$, and $G_{4}=\langle a\rangle$. The table of marks of $\mathbb{Z}_{p^{3}}$ is as given in Table 3.

The subgroups of order p in group $G=\mathbb{Z}_{p} \times \mathbb{Z}_{p^{2}}=\langle a, b\rangle$ are $\{e\} \times \mathbb{Z}_{p}$ and $\left\langle a, b^{j p}\right\rangle$, where $(0 \leq j \leq p-1)$. We show them by H_{1}, \ldots, H_{p+1}. On the other hand, there are $p+1$ non-conjugate subgroups of order p^{2}, namely $G_{1}=\{e\} \times \mathbb{Z}_{p^{2}}, G_{2}=\mathbb{Z}_{p} \times \mathbb{Z}_{p}$ and $G_{i, j}=\left\langle a^{i}, b^{j}\right\rangle(1 \leq i, j \leq$ $p-1)$. We show them by G_{1}, \ldots, G_{p+1}. Since G is an abelian group, all subgroups are normal and then by Theorem 2.1 (e), all diagonal entries can be computed easily. Also, we note that $H_{1} \subseteq G_{i}(1 \leq i \leq$ $p+1)$, and so $m_{i 2}=p(p+2 \leq i \leq 2 p+3)$. We can easily see that $H_{i} \subseteq G_{2}(1 \leq i \leq p+1)$, and so $m_{p+4, j}=p(3 \leq j \leq p+2)$. The other entries of the table are zero. The table of marks of this group is given in Table 4.

In continuing, let H be a non-abelian group of order p^{3} and exponent p^{2}. Then H has the following presentation:

$$
\left\langle x, y: x^{p^{2}}=y^{p}=1, y^{-1} x y=x^{p+1}\right\rangle .
$$

Clearly, $|Z(H)|=p$ and H has two non-conjugate subgroups of order p, namely $H_{2}=Z(H)$ and $H_{3}=\langle y\rangle$. It is clear that $\langle y\rangle$ is not normal in H. Hence, $m_{21}=m_{22}=m_{31}=p^{2}$. Since $\left|N_{H}\left(H_{2}\right)\right|=p^{2}$, one can see that $m_{33}=p$. On the other hand, there are $p+1$ subgroups of order p^{2} containing $Z(H)$, denoted by H_{4}, \ldots, H_{p+4}. All of them are normal in H and therefore the table of marks of H is as reported in Table 6.

Finally, suppose G is a non-abelian group of order $p^{3}(p \geq 3)$ with exponent p with the following presentation:

$$
\left\langle x, y, z: x^{p}=y^{p}=z^{p}=1, x y=y x, z y=y z, x z=z x y\right\rangle .
$$

It is not difficult to see that all subgroups of order p of G are $\left\langle x^{i} y^{j}\right\rangle,\left\langle z^{i} y^{j}\right\rangle,\left\langle x^{i} z^{j}\right\rangle,\left\langle z^{i} x^{j}\right\rangle$ and $\left\langle x^{i} y^{j} z^{k}\right\rangle(1 \leq i, j, k \leq p-1)$. But all non-conjugate subgroups of this form are $\langle y\rangle,\langle x\rangle,\langle z\rangle,\left\langle x^{i} z^{j}\right\rangle$ and the number of such subgroups is $p-1+3=p+2$. Let us show them by H_{1}, \ldots, H_{p+2}. For $2 \leq i \leq p+2,\left|N_{G}\left(H_{i}\right)\right|=p^{2}$, and $N_{G}\left(H_{1}\right)=G$. By using Theorem 2.1, $m_{i i}=p(3 \leq i \leq p+3)$, and $m_{22}=p^{2}$. On the other hand, all non-conjugate subgroups of order p^{2} are $\left\langle x^{i}, z^{j}\right\rangle(1 \leq i, j \leq p-1)$ and $\langle x, y\rangle$. Hence, there are $p-1+2=p+1$ non-conjugate subgroups of this form. We denote them by G_{1}, \ldots, G_{p+1}. For $1 \leq i \leq p+1$, we have $N_{G}\left(G_{i}\right)=G$
and by using Theorem 2.1, $m_{i i}=p(p+4 \leq i \leq 2 p+4)$. Since for $1 \leq i \leq p+1, G_{i}$ is a normal subgroup of G and $H_{1} \subseteq G_{i}$, by using Theorem 2.1, $m_{i 2}=p(p+4 \leq i \leq 2 p+4)$ and the other entries are zero. The table of marks of this group is reported in Table 7. Thus, we proved the following theorem.
Theorem 2.3. The tables of marks of a group of order p^{3} up to isomorphism are given in Tables 3-\%.
Theorem 2.4. Let p, q and r be prime numbers such that $p>q>r$ and $G \in \mathcal{G}(p, q, r)$. Then, the table of marks of G is isomorphic with one of Tables 8-11.
Proof. If $G \cong G_{1}$, then the table of marks of G can be computed by Theorem 2.1 (see Table 8). If H is isomorphic to $G_{2}=\langle c\rangle \times\langle a, b\rangle$, then all non-conjugate subgroups of H are $H_{1}=\langle e\rangle, H_{2}=\langle c\rangle, H_{3}=\langle b\rangle$, $H_{4}=\langle b, c\rangle, H_{5}=\langle a\rangle, H_{6}=\langle a, c\rangle, H_{7}=\langle a, b\rangle$ and $H_{8}=H$. Applying Theorem 2.1 yields the first column of the table. Also, we have $m_{22}=$ $p q, m_{33}=r, m_{44}=1, m_{55}=q r, m_{66}=q$, and $m_{77}=r$. Since $a c=c a$ and $b c=c b$, we conclude that $N_{H}\left(H_{2}\right)=H$. On the other hand, let $g=c^{k} b^{j} a^{i} \in G$ be an arbitrary element such that $g^{-1} H_{3} g=H_{3}$. Then we can easily see that $i=0$ and so $N_{H}\left(H_{3}\right)=\langle b, c\rangle$. By a similar argument, we get $N_{H}\left(H_{4}\right)=H_{4}$ and $N_{H}\left(H_{5}\right)=N_{H}\left(H_{6}\right)=N_{H}\left(H_{7}\right)=$ H. It is clear that $m_{32}=\beta_{H / H_{3}}\left(H_{2}\right)=0, m_{42}=\beta_{H / H_{4}}\left(H_{2}\right)=p$ and $m_{43}=\beta_{H / H_{4}}\left(H_{3}\right)=1$. Since, the subgroups H_{5}, H_{6}, H_{7} are normal, by using Theorem $2.1(e)$, we can show that $m_{52}=m_{53}=m_{54}=0$, $m_{62}=m_{65}=q, m_{63}=m_{64}=0, m_{72}=m_{74}=m_{76}=0$ and $m_{73}=$ $m_{75}=r$. The table of marks of this group is reported in Table 9 .

The table of marks of two groups $G_{3}=\mathbb{Z}_{q} \times F_{p, r}(r \mid p-1)$ and $G_{4}=$ $\mathbb{Z}_{p} \times F_{q, r}(r \mid q-1)$ are isomorphic with Table 7. If K is isomorphic to G_{5}, then the table of marks of K can be resulted from Theorem 2.2 (see Table 10). It remains to compute the table of marks of group G_{i+5}. Let $P \cong G_{i+5}(1 \leq i \leq r-1)$. Then it is easy to see that $\left\langle a^{k}\right\rangle=\left\langle a^{l}\right\rangle$, $\left\langle b^{t}\right\rangle=\left\langle b^{s}\right\rangle,\left\langle c^{m}\right\rangle=\left\langle c^{n}\right\rangle,\left\langle b^{t} a^{k}\right\rangle=\left\langle b^{s} a^{l}\right\rangle,\left\langle c^{m} a^{k}\right\rangle=\left\langle c^{n} a^{l}\right\rangle$ and $\left\langle b^{t} c^{m}\right\rangle=$ $\left\langle b^{s} c^{n}\right\rangle$, where $1 \leq k, l \leq p-1,1 \leq t, s \leq q-1$ and $1 \leq m, n \leq r-1$. Therefore, all non-conjugate subgroups of P are $P_{1}=\langle e\rangle, P_{2}=\langle c\rangle$, $P_{3}=\langle b\rangle, P_{4}=\langle a\rangle, P_{5}=\langle b c\rangle, P_{6}=\langle a c\rangle, P_{7}=\langle a b\rangle$, and $P_{8}=P$. One can easily check that $N_{P}\left(P_{2}\right)=P_{2}, N_{P}\left(P_{3}\right)=N_{P}\left(P_{4}\right)=N_{P}\left(P_{7}\right)=P$, $N_{P}\left(P_{5}\right)=P_{5}$ and $N_{P}\left(P_{6}\right)=P_{6}$. So, by applying Theorem 2.1, the entries of the diagonal and the first column of the table of marks can be computed. Since p, q, r are distinct prime numbers, we have $m_{32}=$ $m_{42}=m_{43}=m_{54}=m_{63}=m_{65}=m_{72}=m_{75}=m_{76}=0$. Finally, $a b=b a, c^{-1} b c=b^{u}$, and $c^{-1} a c=a^{v^{i}}$ yield the subgroup P_{7} is normal, and the proof is complete.

