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TABLE OF MARKS OF FINITE GROUPS

M. GHORBANI∗, AND F. ABBASI-BARFARAZ

Abstract. Let G be a finite group and C(G) be a family of repre-
sentative conjugacy classes of subgroups of G. The matrix whose
H,K-entry is the number of fixed points of the set G/K under
the action of H is called the table of marks of G, where H,K run
through all elements in C(G). In this paper, we compute the table
of marks and the markaracter table of groups of order pqr, where
p, q, r are prime numbers.

1. Introduction

All groups considered in this paper are finite. The concept of table
of marks was introduced by William Burnside [3], as a tool to classify
G-sets up to equivalence. Similar to the character table of G which
classifies the matrix representations of G up to isomorphism, the table
of marks of G classifies permutation representations of G up to equiva-
lence. This table encodes a wealth of information about the subgroup
structure of G in a compact way. In other words, the table of marks
of a group is a useful invariant that provides a considerable amount of
data about the group.

Let G be a finite group acting transitively on a finite set X. Then,
it is a well-known fact that X is G−isomorphic to a set of right cosets
G/H = {H(e = g1), . . . , Hgm}, for some subgroup H of G. Moreover,
two transitive G−sets G/H and G/K are G−isomorphic if and only if
H andK are conjugate (see [4] for more details). For every element g ∈
G, the fixed point of g in X is defined as FixX(g) = {x ∈ X;xg = x}.
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Similarly, for a subgroup H of G the fixed points of H is FixX(H) =
{x ∈ X; ∀h ∈ H, xh = x}. In this context, the mark of a subgroup H
of G on X is the number of fixed points of H under the action of G on
X, denoted by βX(H). If H1, . . . , Hr is a list of representatives of the
subgroups of G up to conjugacy, the table of marks of G is then the
r × r-matrix

M(G) = (βG/Hj
(Hi))i,j=1,2,...,r.

In other words, assume that the set of orbits of this action is {GG
i }ri=1,

where G1(= e), G2, . . . , Gr(= G) are representatives of the conjugacy
classes of subgroups of G and |G1| ≤ |G2| ≤ · · · ≤ |Gr|. The ta-
ble of marks of G is the square matrix M(G) = (mij)

r
i,j=1, where

mij = βG/Gj
(Gi). This table has substantial applications in chem-

istry, specially in isomer counting [1]. For the main properties of this
matrix, we refer the reader to the interesting paper of Pfeifier [14].

Let G andH be finite groups and α be a function from C(G) to C(H).
We say that α is an isomorphism between the tables of marks of G and
H if α is a bijection and also βH/Hi

(Hj) = βG/Gi
(Gj) for all subgroups

Hi of H and Gi of G. An isomorphism between tables of marks of two
groups preserves many algebraic properties of related groups, such as
the order of subgroups, the order of their normalizers, the number of
elements of a given order, the number of subgroups of a given order,
the number of normal subgroups of a given order, etc. It sends cyclic
groups to cyclic groups and elementary abelian groups to elementary
abelian groups. It also sends the derived subgroup of G to the derived
subgroup of H, maximal subgroups of G to maximal subgroups of H,
Sylow p-subgroups to Sylow p-subgroups and the Frattini subgroup of
G to the Frattini subgroup of H.

SupposeG is a finite group,H is a subgroup ofG and {e = g1, . . . , gm}
is a transversal of G with respect to the subgroup H. Define the per-
mutation ρg : G/H −→ G/H (g ∈ G) given by ρg(Hgi) = Hgig.
Set R(G/H) = {ρg | g ∈ G}. Then, the permutation representation
R(G/H) of degree m = |G|/|H| is called a coset representation of G
by H. Clearly, this representation is transitive.

Pfeiffer [14] described a procedure for the construction of the table
of marks of a finite group from the table of marks of its maximal sub-
groups. This semi- automatic procedure has proven for simple groups
up to a certain order, and has been used extensively in building the
GAP library of tables of marks, see [11]. Here, we compute the table of
marks of groups of order pqr and then we determine all isomorphisms
between them.
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2. Main Results

At the beginning of this section, we study some elementary properties
of the table of marks.

Theorem 2.1. [2] Suppose G is a finite group, M(G) = (mij) and
C(G) = {G1, G2, . . . , Gr} are all non-conjugate subgroups of G, where
|G1| ≤ |G2| ≤ · · · ≤ |Gr|. Then;

a) The matrix M(G) is a lower triangular matrix,
b) mij divides mi1, for all 1 ≤ i, j ≤ r,
c) mi1 = [G : Gi], for all 1 ≤ i ≤ r,
d) mii = [NG(Gi) : Gi],
e) if Gi is a normal subgroup of G, then mij = [G : Gi] whenever

Gj ⊆ Gi and zero otherwise.

As an immediate consequence of Theorem 2.1, the table of marks of
the cyclic group Zp is as reported in Table 1.

Table 1. The Table of Marks of Cyclic Group Zp.

M(G) G1 G2

G/G1 p 0
G/G2 1 1

Let p be a prime number and q be a positive integer such that q|p−1.
Define the group Fp,q to be presented by Fp,q = ⟨a, b : ap = bq =
1, b−1ab = au⟩, where u is an element of order q in multiplicative group
Z∗
p [13, Page 290]. It is easy to see that Fp,q is a Frobenius group of

order pq.

Theorem 2.2. Let p and q be two prime numbers such that p > q.
The table of marks of group Fp,q is as reported in Table 2.

Proof. It is not difficult to see that the group Fp,q has four non-conjugate
subgroups G1 = ⟨e⟩, G2 = ⟨a⟩, G3 = ⟨b⟩, and G4 = G. By using The-
orem 2.1 (c), we have m11 = pq, m21 = p, m31 = q and m41 = 1. By
Theorem 2.1 (a), we have m12 = m13 = m23 = 0 and by Theorem
2.1 (b), one can deduce that m42 = m43 = m44 = 1. On the other
hand, by using Sylow Theorem, it is clear that the Sylow p-subgroup
of Fp,q is normal and by using Theorem 2.1 (e), we get m32 = 0 and
m33 = pq/p = q. □

Table 2. The Table of Marks of Group Fp,q.
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M(G) G1 G2 G3 G4

G/G1 pq 0 0 0
G/G2 p 1 0 0
G/G3 q 0 q 0
G/G4 1 1 1 1

2.1. Computing the Table of Marks. Suppose G(p, q, r) is the set
of all groups of order pqr, where p, q and r are prime numbers. Hölder
in [12] classified all groups of order pqr. It can be proved that up to
isomorphism, all groups of order pqr are:

Case 1. p = q = r, there are five groups of order p3 as follows:
– P1

∼= Zp3 ,
– P2

∼= Zp × Zp2 ,
– P3

∼= Zp × Zp × Zp,
– P4

∼= Zp ⋊ Zp2 ,
– P5

∼= Zp ⋊ (Zp × Zp).
Case 2. p > q > r, then all groups of order pqr are

– G1
∼= Zpqr,

– G2
∼= Zr × Fp,q(q|p− 1),

– G3
∼= Zq × Fp,r(r|p− 1),

– G4
∼= Zp × Fq,r(r|q − 1),

– G5
∼= Fp,qr(qr|p− 1),

– Gi+5
∼= ⟨a, b, c : ap = bq = cr = 1, ab = ba, c−1bc =

bu, c−1ac = av
i⟩, where r|p − 1, q − 1, o(u) = r in Z∗

q and
o(v) = r in Z∗

p (1 ≤ i ≤ r − 1).