Theorem 2.5. Let p and q be two prime numbers such that $q>p, p \mid q-$ 1 and $G \in \mathcal{G}\left(p^{2}, q\right)$. Then, the table of marks of G is isomorphic with one of Tables 12-16.

Proof. We can prove that the group $G=\mathbb{Z}_{p^{2} q}$ has five non-conjugate subgroups such as $G_{1}=\langle e\rangle, G_{2}=\left\langle b^{p}\right\rangle, G_{3}=\langle b\rangle, G_{4}=\langle a\rangle, G_{5}=$ $\left\langle a, b^{p}\right\rangle$, and $G_{6}=G$. Hence, the table of marks of this group follows from Theorem 2.1 (see Table 12). All non-conjugate subgroups of order p of $G=\mathbb{Z}_{p} \times \mathbb{Z}_{p} \times \mathbb{Z}_{q}$ are $H_{i, j}=\left\langle c^{i}, a^{j}\right\rangle(1 \leq i, j \leq p-1)$. It is not difficult to see that there are exactly $(p-1)(p-1) /(p-1)=$ $p-1$ non-conjugate subgroups of this form. In addition, two subgroups $\{e\} \times \mathbb{Z}_{p}$, and $\mathbb{Z}_{p} \times\{e\}$ are of order p. In general, there exist $p+1$ nonconjugate subgroups of order p. Let us show them by H_{1}, \ldots, H_{p+1}. For $1 \leq j \leq p+1$, we have $N_{G}\left(H_{j}\right)=G$ and by using Theorem 2.1, we get $m_{i i}=p q(2 \leq i \leq p+2)$. On the other hand, the subgroups $G_{i, j}=\left\langle c^{i}, b^{j}\right\rangle(1 \leq i \leq p-1),(1 \leq j \leq q-1)$ are of order $p q$. In this case, one can find $(p-1)(q-1) / k p=p-1$ non-conjugate subgroups of this form. Moreover, $\{e\} \times \mathbb{Z}_{p q}$ and $\mathbb{Z}_{p} \times \mathbb{Z}_{q}$ are subgroups of order $p q$ and hence G has exactly $p+1$ subgroups of order $p q$. We show them by G_{1}, \ldots, G_{p+1}. For $1 \leq j \leq p+1$, we have $N_{G}\left(G_{j}\right)=G$ and by using Theorem 2.1, we have $m_{i i}=p(p+5 \leq i \leq 2 p+5)$. The other entries of this table can be derived from Theorem 2.1 (e). It is not difficult to see that the Sylow q-subgroup Q and the Sylow p-subgroup P are normal subgroups of $\mathbb{Z}_{p} \times \mathbb{Z}_{p q}$ and by using Theorem 2.1, the $p+3$-th and $p+4$-th column and row of the table can be derived. For $p+5 \leq i \leq 2 p+5$ and $2 \leq j \leq p+2$, since $H_{1} \subseteq G_{j}$, we have $m_{i 2}=p$ and the other entries are zero. The table of marks of this group is as reported in Table 13.

The subgroups $H_{i, j}=\left\langle c^{i}, b^{j}\right\rangle(1 \leq i, j \leq p-1)$ of $G=\mathbb{Z}_{p} \times F_{q, p}$ are of order p, and so there are exactly $(p-1)(p-1) /(p-1)=p-1$ nonconjugate subgroups of this form. In addition, two subgroups $\{e\} \times \mathbb{Z}_{p}$ and $\mathbb{Z}_{p} \times\{e\}$ are of order p, and hence there exist $p+1$ non-conjugate subgroups of order p. Let us denote them by H_{1}, \ldots, H_{p+1}. We claim that for $i \in\{1, \ldots, p+1\}$, we have $N_{G}\left(H_{i}\right)=\langle c, b\rangle$. Set $H_{i}=\left\langle c^{r}, b^{s}\right\rangle$ and suppose the element $g=c^{k} b^{j} a^{i}$ is an arbitrary element such that $g^{-1} H_{i} g=H_{i}$. Hence, $g^{-1} H_{i} g=a^{-i} H_{i} a^{i}=\left\langle c^{r}, b^{2 s} a^{-i u^{s}+i}\right\rangle$ and so $a^{-i u^{s}+i}=1$. This leads us to conclude that $-i u^{s}+i \equiv 0(\bmod q)$. Consequently, the following cases hold:

Case 1. $q \mid i$, then $i=0$ and so $g=c^{k} b^{j}$. By using Theorem 2.1, we get $m_{i i}=p(3 \leq i \leq p+2)$.

Case 2. $q \mid u^{s}-1$, hence $s=p$ and so $H_{1}=\left\langle c^{r}\right\rangle$. This implies that $m_{22}=p q$.

On the other hand, $G_{i, j}=\left\langle c^{i}, a^{j}\right\rangle(1 \leq i \leq p-1)$ and $(1 \leq j \leq q-1)$ are of order $p q$. It is not difficult to prove that there are $(p-1)(q-$ 1)/kp $=p-1$ non-conjugate subgroups of this form. Moreover, $\{e\} \times$ $F_{q, p}$ and $\mathbb{Z}_{p} \times \mathbb{Z}_{q}$ are subgroups of order $p q$ and hence G has exactly $p+1$ subgroups of order $p q$, denoted by G_{1}, \ldots, G_{p+1}. For $i \in\{1, \ldots, p+1\}$. We have $\left[G: G_{i}\right]=p$ and so G_{i} is normal. According to Theorem 2.1, we have $m_{i i}=p(p+5 \leq i \leq 2 p+5)$ and the other entries of this table can be computed from Theorem 2.1 (e). But Sylow q-subgroup Q is a normal subgroup of G, where $Q \subseteq G_{i}$ and so by using Theorem 2.1, we get $m_{p+4, p+4}=p^{2}, m_{i, p+4}=p(p+5 \leq i \leq 2 p+5)$ and the other entries are zero. The Sylow p-subgroup of G is $P=\langle b, c\rangle$, so if $g=c^{k} b^{j} a^{i} \in G$ is an arbitrary element, then $g^{-1} P g=a^{-i} P a^{i}=\left\langle b^{2} a^{-i u+i}, c\right\rangle$, and hence $a^{-i u+i}=1$. This leads us to conclude that $-i u^{s}+i \equiv 0(\bmod q)$. Since $q \nmid u-1$, we have $q \mid i$ and thus $i=0$. This implies that $g=c^{k} b^{j}$. By using Theorem 2.1 and above discussion, the $p+3$-th column and row of the table can be computed easily. For $p+5 \leq i \leq 2 p+5$ and $2 \leq j \leq p+2$, since $H_{1} \subseteq G_{j}$, we can verify that $m_{i 2}=p$ and the other entries of this row are zero. The table of marks of this group is given in Table 14.

One can verify that the non-conjugate subgroups of $H=F_{q, p^{2}}$ are $H_{1}=\langle e\rangle, H_{i}=\left\langle b^{k}\right| k=p$ or 1$\rangle,(2 \leq i \leq 3), H_{4}=\langle a\rangle, H_{5}=\left\langle a, b^{p}\right\rangle$ and $H_{6}=H$. Consider the table of marks $M=M(H)=\left(m_{i j}\right)$, the first column of this table can be computed from Theorem 2.1 (c). The normalizer of H_{2} is equal to $\langle b\rangle$. For an arbitrary element $g=b^{s} a^{r} \in H$, we have $g^{-1} H_{2} g=a^{-r} H_{2} a^{r}=\left\langle b^{2 p} a^{-r u^{p}+r}\right\rangle$ and so $a^{-r u^{p}+r}=1$, which yields that $-r u^{p}+r \equiv 0(\bmod q)$. Thus q divides r and then $r=0$ or $g=b^{s}$. By using Theorem 2.1, we have $m_{22}=p$ and the normalizer of H_{3} is equal to $\langle b\rangle$. Hence, we have $m_{33}=1$. According to Sylow Theorem, H_{4} is normal subgroup of $F_{q, p^{2}}$ and by using Theorem 2.1, we get $m_{44}=p^{2}$ and $m_{4 j}=0(2 \leq j \leq 3)$. Since $\left[H: H_{5}\right]=p$ while p is the smallest prime number which divides the order of group, clearly H_{5} is a normal subgroup of H, and so by using Theorem 2.1 (e), we get $m_{52}=m_{54}=m_{55}=p$. The other entries of this row are zero and the table of marks of $F_{q, p^{2}}$ is as reported in Table 15.