Case 3. p < q and r = p, then all groups of order p2q are
– L1

∼= Zp2q,
– L2

∼= Zp × Zp × Zq,
– L3

∼= Zp × Fq,p (p|q − 1),
– L4

∼= Fq,p2 (p2|q − 1),

– L5
∼= ⟨a, b : ap2 = bq = 1, a−1ba = bα, αp ≡ 1 (mod q)⟩.

Case 4. q < p and r = p, then all groups of order p2q are
– Q1

∼= Zp2q,
– Q2

∼= Zp × Zq × Zp,
– Q3

∼= Zp × Fp,q (q|p− 1),
– Q4

∼= Fp2,q (q|p2 − 1),
– Q5

∼= ⟨a, b, c : ap = bq = cp = 1, ac = ca, b−1ab =
aα, b−1cb = cα

x
, αq ≡ 1 (mod p), x = 1, ..., q − 1⟩,

– Q6
∼= ⟨a, b, c : ap = bq = cp = 1, ac = ca, b−1ab =

aαcβD, b−1cb = aβcα⟩, where α + β
√
D = σp2−1/q, σ is a
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primitive element of GF (p2), q ∤ p− 1, and q ̸= 2 whereas
q|p+ 1.

Suppose p is a prime number and G = P1. Then, the group Zp3 =

⟨a⟩ has four non-conjugate subgroups such as G1 = ⟨e⟩, G2 = ⟨ap2⟩,
G3 = ⟨ap⟩, and G4 = ⟨a⟩. The table of marks of Zp3 is as given in
Table 3.

The subgroups of order p in group G = Zp×Zp2 = ⟨a, b⟩ are {e}×Zp

and ⟨a, bjp⟩, where (0 ≤ j ≤ p − 1). We show them by H1, . . . , Hp+1.
On the other hand, there are p + 1 non-conjugate subgroups of order
p2, namely G1 = {e}×Zp2 , G2 = Zp×Zp and Gi,j = ⟨ai, bj⟩ (1 ≤ i, j ≤
p − 1). We show them by G1, . . . , Gp+1. Since G is an abelian group,
all subgroups are normal and then by Theorem 2.1 (e), all diagonal
entries can be computed easily. Also, we note that H1 ⊆ Gi (1 ≤ i ≤
p + 1), and so mi2 = p (p + 2 ≤ i ≤ 2p + 3). We can easily see that
Hi ⊆ G2 (1 ≤ i ≤ p+1), and so mp+4,j = p (3 ≤ j ≤ p+2). The other
entries of the table are zero. The table of marks of this group is given
in Table 4.

In continuing, let H be a non-abelian group of order p3 and exponent
p2. Then H has the following presentation:

⟨x, y : xp2 = yp = 1, y−1xy = xp+1⟩.
Clearly, |Z(H)| = p and H has two non-conjugate subgroups of order

p, namely H2 = Z(H) and H3 = ⟨y⟩. It is clear that ⟨y⟩ is not normal
in H. Hence, m21 = m22 = m31 = p2. Since |NH(H2)| = p2, one can
see that m33 = p. On the other hand, there are p + 1 subgroups of
order p2 containing Z(H), denoted by H4, . . . , Hp+4. All of them are
normal in H and therefore the table of marks of H is as reported in
Table 6.

Finally, suppose G is a non-abelian group of order p3 (p ≥ 3) with
exponent p with the following presentation:

⟨x, y, z : xp = yp = zp = 1, xy = yx, zy = yz, xz = zxy⟩.
It is not difficult to see that all subgroups of order p of G are

⟨xiyj⟩, ⟨ziyj⟩, ⟨xizj⟩, ⟨zixj⟩ and ⟨xiyjzk⟩ (1 ≤ i, j, k ≤ p − 1). But
all non-conjugate subgroups of this form are ⟨y⟩, ⟨x⟩, ⟨z⟩, ⟨xizj⟩ and
the number of such subgroups is p − 1 + 3 = p + 2. Let us show
them by H1, . . . , Hp+2. For 2 ≤ i ≤ p + 2, |NG(Hi)| = p2, and
NG(H1) = G. By using Theorem 2.1, mii = p (3 ≤ i ≤ p + 3),
and m22 = p2. On the other hand, all non-conjugate subgroups of
order p2 are ⟨xi, zj⟩(1 ≤ i, j ≤ p − 1) and ⟨x, y⟩. Hence, there are
p − 1 + 2 = p + 1 non-conjugate subgroups of this form. We denote
them by G1, . . . , Gp+1. For 1 ≤ i ≤ p + 1, we have NG(Gi) = G
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and by using Theorem 2.1, mii = p (p + 4 ≤ i ≤ 2p + 4). Since for
1 ≤ i ≤ p + 1, Gi is a normal subgroup of G and H1 ⊆ Gi, by using
Theorem 2.1, mi2 = p (p + 4 ≤ i ≤ 2p + 4) and the other entries are
zero. The table of marks of this group is reported in Table 7. Thus,
we proved the following theorem.

Theorem 2.3. The tables of marks of a group of order p3 up to iso-
morphism are given in Tables 3-7.

Theorem 2.4. Let p, q and r be prime numbers such that p > q > r
and G ∈ G(p, q, r). Then, the table of marks of G is isomorphic with
one of Tables 8-11.

Proof. If G ∼= G1, then the table of marks of G can be computed by
Theorem 2.1 (see Table 8). If H is isomorphic to G2 = ⟨c⟩×⟨a, b⟩, then
all non-conjugate subgroups of H are H1 = ⟨e⟩, H2 = ⟨c⟩, H3 = ⟨b⟩,
H4 = ⟨b, c⟩, H5 = ⟨a⟩, H6 = ⟨a, c⟩, H7 = ⟨a, b⟩ and H8 = H. Applying
Theorem 2.1 yields the first column of the table. Also, we have m22 =
pq, m33 = r, m44 = 1, m55 = qr, m66 = q, and m77 = r. Since ac = ca
and bc = cb, we conclude that NH(H2) = H. On the other hand, let
g = ckbjai ∈ G be an arbitrary element such that g−1H3g = H3. Then
we can easily see that i = 0 and so NH(H3) = ⟨b, c⟩. By a similar
argument, we get NH(H4) = H4 and NH(H5) = NH(H6) = NH(H7) =
H. It is clear that m32 = βH/H3(H2) = 0, m42 = βH/H4(H2) = p and
m43 = βH/H4(H3) = 1. Since, the subgroups H5, H6, H7 are normal,
by using Theorem 2.1 (e), we can show that m52 = m53 = m54 = 0,
m62 = m65 = q, m63 = m64 = 0, m72 = m74 = m76 = 0 and m73 =
m75 = r. The table of marks of this group is reported in Table 9.

The table of marks of two groups G3 = Zq × Fp,r(r|p− 1) and G4 =
Zp × Fq,r(r|q − 1) are isomorphic with Table 7. If K is isomorphic to
G5, then the table of marks of K can be resulted from Theorem 2.2
(see Table 10). It remains to compute the table of marks of group Gi+5.
Let P ∼= Gi+5 (1 ≤ i ≤ r − 1). Then it is easy to see that ⟨ak⟩ = ⟨al⟩,
⟨bt⟩ = ⟨bs⟩, ⟨cm⟩ = ⟨cn⟩, ⟨btak⟩ = ⟨bsal⟩, ⟨cmak⟩ = ⟨cnal⟩ and ⟨btcm⟩ =
⟨bscn⟩, where 1 ≤ k, l ≤ p − 1, 1 ≤ t, s ≤ q − 1 and 1 ≤ m,n ≤ r − 1.
Therefore, all non-conjugate subgroups of P are P1 = ⟨e⟩, P2 = ⟨c⟩,
P3 = ⟨b⟩, P4 = ⟨a⟩, P5 = ⟨bc⟩, P6 = ⟨ac⟩, P7 = ⟨ab⟩, and P8 = P . One
can easily check that NP (P2) = P2, NP (P3) = NP (P4) = NP (P7) = P ,
NP (P5) = P5 and NP (P6) = P6. So, by applying Theorem 2.1, the
entries of the diagonal and the first column of the table of marks can
be computed. Since p, q, r are distinct prime numbers, we have m32 =
m42 = m43 = m54 = m63 = m65 = m72 = m75 = m76 = 0. Finally,
ab = ba, c−1bc = bu, and c−1ac = av