In continuing, consider group G with the following presentation:

$$
G=\left\langle a, b: a^{p^{2}}=b^{q}=1, a^{-1} b a=b^{\alpha}, \alpha^{p} \equiv 1(\bmod q)\right\rangle .
$$

It is not difficult to see that all non-conjugate subgroups of G are $K_{1}=\langle e\rangle, K_{2}=\left\langle a^{p}\right\rangle, K_{3}=\langle a\rangle, K_{4}=\langle b\rangle, K_{5}=\left\langle a^{p}, b\right\rangle$ and $K_{6}=G$. The first column of this table can be derived from Theorem 2.1 (c). We have $N_{G}\left(K_{2}\right)=G$ and so $m_{22}=p q$. On the other hand, $N_{G}\left(K_{3}\right)=K_{3}$ yields that $m_{33}=1$. Since $K_{2} \subseteq K_{3}$, we conclude that $m_{32}=q$. By

Sylow Theorem, K_{4} is a normal subgroup of G and by using Theorem 2.1, we have $m_{44}=p^{2}$ and $m_{4 j}=0(2 \leq j \leq 3)$. Since $\left[G: K_{5}\right]=p$ and p is the smallest prime number that divides the order of group, hence K_{5} is normal subgroup of G. Therefore, by Theorem 2.1 (e), we conclude that $m_{52}=m_{54}=m_{55}=p$ and the other entries of this row are zero (see Table 16).
Theorem 2.6. Let p and q be two prime numbers such that $p>q, q \mid p-$ 1 and $G \in \mathcal{G}\left(p^{2}, q\right)$. Then, the table of marks of G is isomorphic with one of the Tables 17-21.

Proof. The table of marks of groups Q_{1} and Q_{2} can be derived from Theorem 2.5 (see Tables 12, 13). Suppose that $G \cong Q_{3}$. Then one can easily check that $H_{i, j}=\left\langle c^{i}, a^{j}\right\rangle(1 \leq i, j \leq p-1)$ are subgroups of order p. It is not difficult to see that there are exactly $(p-1)(p-$ 1) $/(p-1) q=k$ non-conjugate subgroups of this form. In addition, two subgroups $\{e\} \times \mathbb{Z}_{p}$ and $\mathbb{Z}_{p} \times\{e\}$ are of order p. In general, there are $k+2$ non-conjugate subgroups of order p. Let us show them by $H_{1}=\mathbb{Z}_{p} \times\{e\}, H_{2}=\{e\} \times \mathbb{Z}_{p}$ and H_{3}, \ldots, H_{k+2}. We claim that for $i \in\{3, \ldots, k+2\}$, we have $N_{G}\left(H_{i}\right)=\langle c, a\rangle$. To do this, suppose $H_{i}=\left\langle c^{r}, a^{s}\right\rangle$ and $g=c^{k} b^{j} a^{i}$ is an element of G such that $g^{-1} H_{i} g=H_{i}$. Hence, $g^{-1} H_{i} g=b^{-j} H_{i} b^{j}=\left\langle c^{r}, a^{s u^{j}}\right\rangle$, thus by using Theorem 2.1, we have $m_{i i}=p(5 \leq i \leq k+4)$. Since H_{1} and H_{2} are normal subgroups of G, hence $m_{i i}=p q(i=3,4)$. On the other hand, all subgroups of order $p q$ are $G_{1}=\{e\} \times F_{p, q}$ and $G_{2}=\langle c, b\rangle \cong \mathbb{Z}_{p} \times \mathbb{Z}_{q}$. Now, $N_{G}\left(G_{1}\right)=$ G, since for $g=c^{k} b^{j} a^{i} \in G$, we have $g^{-1} G_{1} g=\left\langle b^{-j} a b^{j}, a^{-i} b a^{i}\right\rangle=$ $\left\langle a^{-j u}, b^{2} a^{-i u+i}\right\rangle$. Similarly, we can prove that $N_{G}\left(G_{2}\right)=G_{2}$. Hence, according to Theorem 2.1, we get $m_{k+5, k+5}=p, m_{k+6, k+6}=1$ and the other entries of this table can be derived directly. The Sylow p subgroup P is a normal subgroup of $\mathbb{Z}_{p} \times F_{p, q}$ and the latest column and row of the table can be computed from Theorem 2.1. The Sylow q-subgroup of Q_{3} is $Q=\langle b\rangle$ and we have $N_{G}(Q)=\langle c, b\rangle$, which yields the second column and row of the table. For $i=k+5$ and $j=4$, since $H_{2} \subseteq G_{1}$, we conclude $m_{k+5,4}=p$. For $i=k+6$ and $j=3$, since $H_{1} \subseteq G_{2}$, we have $m_{k+6,3}=p$. It then follows that all non-conjugate subgroups of $H=F_{p^{2}, q}$ are $H_{1}=\langle e\rangle, H_{2}=\langle b\rangle, H_{3}=\left\langle a^{p}\right\rangle, H_{4}=\left\langle a^{p}, b\right\rangle$, $H_{5}=\langle a\rangle$ and $H_{6}=H$. The first column of $M\left(F_{p^{2} q}\right)$ can be derived from Theorem $2.1(c)$. On the other hand, for $g=b^{j} a^{i} \in H$, we have $g^{-1} H_{2} g=\left\langle a^{-i} b a^{i}\right\rangle=\left\langle b^{2} a^{-i u+i}\right\rangle$ and so $N_{H}\left(H_{2}\right)=H_{2}$. This yields that $m_{22}=1$. Also, for subgroup H_{3}, we have $g^{-1} H_{3} g=\left\langle b^{-j} a^{p} b^{j}\right\rangle=\left\langle a^{j u^{p}}\right\rangle$, thus $N_{H}\left(H_{3}\right)=H$ and so $m_{33}=p q$. On the other hand, $g^{-1} H_{4} g=$ $\left\langle b^{-j} a^{p} b^{j}, a^{-i} b a^{i}\right\rangle=\left\langle a^{j u^{p}}, b^{2} a^{-i u+i}\right\rangle$ and we conclude $N_{H}\left(H_{4}\right)=H_{4}$ or $m_{44}=1$. Since p and q are prime numbers, by Theorem 2.1, we have
$m_{42}=1$ and $m_{43}=p$. By using Sylow Theorem, we can show that H_{5} is normal subgroup of $F_{p^{2}, q}$, and so the fifth row of this table can be resulted from Theorem 2.1 (e). The subgroups of order p in Q_{5} are $H_{i, j}=\left\langle c^{i}, a^{j}\right\rangle(1 \leq i, j \leq p-1)$. It is not difficult to see that there are exactly $(p-1)(p-1) /(p-1) q=k$ non-conjugate subgroups of this form. In addition, two subgroups $\{e\} \times \mathbb{Z}_{p}$ and $\mathbb{Z}_{p} \times\{e\}$ are of order p. In general, there are $k+2$ non-conjugate subgroups of order p denoted by $H_{1}=\{e\} \times \mathbb{Z}_{p}, H_{2}=\mathbb{Z}_{p} \times\{e\}, H_{3}, \ldots, H_{k+2}$. We claim that for $i \in\{3, \ldots, k+2\}$, we have $N_{Q_{5}}\left(H_{i}\right)=\langle c, a\rangle$. To do this, suppose that $H_{i}=\left\langle c^{r}, a^{s}\right\rangle$ and $g=c^{k} b^{j} a^{i} \in Q_{5}$ is an arbitrary element such that $g^{-1} H_{i} g=H_{i}$. Hence, $g^{-1} H_{i} g=b^{-j} H_{i} b^{j}=\left\langle c^{r}, a^{s u^{j}}\right\rangle$, thus by using Theorem 2.1, we get $m_{i i}=p(5 \leq i \leq k+4)$. Since H_{1} and H_{2} are normal subgroups of Q_{5}, hence $m_{i i}=p q(i=3,4)$. On the other hand, all subgroups of order $p q$ are $G_{1}=\langle c, b\rangle$ and $G_{2}=\langle a, b\rangle$. For $g=c^{k} b^{j} a^{r} \in Q_{5}$, we have $g^{-1} G_{i} g=G_{i}$, thus $N_{Q_{5}}\left(G_{i}\right)=G_{i}(i=1,2)$ and so according to Theorem 2.1, we have $m_{k+5, k+5}=m_{k+6, k+6}=1$. The other entries of this table can be derived from Theorem 2.1. But the Sylow p-subgroup P is a normal subgroup of Q_{5} and thus by using Theorem 2.1, the latest column and row of the table can be computed. The Sylow q-subgroup Q_{5} is $Q=\langle b\rangle$ and for $g=c^{k} b^{j} a^{i} \in Q_{5}$ we have $g^{-1} Q g=Q$, so $m_{22}=1$. Since $H_{2} \subseteq G_{1}$, it follows that $m_{k+5,4}=p$ and since $H_{1} \subseteq G_{2}$, we have $m_{k+6,3}=p$. Also, the other entries are zero, and so $M\left(Q_{5}\right)$ is as given in Table 19.