i
yield the subgroup P7 is normal,

and the proof is complete. □
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Theorem 2.5. Let p and q be two prime numbers such that q > p, p|q−
1 and G ∈ G(p2, q). Then, the table of marks of G is isomorphic with
one of Tables 12 - 16.

Proof. We can prove that the group G = Zp2q has five non-conjugate
subgroups such as G1 = ⟨e⟩, G2 = ⟨bp⟩, G3 = ⟨b⟩, G4 = ⟨a⟩, G5 =
⟨a, bp⟩, and G6 = G. Hence, the table of marks of this group follows
from Theorem 2.1 (see Table 12). All non-conjugate subgroups of order
p of G = Zp × Zp × Zq are Hi,j = ⟨ci, aj⟩ (1 ≤ i, j ≤ p − 1). It
is not difficult to see that there are exactly (p − 1)(p − 1)/(p − 1) =
p−1 non-conjugate subgroups of this form. In addition, two subgroups
{e}×Zp, and Zp×{e} are of order p. In general, there exist p+1 non-
conjugate subgroups of order p. Let us show them by H1, . . . , Hp+1.
For 1 ≤ j ≤ p + 1, we have NG(Hj) = G and by using Theorem 2.1,
we get mii = pq (2 ≤ i ≤ p + 2). On the other hand, the subgroups
Gi,j = ⟨ci, bj⟩ (1 ≤ i ≤ p− 1), (1 ≤ j ≤ q − 1) are of order pq. In this
case, one can find (p−1)(q−1)/kp = p−1 non-conjugate subgroups of
this form. Moreover, {e} × Zpq and Zp × Zq are subgroups of order pq
and hence G has exactly p + 1 subgroups of order pq. We show them
by G1, . . . , Gp+1. For 1 ≤ j ≤ p + 1, we have NG(Gj) = G and by
using Theorem 2.1, we have mii = p (p + 5 ≤ i ≤ 2p + 5). The other
entries of this table can be derived from Theorem 2.1 (e). It is not
difficult to see that the Sylow q-subgroup Q and the Sylow p-subgroup
P are normal subgroups of Zp × Zpq and by using Theorem 2.1, the
p+ 3-th and p+ 4-th column and row of the table can be derived. For
p+ 5 ≤ i ≤ 2p+ 5 and 2 ≤ j ≤ p+ 2, since H1 ⊆ Gj, we have mi2 = p
and the other entries are zero. The table of marks of this group is as
reported in Table 13.

The subgroups Hi,j = ⟨ci, bj⟩ (1 ≤ i, j ≤ p− 1) of G = Zp × Fq,p are
of order p, and so there are exactly (p− 1)(p− 1)/(p− 1) = p− 1 non-
conjugate subgroups of this form. In addition, two subgroups {e}×Zp

and Zp ×{e} are of order p, and hence there exist p+1 non-conjugate
subgroups of order p. Let us denote them by H1, . . . , Hp+1. We claim
that for i ∈ {1, . . . , p + 1}, we have NG(Hi) = ⟨c, b⟩. Set Hi = ⟨cr, bs⟩
and suppose the element g = ckbjai is an arbitrary element such that
g−1Hig = Hi. Hence, g−1Hig = a−iHia

i = ⟨cr, b2sa−ius+i⟩ and so
a−ius+i = 1. This leads us to conclude that −ius + i ≡ 0 (mod q).
Consequently, the following cases hold:

Case 1. q | i, then i = 0 and so g = ckbj. By using Theorem 2.1,
we get mii = p (3 ≤ i ≤ p+ 2).

Case 2. q | us − 1, hence s = p and so H1 = ⟨cr⟩. This implies that
m22 = pq.
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On the other hand, Gi,j = ⟨ci, aj⟩ (1 ≤ i ≤ p−1) and (1 ≤ j ≤ q−1)
are of order pq. It is not difficult to prove that there are (p − 1)(q −
1)/kp = p− 1 non-conjugate subgroups of this form. Moreover, {e} ×
Fq,p and Zp×Zq are subgroups of order pq and hence G has exactly p+1
subgroups of order pq, denoted by G1, . . . , Gp+1. For i ∈ {1, . . . , p+1}.
We have [G : Gi] = p and so Gi is normal. According to Theorem 2.1,
we have mii = p (p+5 ≤ i ≤ 2p+5) and the other entries of this table
can be computed from Theorem 2.1 (e). But Sylow q-subgroup Q is a
normal subgroup of G, where Q ⊆ Gi and so by using Theorem 2.1, we
get mp+4,p+4 = p2, mi,p+4 = p (p+5 ≤ i ≤ 2p+5) and the other entries
are zero. The Sylow p-subgroup of G is P = ⟨b, c⟩, so if g = ckbjai ∈ G
is an arbitrary element, then g−1Pg = a−iPai = ⟨b2a−iu+i, c⟩, and
hence a−iu+i = 1. This leads us to conclude that −ius+ i ≡ 0 (mod q).
Since q ∤ u−1, we have q | i and thus i = 0. This implies that g = ckbj.
By using Theorem 2.1 and above discussion, the p + 3-th column and
row of the table can be computed easily. For p + 5 ≤ i ≤ 2p + 5 and
2 ≤ j ≤ p+2, since H1 ⊆ Gj, we can verify that mi2 = p and the other
entries of this row are zero. The table of marks of this group is given
in Table 14.

One can verify that the non-conjugate subgroups of H = Fq,p2 are
H1 = ⟨e⟩, Hi = ⟨ bk |k = p or 1⟩, (2 ≤ i ≤ 3), H4 = ⟨a⟩, H5 = ⟨a, bp⟩
and H6 = H. Consider the table of marks M = M(H) = (mij), the
first column of this table can be computed from Theorem 2.1 (c). The
normalizer ofH2 is equal to ⟨b⟩. For an arbitrary element g = bsar ∈ H,
we have g−1H2g = a−rH2a

r = ⟨b2pa−rup+r⟩ and so a−rup+r = 1, which
yields that −rup + r ≡ 0 (mod q). Thus q divides r and then r = 0 or
g = bs. By using Theorem 2.1, we have m22 = p and the normalizer
of H3 is equal to ⟨b⟩. Hence, we have m33 = 1. According to Sylow
Theorem, H4 is normal subgroup of Fq,p2 and by using Theorem 2.1,
we get m44 = p2 and m4j = 0 (2 ≤ j ≤ 3). Since [H : H5] = p while p
is the smallest prime number which divides the order of group, clearly
H5 is a normal subgroup of H, and so by using Theorem 2.1 (e), we
get m52 = m54 = m55 = p. The other entries of this row are zero and
the table of marks of Fq,p2 is as reported in Table 15.