The subgroups $H_{i, j}=\left\langle c^{i}, a^{j}\right\rangle(1 \leq i, j \leq p-1)$ of group $G=Q_{6}$ are of order p. The number of non-conjugate subgroups of this form is exactly $(p-1)(p-1) /(p-1) q=k$. We denote these subgroups by H_{1}, \ldots, H_{k}. Let $H_{i}=\left\langle c^{r}, a^{s}\right\rangle$ and suppose $g=c^{k} b^{j} a^{i} \in Q_{6}$ is an arbitrary element such that $g^{-1} H_{i} g=H_{i}$. Hence, $g^{-1} H_{i} g=b^{-j} H_{i} b^{j}=$ $\left\langle c^{r}, a^{s u^{j}}\right\rangle$ and so $N_{Q_{6}}\left(H_{i}\right)=\langle c, a\rangle$. By using Theorem 2.1, we can verify that $m_{i i}=p(3 \leq i \leq k+2)$. On the other hand, G has no subgroup of order $p q$ and the Sylow p-subgroup P of Q_{6} is normal. Now, Theorem 2.1 yields the latest row and column of Table 21. The Sylow q-subgroup of Q_{6} is $Q=\langle b\rangle$ and we can prove that $N_{Q_{6}}(Q)=Q$. Hence, the second column and row of Table 21 can be derived.
2.2. Computing the Markaracter Table. The matrix $M C(G)$ obtained from the table of marks $M(G)$ of group G in which we select rows and columns corresponding to cyclic subgroups of G is called the markaracter table of G. It is merit to mention here that the markaracter table of a finite group was firstly introduced by Shinsaku Fujita to discuss marks and characters of a finite group in a common basis, see $[4,5]$. Fujita originally developed his theory to be the foundation for
enumeration of molecules [4]. We encourage the interested readers to consult papers [5, 6, 7, 8, 9] as well as [2,11], for more information on this topic.

Suppose A and B are $m \times n$ and $p \times q$ matrices, respectively. The tensor product $A \otimes B$ of matrices A and B is the $m p \times n q$ block matrix:

$$
A \otimes B=\left[\begin{array}{lll}
a_{11} B & \cdots & a_{1 n} B \\
\vdots & \ddots & \vdots \\
a_{m 1} B & \cdots & a_{m n} B
\end{array}\right]
$$

Theorem 2.7. [15] Let p be a prime number, q be a positive integer such that $q \mid p-1$ and $q=q_{1}^{\alpha_{1}} q_{2}^{\alpha_{2}} \ldots q_{s}^{\alpha_{s}}$ be its decomposition into distinct primes $q_{1}<q_{2}<\cdots<q_{s}$. Suppose $\tau(n)$ denotes the number of divisors of n and $d_{1}, \ldots, d_{\tau(q)}$ are positive divisors of q. Then, the markaracter table of the Frobenius group $F_{p, q}$ can be computed as reported in Table 22.

Lemma 2.8. Suppose G_{1} and G_{2} are two finite groups with co-prime orders. Then, the markaracter table of $G_{1} \times G_{2}$ is tensor product of $M C\left(G_{1}\right)$ and $M C\left(G_{2}\right)$.

Proof. Let A, A_{1} and A_{2} be the set of all non-conjugate cyclic subgroups of $G_{1} \times G_{2}, G_{1}$ and G_{2}, respectively. Suppose that $U=\langle u\rangle \in A_{1}$ and $V=\langle v\rangle \in A_{2}$. Then $U \times V$ is a cyclic group generated by (u, v). So, $U \times V$ is conjugate with a cyclic subgroup in A. On the other hand, if $H=\langle h\rangle \in A$, then $h=(u, v)$ such that $u \in G_{1}, v \in G_{2}$ and $\operatorname{gcd}(o(u), o(v))=1$. Then, there are $U \in A_{1}$ and $V \in A_{2}$ conjugate with $\langle u\rangle$ and $\langle v\rangle$, respectively, such that $H=U \times V$. Therefore, $M C\left(G_{1} \times G_{2}\right)=M C\left(G_{1}\right) \otimes M C\left(G_{2}\right)$.

Theorem 2.9. Suppose G is a group of order p^{3}. Then, the markaracter table of G is given in Tables 23-25.

Proof. If $G=\mathbb{Z}_{p^{3}}$, then clearly $M C(G)=M(G)$. When $G=\mathbb{Z}_{p} \times \mathbb{Z}_{p^{2}}$, by using Theorem 2.3, all non-conjugate subgroups are cyclic. So, $M C(G)=M(G)$. In this case, we have $G=\mathbb{Z}_{p} \times \mathbb{Z}_{p} \times \mathbb{Z}_{p}$, all nonconjugate subgroups of order p are cyclic and since these subgroups are normal, the markaracter table of G can be computed from Theorem 2.3. The markaracter tables of two non-abelian groups of order p^{3} can be derived from Tables 6,7 , respectively.

Let G be a cyclic group of order $n=p_{1}^{\alpha_{1}} \ldots a_{r}^{\alpha_{r}}$. Then, Lemma 2.8 shows that

$$
M C\left(\mathbb{Z}_{n}\right)=M C\left(\mathbb{Z}_{p_{1}^{\alpha_{1}}}\right) \otimes \ldots \otimes M C\left(\mathbb{Z}_{p_{r}^{\alpha_{r}}}\right) .
$$

Theorem 2.10. The markaracter table of a group of order pqr ($p>$ $q>r)$ is equal with one of the following matrices:
i) $M C\left(G_{1}\right)=M C\left(\mathbb{Z}_{p}\right) \otimes M C\left(\mathbb{Z}_{q}\right) \otimes M C\left(\mathbb{Z}_{r}\right)$,
ii) $M C\left(G_{2}\right)=M C\left(F_{p, q}\right) \otimes M C\left(\mathbb{Z}_{r}\right)(q \mid p-1)$,
iii) $M C\left(G_{3}\right)=M C\left(F_{p, r}\right) \otimes M C\left(\mathbb{Z}_{q}\right)(r \mid p-1)$,
iv) $M C\left(G_{4}\right)=M C\left(F_{q, r}\right) \otimes M C\left(\mathbb{Z}_{p}\right)(r \mid q-1)$,
v) If $q r \mid p-1$ then $M C\left(G_{5}\right)=M C\left(F_{p, q r}\right)$,
vi) If $r \mid p-1, q-1$, then the markaracter of G_{i+5} is as reported in Table 24.
Proof. Let G be a group of order $p q r$. If G is isomorphic to one of groups G_{1}, \ldots, G_{4}, then by applying Lemma 2.8, the proof is clear. If G is isomorphic to G_{5}, then the markaracter of G can be computed from Theorem 2.7. It remains to compute the markaracter table of groups $G_{i+5}(1 \leq i \leq r-1)$. Letting $G=G_{6}$, it is easy to see that $\left\langle a^{\alpha}\right\rangle=\left\langle a^{\beta}\right\rangle,\left\langle b^{\delta}\right\rangle=\left\langle b^{\eta}\right\rangle,\left\langle c^{\theta}\right\rangle=\left\langle c^{\lambda}\right\rangle$ and $\left\langle b^{\mu} a^{\nu}\right\rangle=\left\langle b^{\rho} a^{\varphi}\right\rangle$, where $1 \leq$ $\alpha, \beta, \nu, \varphi \leq p-1,1 \leq \delta, \eta, \mu, \rho \leq q-1$ and $1 \leq \theta, \lambda \leq r-1$. Therefore, all non-conjugate cyclic subgroups of G are $\langle e\rangle,\langle a\rangle,\langle b\rangle,\langle a b\rangle,\langle c\rangle$. Let $H_{1}=\langle e\rangle, H_{2}=\langle c\rangle, H_{3}=\langle b\rangle, H_{4}=\langle a\rangle$ and $H_{5}=\langle a b\rangle$. One can easily check that $N_{G}\left(H_{2}\right)=H_{2}$ and $N_{G}\left(H_{3}\right)=N_{G}\left(H_{4}\right)=N_{G}\left(H_{5}\right)=G$. Hence, by Theorem 2.1, all entries of the diagonal and the first column of markaracter table can be derived. Since p, q, r are distinct prime numbers, according to Theorem 2.1, we have $m_{32}=m_{42}=m_{43}=$ $m_{52}=0$. Finally, the relations $a b=b a, c^{-1} b c=b^{u}$ and $c^{-1} a c=a^{v^{i}}$ yield that the subgroup H_{5} is normal. This completes the proof.

In continuing, we determine the markaracter table of groups of order $p^{2} q$.
Theorem 2.11. Let p and q be two prime numbers such that $q>$ $p, p \mid q-1$ and $G \in \mathcal{G}\left(p^{2}, q\right)$. Then, the markaracter table of G is isomorphic with one of Tables 26-30.
Proof. Let $G \cong L_{1}$. Since L_{1} is cyclic, then clearly $M C\left(L_{1}\right)=M\left(\mathbb{Z}_{p^{2} q}\right)$ (see Table 26). All cyclic subgroups of L_{2} are $H_{i, j}=\left\langle\left(c^{i}, a^{j}\right)\right\rangle(1 \leq$ $i, j \leq p-1$), where $c^{p}=a^{p}=1, a c=c a$ and $\{e\} \times \mathbb{Z}_{p}, \mathbb{Z}_{p} \times\{e\}$. We show them by $H_{1}, \ldots H_{p+1}$. On the other hand, all cyclic subgroups of order $p q$ of G are $G_{i, j}=\left\langle\left(c^{i}, b^{j}\right)\right\rangle(1 \leq i \leq p-1),(1 \leq j \leq q-1)$, where $c^{p}=b^{q}=1, b c=c b$ and $\{e\} \times \mathbb{Z}_{p q}, \mathbb{Z}_{p} \times \mathbb{Z}_{q}$. We show them by G_{1}, \ldots, G_{p+1}. Also, the Sylow q-subgroup Q is cyclic. So, by using Theorem 2.5, the markaracter table of L_{2} is as given in Tasble 27.

All cyclic subgroups of order p in L_{3} are $L_{i, j}=\left\langle\left(c^{i}, b^{j}\right)\right\rangle(1 \leq i, j \leq$ $p-1$), where $c^{p}=b^{p}=1, b c=c b$ and $\{e\} \times \mathbb{Z}_{p}, \mathbb{Z}_{p} \times\{e\}$, denoted by G_{1}, \ldots, G_{p+1}. The other cyclic subgroups of L_{3} are $G_{p+2}=Q$, where
$Q=\langle a\rangle$ is Sylow q-subgroup and $G_{p+3}=\langle c, b\rangle$. By using Theorem 2.5, $M C\left(L_{3}\right)$ is isomorphic with Table 28.

All cyclic subgroups of L_{4} are $G_{1}=\langle e\rangle, G_{i}=\left\langle b^{k}\right| k=p$ or 1\rangle, $(2 \leq i \leq 3)$ and $G_{4}=\langle a\rangle$. So, the markaracter table can be derived from Theorem 2.5 (see Table 29).

Finally, all cyclic subgroups of L_{5} are $H_{1}=\langle e\rangle, H_{2}=\left\langle a^{p}\right\rangle, H_{3}=\langle a\rangle$, $H_{4}=\langle b\rangle$ and $H_{5}=\left\langle\left(a^{p}, b\right)\right\rangle$. The markaracter table of L_{5} can be derived from Theorem 2.5 (see Table 30).

Theorem 2.12. Let p and q be two prime numbers such that $p>q$, $q \mid p-1$ and $G \in \mathcal{G}\left(p^{2}, q\right)$. Then, $M C\left(Q_{1}\right)=M\left(Q_{1}\right)$ and the markaracter table of groups Q_{2}, \ldots, Q_{6} are as reported in Tables 31-33.

Proof. All cyclic subgroups of $F_{p^{2}, q}$ are $G_{1}=\langle e\rangle, G_{2}=\langle b\rangle, G_{3}=\left\langle a^{p}\right\rangle$ and $G_{4}=\langle a\rangle$. So, the markaracter table is as given in Table 31. All cyclic subgroups of order p of Q_{5} are $H_{1}, H_{2}, H_{3}, \ldots, H_{k+2}$, as defined in Theorem 2.6. On the other hand, the Sylow q-subgroup $Q=\langle b\rangle$ and $\langle e\rangle$ which are cyclic subgroups of Q_{5}. The markaracter table of $F_{p^{2}, q}$ can be derived from Theorem 2.6 (see Table 32). Finally, in group Q_{6}, the cyclic subgroups are $\langle e\rangle, H_{1}, \ldots, H_{k}$, as introduced in Theorem 2.6 together with Sylow q-subgroup $Q=\langle b\rangle$. So, the markaracter table is as given in Table 33.

References

1. C. Alden Mead, Table of marks and double cosets in isomer counting, J. Am. Chem. Soc. 109 (1987), 2130-2137.
2. A. R. Ashrafi, and M. Ghorbani, A note on markaracter tables of finite groups, MATCH Commun. Math. Comput. Chem. 59 (2008), 595-603.
3. W. Burnside, Theory of groups of finite order, The University Press, Cambridge, 1987.
4. S. Fujita, Dominant representations and a markaracter table for a group of finite order, Theor. Chem. Acta 91 (1995), 291-314.
5. S. Fujita, Markaracter tables and Q-conjugacy character tables for cyclic groups, an application to combinatorial enumeration, Bull. Chem. Soc. Jpn. 71 (1998), 1587-1596.
6. S. Fujita, The unit-subduced-cycle-index methods and the characteristicmonomial method. Their relationship as group-theoretical tools for chemical combinatorics, J. Math. Chem. 30 (2001), 249-270.
7. S. Fujita, and S. El-Basil, Graphical models of characters of groups, J. Math. Chem. 33 (2003), 255-277.
8. S. Fujita, Diagrammatical Approach to Molecular Symmetry and Enumeration of Stereoisomers, Mathematical Chemistry Monographs, No. 4, University of Kragujevac, 2007.
9. S. Fujita, Combinatorial Enumeration of Graphs, Three-Dimensional Structures, and Chemical Compounds, Mathematical Chemistry Monographs, No. 15, University of Kragujevac, 2013.
10. The Gap Team, GAP Groups, Algorithms and Programming, Version 4.
11. M. Ghorbani, Remarks on markaracter table of fullerene graphs, J. Comput. Theor. Nanosci. 11 (2014), 363-379.
12. H. Hölder, Die Gruppen der Ordnungen $p^{3}, p q^{2}, p q r, p^{4}$, Math. Ann. 43(2-3) (1893), 371-410.
13. G. James, and M. Liebeck, Representations and characters of groups, Cambridge University Press, Cambridge, 1993.
14. G. Pfeifier, The subgroups of M_{24} or how to compute a table of marks, Experiment. Math. 6 (1997), 247-270.
15. H. Shabani, A. R. Ashrafi, and M. Ghorbani, Rational Character Table of some Finite Groups, J. Algebraic Sys. 3(2) (2016), 151-169.

Appendix.

The Table of Marks and Markaracter Table of Groups
Table 3. The Table of Marks of the Cyclic Group of Order p^{3}.

$M\left(\mathbb{Z}_{p^{3}}\right)$	G_{1}	G_{2}	G_{3}	$\mathbb{Z}_{p^{3}}$
$\mathbb{Z}_{p^{3}} / G_{1}$	p^{3}	0	0	0
$\mathbb{Z}_{p^{3}} / G_{2}$	p^{2}	p^{2}	0	0
$\mathbb{Z}_{p^{3}} / G_{3}$	p	p	p	0
$\mathbb{Z}_{p^{3}} / \mathbb{Z}_{p^{3}}$	1	1	1	1

Table 4. The Table of Marks of Group $\mathbb{Z}_{p} \times \mathbb{Z}_{p^{2}}$.

$M\left(\mathbb{Z}_{p} \times \mathbb{Z}_{p^{2}}\right)$	\rangle	H_{1}	H_{2}	\ldots	H_{p+1}	G_{1}	G_{2}	\ldots	G_{p+1}	G
$G / /\rangle$	p^{3}	0	0	\ldots	0	0	0	\ldots	0	0
G / H_{1}	p^{2}	p^{2}	0	\ldots	0	0	0	\ldots	0	0
G / H_{2}	p^{2}	0	p^{2}	\ldots	0	0	0	\ldots	0	0
\vdots	\vdots	\vdots	\vdots	\ddots	\vdots	\vdots	\vdots	\ldots	\vdots	\vdots
G / H_{p+1}	p^{2}	0	0	\ldots	p^{2}	0	0	\ldots	0	0
G / G_{1}	p	p	0	\ldots	0	p	0	\ldots	0	0
G / G_{2}	p	p	p	\ldots	p	0	p	\ldots	0	0
\vdots	\vdots	\vdots	\vdots	\ddots	\vdots	\vdots	\vdots	\ldots	\vdots	\vdots
G / G_{p+1}	p	p	0	\ldots	0	0	0	\ldots	p	0
G / G	1	1	1	\ldots	1	1	1	\ldots	1	1

Table 5. The Table of Marks of Group $\mathbb{Z}_{p} \times \mathbb{Z}_{p} \times \mathbb{Z}_{p}$.

$M\left(\mathbb{Z}_{p} \times \mathbb{Z}_{p} \times \mathbb{Z}_{p}\right)$	\rangle	H_{1}	H_{2}	\ldots	H_{t}	G_{1}	G_{2}	\ldots	G_{t}	G
$G /\langle \rangle$	p^{3}	0	0	\ldots	0	0	0	\ldots	0	0
G / H_{1}	p^{2}	p^{2}	0	\ldots	0	0	0	\ldots	0	0
G / H_{2}	p^{2}	0	p^{2}	\ldots	0	0	0	\ldots	0	0
\vdots	\vdots	\vdots	\vdots	\ddots	\vdots	\vdots	\vdots	\ldots	\vdots	\vdots
G / H_{t}	p^{2}	0	0	\ldots	p^{2}	0	0	\ldots	0	0
G / G_{1}	p	p	0	\ldots	0	p	0	\ldots	0	0
G / G_{2}	p	p	p	\ldots	p	0	p	\ldots	0	0
\vdots	\vdots	\vdots	\vdots	\ddots	\vdots	\vdots	\vdots	\ldots	\vdots	\vdots
G / G_{t}	p	p	0	\ldots	0	0	0	\ldots	p	0
G / G	1	1	1	\ldots	1	1	1	\ldots	1	1

Table 6. The Table of Marks of Group $\mathbb{Z}_{p} \ltimes \mathbb{Z}_{p^{2}}$.

$M(H)$	H_{1}	H_{2}	H_{3}	H_{4}	H_{5}	\ldots	H_{p+4}	H
H / H_{1}	p^{3}	0	0	0	0	\ldots	0	0
H / H_{2}	p^{2}	p^{2}	0	0	0	\ldots	0	0
H / H_{3}	p^{2}	0	p	0	0	\ldots	0	0
H / H_{4}	p	p	0	p	0	\ldots	0	0
H / H_{5}	p	p	p	0	p	\ldots	0	0
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots	\ddots	\vdots	\vdots
H / H_{p+4}	p	p	0	0	0	\ldots	p	0
H / H	1	1	1	1	1	\ldots	1	1

Table 7. The Table of Marks of Group $\mathbb{Z}_{p} \ltimes\left(\mathbb{Z}_{p} \times \mathbb{Z}_{p}\right)$.

$M(G)$	\rangle	H_{1}	H_{2}	H_{3}	\ldots	H_{p+2}	G_{1}	G_{2}	\ldots	G_{p+1}	G
$G /\langle \rangle$	p^{3}	0	0	0	\ldots	0	0	0	\ldots	0	0
G / H_{1}	p^{2}	p^{2}	0	0	\ldots	0	0	0	\ldots	0	0
G / H_{2}	p^{2}	0	p	0	\ldots	0	0	0	\ldots	0	0
G / H_{3}	p^{2}	0	0	p	\ldots	0	0	0	\ldots	0	0
\vdots	\vdots	\vdots	\vdots	\vdots	\ddots	\vdots	\vdots	\vdots	\ldots	\vdots	\vdots
G / H_{p+2}	p^{2}	0	0	0	\ldots	p	0	0	\ldots	0	0
G / G_{1}	p	p	p	0	\ldots	0	p	0	\ldots	0	0
G / G_{2}	p	p	0	p	\ldots	0	0	p	\ldots	0	0
\vdots	\vdots	\vdots	\vdots	\vdots	\ddots	\vdots	\ddots	\vdots	\ldots	\vdots	\vdots
G / G_{p+1}	p	p	0	0	\ldots	p	0	0	\ldots	p	0
G / G	1	1	1	1	\ldots	1	1	1	\ldots	1	1

Table 8. The Table of Marks of Group $\mathbb{Z}_{p q r}$.

$M\left(\mathbb{Z}_{p q r}\right)$	G_{1}	G_{2}	G_{3}	G_{4}	G_{5}	G_{6}	G_{7}	G_{8}
G / G_{1}	$p q r$	0	0	0	0	0	0	0
G / G_{2}	$p q$	$p q$	0	0	0	0	0	0
G / G_{3}	$p r$	0	$p r$	0	0	0	0	0
G / G_{4}	$q r$	0	0	$q r$	0	0	0	0
G / G_{5}	p	p	p	0	p	0	0	0
G / G_{6}	q	q	0	q	0	q	0	0
G / G_{7}	r	0	r	r	0	0	r	0
G / G_{8}	1	1	1	1	1	1	1	1

Table 9. The Table of Marks of Group $\mathbb{Z}_{r} \times F_{p, q}(q \mid p-1)$.

$M\left(\mathbb{Z}_{r} \times F_{p, q}\right)$	H_{1}	H_{2}	H_{3}	H_{4}	H_{5}	H_{6}	H_{7}	H_{8}
H / H_{1}	$p q r$	0	0	0	0	0	0	0
H / H_{2}	$p q$	$p q$	0	0	0	0	0	0
H / H_{3}	$p r$	0	r	0	0	0	0	0
H / H_{4}	p	p	1	1	0	0	0	0
H / H_{5}	$q r$	0	0	0	$q r$	0	0	0
H / H_{6}	q	q	0	0	q	q	0	0
H / H_{7}	r	0	r	0	r	0	r	0
H / H_{8}	1	1	1	1	1	1	1	1

Table 10. The Table of Marks of Group $F_{p, q r}(q r \mid p-1)$.

$M\left(F_{p, q r}\right)$	K_{1}	K_{2}	K_{3}	K_{4}	K_{5}	K_{6}	K_{7}	K_{8}
K / K_{1}	$p q r$	0	0	0	0	0	0	0
K / K_{2}	$p q$	q	0	0	0	0	0	0
K / K_{3}	$p r$	0	r	0	0	0	0	0
K / K_{4}	p	1	1	1	0	0	0	0
K / K_{5}	$q r$	0	0	0	$q r$	0	0	0
K / K_{6}	q	q	0	0	q	q	0	0
K / K_{7}	r	0	r	0	r	0	r	0
K / K_{8}	1	1	1	1	1	1	1	1

Table 11. The Table of Marks of Group $G_{i+5}(1 \leq i \leq r-1)$.

$M\left(G_{i+5}\right)$	P_{1}	P_{2}	P_{3}	P_{4}	P_{5}	P_{6}	P_{7}	P_{8}
P / P_{1}	$p q r$	0	0	0	0	0	0	0
P / P_{2}	$p q$	1	0	0	0	0	0	0
P / P_{3}	$p r$	0	$p r$	0	0	0	0	0
P / P_{4}	$p q$	0	0	$p q$	0	0	0	0
P / P_{5}	p	1	p	0	1	0	0	0
P / P_{6}	q	1	0	q	0	q	0	0
P / P_{7}	r	0	r	r	0	0	r	0
P / P_{8}	1	1	1	1	1	1	1	1

Table 12. The Table of Marks of Group $\mathbb{Z}_{p^{2} q}$.

$M\left(\mathbb{Z}_{p^{2}}\right)$	G_{1}	G_{2}	G_{3}	G_{4}	G_{5}	G_{6}
G / G_{1}	$p^{2} q$	0	0	0	0	0
G / G_{2}	$p q$	$p q$	0	0	0	0
G / G_{3}	q	q	q	0	0	0
G / G_{4}	p^{2}	0	0	p^{2}	0	0
G / G_{5}	p	p	0	p	p	0
G / G_{6}	1	1	1	1	1	1

Table 13. The Table of Marks of Group $\mathbb{Z}_{p} \times \mathbb{Z}_{p q}$.

$M\left(\mathbb{Z}_{p} \times \mathbb{Z}_{p q}\right)$	\rangle	H_{1}	H_{2}	\ldots	H_{p+1}	P	Q	G_{1}	G_{2}	\ldots	G_{p+1}	G
$G /\langle \rangle$	$p^{2} q$	0	0	\ldots	0	0	0	0	0	\ldots	0	0
G / H_{1}	$p q$	$p q$	0	\ldots	0	0	0	0	0	\ldots	0	0
G / H_{2}	$p q$	0	$p q$	\ldots	0	0	0	0	0	\ldots	0	0
\vdots	\vdots	\vdots	\vdots	\ddots	\vdots	\ddots	\vdots	\vdots	\vdots	\ldots	\vdots	\vdots
G / H_{p+1}	$p q$	0	0	\ldots	$p q$	0	0	0	0	\ldots	0	0
G / P	q	q	q	\ldots	q	q	0	0	0	\ldots	0	0
G / Q	p^{2}	0	0	\ldots	0	0	p^{2}	0	0	\ldots	0	0
G / G_{1}	p	p	0	\ldots	0	0	p	p	0	\ldots	0	0
G / G_{2}	p	p	0	\ldots	0	0	p	0	p	\ldots	0	0
\vdots	\vdots	\vdots	\vdots	\ddots	\vdots	\ddots	\vdots	\vdots	\vdots	\ldots	\vdots	\vdots
G / G_{p+1}	p	p	0	\ldots	0	0	p	0	0	\ldots	p	0
G / G	1	1	1	\ldots	1	1	1	1	1	\ldots	1	1

Table 14. The Table of Marks of Group $\mathbb{Z}_{p} \times F_{q, p}$.

$M\left(\mathbb{Z}_{p} \times F_{q, p}\right)$	\rangle	H_{1}	H_{2}	\ldots	H_{p+1}	P	Q	G_{1}	G_{2}	\ldots	G_{p+1}	G
$G /\langle \rangle$	$p^{2} q$	0	0	\ldots	0	0	0	0	0	\ldots	0	0
G / H_{1}	$p q$	$p q$	0	\ldots	0	0	0	0	0	\ldots	0	0
G / H_{2}	$p q$	0	p	\ldots	0	0	0	0	0	\ldots	0	0
\vdots	\vdots	\vdots	\vdots	\ddots	\vdots	\ddots	\vdots	\vdots	\vdots	\ldots	\vdots	\vdots
G / H_{p+1}	$p q$	0	0	\ldots	p	0	0	0	0	\ldots	0	0
G / P	q	q	1	\ldots	1	1	0	0	0	\ldots	0	0
G / Q	p^{2}	0	0	\ldots	0	0	p^{2}	0	0	\ldots	0	0
G / G_{1}	p	p	0	\ldots	0	0	p	p	0	\ldots	0	0
G / G_{2}	p	p	0	\ldots	0	0	p	0	p	\ldots	0	0
\vdots	\vdots	\vdots	\vdots	\ddots	\vdots	\ddots	\vdots	\vdots	\vdots	\ldots	\vdots	\vdots
G / G_{p+1}	p	p	0	\ldots	0	0	p	0	0	\ldots	p	0
G / G	1	1	1	\ldots	1	1	1	1	1	\ldots	1	1

Table 15. The Table of Marks of Frobenius Group $F_{q, p^{2}}$.

$M\left(F_{q, p^{2}}\right)$	H_{1}	H_{2}	H_{3}	H_{4}	H_{5}	H_{6}
H / H_{1}	$p^{2} q$	0	0	0	0	0
H / H_{2}	$p q$	p	0	0	0	0
H / H_{3}	q	1	1	0	0	0
H / H_{4}	p^{2}	0	0	p^{2}	0	0
H / H_{5}	p	p	0	p	p	0
H / H_{6}	1	1	1	1	1	1

Table 16. The Table of Marks of Group L_{5}.

$M\left(L_{5}\right)$	K_{1}	K_{2}	K_{3}	K_{4}	K_{5}	K_{6}
L_{5} / K_{1}	$p^{2} q$	0	0	0	0	0
L_{5} / K_{2}	$p q$	$p q$	0	0	0	0
L_{5} / K_{3}	q	q	1	0	0	0
L_{5} / K_{4}	p^{2}	0	0	p^{2}	0	0
L_{5} / K_{5}	p	p	0	p	p	0
L_{5} / K_{6}	1	1	1	1	1	1

Table 17. The Table of Marks of Group $\mathbb{Z}_{p} \times F_{p, q},(k=p-1 / q)$.

$M\left(\mathbb{Z}_{p} \times F_{p, q}\right)$	\rangle	Q	H_{1}	H_{2}	H_{3}	\ldots	H_{k+2}	G_{1}	G_{2}	P	G
$G /\langle \rangle$	$p^{2} q$	0	0	0	0	\ldots	0	0	0	0	0
G / Q	p^{2}	p	0	0	0	\ldots	0	0	0	0	0
G / H_{1}	$p q$	0	$p q$	0	0	\ldots	0	0	0	0	0
G / H_{2}	$p q$	0	0	$p q$	0	\ldots	0	0	0	0	0
G / H_{3}	$p q$	0	0	0	p	\ldots	0	0	0	0	0
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots	\ddots	\vdots	\vdots	\vdots	\vdots	\vdots
G / H_{k+2}	$p q$	0	0	0	0	\ldots	p	0	0	0	0
G / G_{1}	p	p	0	p	0	\ldots	0	p	0	0	0
G / G_{2}	p	1	p	0	0	\ldots	0	0	1	0	0
G / P	q	0	q	q	q	\ldots	q	0	0	q	0
G / G	1	1	1	1	1	\ldots	1	1	1	1	1

Table 18. The Table of Marks of Group $F_{p^{2}, q}$.

$M\left(F_{p^{2}, q}\right)$	H_{1}	H_{2}	H_{3}	H_{4}	H_{5}	H_{6}
H / H_{1}	$p^{2} q$	0	0	0	0	0
H / H_{2}	p^{2}	1	0	0	0	0
H / H_{3}	$p q$	0	$p q$	0	0	0
H / H_{4}	p	1	p	1	0	0
H / H_{5}	q	0	q	0	q	0
H / H_{6}	1	1	1	1	1	1

Table 19. The Table of Marks of Group $Q_{5},(k=p-1 / q)$.

$M\left(Q_{5}\right)$	\rangle	Q	H_{1}	H_{2}	H_{3}	\ldots	H_{k+2}	G_{1}	G_{2}	P	Q_{5}
$Q_{5} /\langle \rangle$	$p^{2} q$	0	0	0	0	\ldots	0	0	0	0	0
Q_{5} / Q	p^{2}	1	0	0	0	\ldots	0	0	0	0	0
Q_{5} / H_{1}	$p q$	0	$p q$	0	0	\ldots	0	0	0	0	0
Q_{5} / H_{2}	$p q$	0	0	$p q$	0	\ldots	0	0	0	0	0
Q_{5} / H_{3}	$p q$	0	0	0	p	\ldots	0	0	0	0	0
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots	\ddots	\vdots	\vdots	\vdots	\vdots	\vdots
Q_{5} / H_{k+2}	$p q$	0	0	0	0	\ldots	p	0	0	0	0
Q_{5} / G_{1}	p	1	0	p	0	\ldots	0	1	0	0	0
Q_{5} / G_{2}	p	1	p	0	0	\ldots	0	0	1	0	0
Q_{5} / P	q	0	q	q	q	\ldots	q	0	0	q	0
Q_{5} / Q_{5}	1	1	1	1	1	\ldots	1	1	1	1	1

Table 20. The Table of Marks of Group $Q_{6},(k=p-1 / q)$.

$M\left(Q_{6}\right)$	\rangle	Q	H_{1}	H_{2}	\ldots	H_{k+2}	P	Q_{6}
$Q_{6} /\langle \rangle$	$p^{2} q$	0	0	0	\ldots	0	0	0
Q_{6} / Q	p^{2}	1	0	0	\ldots	0	0	0
Q_{6} / H_{1}	$p q$	0	p	0	\ldots	0	0	0
Q_{6} / H_{2}	$p q$	0	0	p	\ldots	0	0	0
\vdots	\vdots	\vdots	\vdots	\vdots	\ddots	\vdots	\vdots	\vdots
Q_{6} / H_{k+2}	$p q$	0	0	0	\ldots	p	0	0
Q_{6} / P	q	0	q	q	\ldots	q	q	0
Q_{6} / Q_{6}	1	1	1	1	\ldots	1	1	1

Table 21. The Markaracter Table of the Frobenius Group $F_{p, q}$.

$M C\left(F_{p, q}\right)$	G_{1}	G_{2}	G_{3}	\ldots	G_{i}	\ldots	$G_{\tau(q)}$	$G_{\tau(q)+1}$
G / G_{1}	$p q$	0	0	\ldots	0	\ldots	0	0
G / G_{2}	$\frac{p q}{d_{2}}$	$d_{\tau(q)-1}$	0	\ldots	0	\ldots	0	0
G / G_{3}	$\frac{p q}{d_{3}}$	0	$d_{\tau(q)-2}$	\ldots	0	\ldots	0	0
\vdots	\vdots	\vdots	\vdots	\ddots	\vdots	\ddots	\vdots	\vdots
G / G_{i}	$\frac{p q}{d_{i}}$	$m_{i, 3}$	$m_{i, 4}$	\ldots	$d_{\tau(q)-i+1}$	\ldots	0	0
\vdots	\vdots	\vdots	\vdots	\ddots	\vdots	\ddots	\vdots	\vdots
$G / G_{\tau(q)}$	p	1	1	\ldots	1	\ldots	1	0
$G / G_{\tau(q)+1}$	q	0	0	\ldots	0	\ldots	0	q

where $m_{i, j}=\left\{\begin{array}{ll}\frac{q}{d_{i}}, & d_{j} \mid d_{i} \\ 0, & \text { o.w. }\end{array}\right.$.
Table 22. The Markaracter Table of Group $\mathbb{Z}_{p} \times \mathbb{Z}_{p} \times \mathbb{Z}_{p}, t=p^{2}+p+1$.

$M C\left(\mathbb{Z}_{p} \times \mathbb{Z}_{p} \times \mathbb{Z}_{p}\right)$	\rangle	H_{1}	H_{2}	\ldots	H_{t}
$G /\langle \rangle$	p^{3}	0	0	\ldots	0
G / H_{1}	p^{2}	p^{2}	0	\ldots	0
G / H_{2}	p^{2}	0	p^{2}	\ldots	0
\vdots	\vdots	\vdots	\vdots	\ddots	\vdots
G / H_{t}	p^{2}	0	0	\ldots	0

Table 23. The Markaracter Table of Group $\mathbb{Z}_{p} \ltimes \mathbb{Z}_{p^{2}}, t=p+1$.

$M C\left(\mathbb{Z}_{p} \rtimes \mathbb{Z}_{p^{2}}\right)$	\rangle	H_{1}	H_{2}	\ldots	H_{t}
$G /\langle \rangle$	p^{3}	0	0	\ldots	0
G / H_{1}	p^{2}	p^{2}	0	\ldots	0
G / H_{2}	p^{2}	0	p^{2}	\ldots	0
\vdots	\vdots	\vdots	\vdots	\ddots	\vdots
G / H_{t}	p^{2}	0	0	\ldots	0

Table 24. The Markaracter Table of Group $\mathbb{Z}_{p} \ltimes\left(\mathbb{Z}_{p} \times \mathbb{Z}_{p}\right)$.

$M C\left(\mathbb{Z}_{p} \rtimes\left(\mathbb{Z}_{p} \times \mathbb{Z}_{p}\right)\right)$	\rangle	H_{1}	H_{2}	H_{3}	\ldots	H_{p+2}
$G /\langle \rangle$	p^{3}	0	0	0	\ldots	0
G / H_{1}	p^{2}	p^{2}	0	0	\ldots	0
G / H_{2}	p^{2}	0	p	0	\ldots	0
G / H_{3}	p^{2}	0	0	p	\ldots	0
\vdots	\vdots	\vdots	\vdots	\vdots	\ddots	\vdots
G / H_{p+2}	p^{2}	0	0	0	\ldots	p

Table 25. The Markaracter Table of Group $G \cong G_{i+5}$ of order $p q r$.

$M C(G)$	H_{1}	H_{2}	H_{3}	H_{4}	H_{5}
G / H_{1}	$p q r$	0	0	0	0
G / H_{2}	$p q$	1	0	0	0
G / H_{3}	$p r$	0	$p r$	0	0
G / H_{4}	$q r$	0	0	$q r$	0
G / H_{5}	r	0	r	r	r

Table 26. The Markaracter Table of Group $\mathbb{Z}_{p^{2} q}$.

$M C\left(\mathbb{Z}_{p^{2}}\right)$	G_{1}	G_{2}	G_{3}	G_{4}	G_{5}	G_{6}
G / G_{1}	$p^{2} q$	0	0	0	0	0
G / G_{2}	p^{2}	p^{2}	0	0	0	0
G / G_{3}	$p q$	0	$p q$	0	0	0
G / G_{4}	p	p	p	p	0	0
G / G_{5}	q	0	q	0	q	0
G / G_{6}	1	1	1	1	1	1

Table 27. The Markaracter Table of Group $\mathbb{Z}_{p} \times \mathbb{Z}_{p q}$.

$M C\left(\mathbb{Z}_{p} \times \mathbb{Z}_{p q}\right)$	\rangle	H_{1}	H_{2}	\ldots	H_{p+1}	Q	G_{1}	G_{2}	\ldots	G_{p+1}
$G /\langle \rangle$	$p^{2} q$	0	0	\ldots	0	0	0	0	\ldots	0
G / H_{1}	$p q$	$p q$	0	\ldots	0	0	0	0	\ldots	0
G / H_{2}	$p q$	0	$p q$	\ldots	0	0	0	0	\ldots	0
\vdots	\vdots	\vdots	\vdots	\ddots	\vdots	\vdots	0	0	\ldots	0
G / H_{p+1}	$p q$	0	0	\ldots	$p q$	0	0	0	\ldots	0
G / Q	p^{2}	0	0	\ldots	0	p^{2}	0	0	\ldots	0
G / G_{1}	p	p	0	\ldots	0	p	p	0	\ldots	0
G / G_{2}	p	p	0	\ldots	0	p	0	p	\ldots	0
\vdots	\vdots	\vdots	\vdots	\ddots	\vdots	\vdots	0	0	\ldots	0
G / G_{p+1}	p	p	0	\ldots	0	p	0	0	\ldots	p

Table 28. The Markaracter Table of Group $\mathbb{Z}_{p} \times F_{q, p}=\langle c\rangle \times\langle a, b\rangle$.

$M C\left(\mathbb{Z}_{p} \times F_{q, p}\right)$	\rangle	G_{1}	G_{2}	\ldots	G_{p+1}	G_{p+2}	G_{p+3}
$G / /\rangle$	$p^{2} q$	0	0	\ldots	0	0	0
G / G_{1}	$p q$	$p q$	0	\ldots	0	0	0
G / G_{2}	$p q$	0	p	\ldots	0	0	0
\vdots	\vdots	\vdots	\vdots	\ddots	\vdots	\vdots	\vdots
G / G_{p+1}	$p q$	0	0	\ldots	p	0	0
G / G_{p+2}	p^{2}	0	0	\ldots	0	p^{2}	0
G / G_{p+3}	p	p	0	\ldots	0	p	p

Table 29. The Markaracter Table of Frobenius Group $F_{q, p^{2}}$.

$M C\left(F_{q, p^{2}}\right)$	G_{1}	G_{2}	G_{3}	G_{4}
G / G_{1}	$p^{2} q$	0	0	0
G / G_{2}	$p q$	p	0	0
G / G_{3}	q	1	1	0
G / G_{4}	p^{2}	0	0	p^{2}

Table 30. The Markaracter Table of Group L_{5}.

$M C\left(L_{5}\right)$	H_{1}	H_{2}	H_{3}	H_{4}	H_{5}
L_{5} / H_{1}	$p^{2} q$	0	0	0	0
L_{5} / H_{2}	$p q$	$p q$	0	0	0
L_{5} / H_{3}	q	q	1	0	0
L_{5} / H_{4}	p^{2}	0	0	p^{2}	0
L_{5} / H_{5}	p	p	0	p	p

Table 31. The Markaracter Table of Group $\mathbb{Z}_{p} \times \mathbb{Z}_{q p}$.

$M C\left(\mathbb{Z}_{p} \times \mathbb{Z}_{q p}\right)$	\rangle	H_{1}	H_{2}	\ldots	H_{p+1}	Q	G_{1}	G_{2}	\ldots	G_{p+1}
$G /\langle \rangle$	$p^{2} q$	0	0	\ldots	0	0	0	0	\ldots	0
G / H_{1}	$p q$	$p q$	0	\ldots	0	0	0	0	\ldots	0
G / H_{2}	$p q$	0	$p q$	\ldots	0	0	0	0	\ldots	0
\vdots	\vdots	\vdots	\vdots	\ddots	\vdots	\vdots	0	0	\ldots	0
G / H_{p+1}	$p q$	0	0	\ldots	$p q$	0	0	0	\ldots	0
G / Q	p^{2}	0	0	\ldots	0	p^{2}	0	0	\ldots	0
G / G_{1}	p	p	0	\ldots	0	p	p	0	\ldots	0
G / G_{2}	p	p	0	\ldots	0	p	0	p	\ldots	0
\vdots	\vdots	\vdots	\vdots	\ddots	\vdots	\vdots	0	0	\ldots	0
G / G_{p+1}	p	p	0	\ldots	0	p	0	0	\ldots	p

Table 32. The Markaracter Table of Group $\mathbb{Z}_{p} \times F_{p, q}$.

$M C\left(\mathbb{Z}_{p} \times F_{q, p}\right)$	\rangle	G_{1}	G_{2}	\ldots	G_{p+1}	G_{p+2}	G_{p+3}
$G / /\rangle$	$p^{2} q$	0	0	\ldots	0	0	0
G / G_{1}	$p q$	$p q$	0	\ldots	0	0	0
G / G_{2}	$p q$	0	p	\ldots	0	0	0
\vdots	\vdots	\vdots	\vdots	\ddots	\vdots	\vdots	\vdots
G / G_{p+1}	$p q$	0	0	\ldots	p	0	0
G / G_{p+2}	p^{2}	0	0	\ldots	0	p^{2}	0
G / G_{p+3}	p	p	0	\ldots	0	p	p

Table 33. The Markaracter Table of Group $F_{p^{2}, q}$.

$M C\left(F_{p^{2}, q}\right)$	G_{1}	G_{2}	G_{3}	G_{4}
G / G_{1}	$p^{2} q$	0	0	0
G / G_{2}	p^{2}	1	0	0
G / G_{3}	$p q$	0	$p q$	0
G / G_{4}	q	0	q	q

Table 34. The Markaracter Table of Group $Q_{5},(k=p-1 / q)$.

$M C\left(Q_{5}\right)$	\rangle	Q	H_{1}	H_{2}	H_{3}	\ldots	H_{k+2}
$\left.Q_{5} / /\right\rangle$	$p^{2} q$	0	0	0	0	\ldots	0
Q_{5} / Q	p^{2}	1	0	0	0	\ldots	0
Q_{5} / H_{1}	$p q$	0	$p q$	0	0	\ldots	0
Q_{5} / H_{2}	$p q$	0	0	$p q$	0	\ldots	0
Q_{5} / H_{3}	$p q$	0	0	0	p	\ldots	0
\vdots	\vdots	0	0	0	0	\ddots	\vdots
Q_{5} / H_{k+2}	$p q$	0	0	0	0	\ldots	p

Table 35. The Markaracter Table of Group $Q_{6},(k=p-1 / q)$.

$M C\left(Q_{6}\right)$	\rangle	Q	H_{1}	H_{2}	\ldots	H_{k+2}
$Q_{6} /\langle \rangle$	$p^{2} q$	0	0	0	\ldots	0
Q_{6} / Q	p^{2}	1	0	0	\ldots	0
Q_{6} / H_{1}	$p q$	0	p	0	\ldots	0
Q_{6} / H_{2}	$p q$	0	0	p	\ldots	0
\vdots	\vdots	0	0	0	\ddots	0
Q_{6} / H_{k+2}	$p q$	0	0	0	\ldots	p

Modjtaba Ghorbani

Department of Mathematics, Faculty of Science, Shahid Rajaee Teacher Training University, Tehran, 16785-136, I. R. Iran
Email:mghorbani@srttu.edu

Fatemeh Abbasi-Barfaraz

Department of Mathematics, Faculty of Science, Shahid Rajaee Teacher Training University, Tehran, 16785-136, I. R. Iran
Email: f.abasibarfaraz@gmail.com

Journal of Algebraic Systems

TABLE OF MARKS OF FINITE GROUPS

M. GHORBANI, F. ABBASI-BARFARAZ

جدول نمره گروههاى متناهى
مجتبى قربانى، فاطهن عباسى برفراز
ايران، تهران، دانشگاه تربيت دبير شهيد رجايی، دانشكده علوم پايه، گروه رياضى
فرض كنيد G يك گروه متناهمى و C(G) يك خانواده از زيركروهماى دوبهدو غير مزدوج G با باشد.
 G

كلمات كليدى: گروه فروبنيوس، جدول نمره، زيركروههاى دوبددو غير مزدوج يى گروه.

[^0]: MSC(2010): 05C10; Secondary: 05C25, 20B25
 Keywords: Frobenius group, Table of marks, Conjugacy classes of subgroups. Received: 19 June 2016, Accepted: 24 April 2017.
 *Corresponding author.