In continuing, consider group G with the following presentation:

G = ⟨a, b : ap2 = bq = 1, a−1ba = bα, αp ≡ 1 (mod q)⟩.
It is not difficult to see that all non-conjugate subgroups of G are

K1 = ⟨e⟩, K2 = ⟨ap⟩, K3 = ⟨a⟩, K4 = ⟨b⟩, K5 = ⟨ap, b⟩ and K6 = G.
The first column of this table can be derived from Theorem 2.1 (c). We
have NG(K2) = G and so m22 = pq. On the other hand, NG(K3) = K3

yields that m33 = 1. Since K2 ⊆ K3, we conclude that m32 = q. By
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Sylow Theorem, K4 is a normal subgroup of G and by using Theorem
2.1, we have m44 = p2 and m4j = 0 (2 ≤ j ≤ 3). Since [G : K5] = p
and p is the smallest prime number that divides the order of group,
hence K5 is normal subgroup of G. Therefore, by Theorem 2.1 (e), we
conclude that m52 = m54 = m55 = p and the other entries of this row
are zero (see Table 16). □
Theorem 2.6. Let p and q be two prime numbers such that p > q, q|p−
1 and G ∈ G(p2, q). Then, the table of marks of G is isomorphic with
one of the Tables 17-21.

Proof. The table of marks of groups Q1 and Q2 can be derived from
Theorem 2.5 (see Tables 12, 13). Suppose that G ∼= Q3. Then one
can easily check that Hi,j = ⟨ci, aj⟩ (1 ≤ i, j ≤ p − 1) are subgroups
of order p. It is not difficult to see that there are exactly (p − 1)(p −
1)/(p − 1)q = k non-conjugate subgroups of this form. In addition,
two subgroups {e} × Zp and Zp × {e} are of order p. In general, there
are k + 2 non-conjugate subgroups of order p. Let us show them by
H1 = Zp × {e}, H2 = {e} × Zp and H3, . . . , Hk+2. We claim that for
i ∈ {3, . . . , k + 2}, we have NG(Hi) = ⟨c, a⟩. To do this, suppose
Hi = ⟨cr, as⟩ and g = ckbjai is an element of G such that g−1Hig = Hi.

Hence, g−1Hig = b−jHib
j = ⟨cr, asuj⟩, thus by using Theorem 2.1, we

have mii = p (5 ≤ i ≤ k+4). Since H1 and H2 are normal subgroups of
G, hence mii = pq (i = 3, 4). On the other hand, all subgroups of order
pq are G1 = {e} × Fp,q and G2 = ⟨c, b⟩ ∼= Zp × Zq. Now, NG(G1) =
G, since for g = ckbjai ∈ G, we have g−1G1g = ⟨b−jabj, a−ibai⟩ =
⟨a−ju, b2a−iu+i⟩. Similarly, we can prove that NG(G2) = G2. Hence,
according to Theorem 2.1, we get mk+5,k+5 = p, mk+6,k+6 = 1 and
the other entries of this table can be derived directly. The Sylow p-
subgroup P is a normal subgroup of Zp × Fp,q and the latest column
and row of the table can be computed from Theorem 2.1. The Sylow
q-subgroup of Q3 is Q = ⟨b⟩ and we have NG(Q) = ⟨c, b⟩, which yields
the second column and row of the table. For i = k+5 and j = 4, since
H2 ⊆ G1, we conclude mk+5,4 = p. For i = k + 6 and j = 3, since
H1 ⊆ G2, we have mk+6,3 = p. It then follows that all non-conjugate
subgroups ofH = Fp2,q areH1 = ⟨e⟩, H2 = ⟨b⟩, H3 = ⟨ap⟩, H4 = ⟨ap, b⟩,
H5 = ⟨a⟩ and H6 = H. The first column of M(Fp2q) can be derived
from Theorem 2.1 (c). On the other hand, for g = bjai ∈ H, we have
g−1H2g = ⟨a−ibai⟩ = ⟨b2a−iu+i⟩ and so NH(H2) = H2. This yields that
m22 = 1. Also, for subgroup H3, we have g

−1H3g = ⟨b−japbj⟩ = ⟨ajup⟩,
thus NH(H3) = H and so m33 = pq. On the other hand, g−1H4g =
⟨b−japbj, a−ibai⟩ = ⟨ajup

, b2a−iu+i⟩ and we conclude NH(H4) = H4 or
m44 = 1. Since p and q are prime numbers, by Theorem 2.1, we have
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m42 = 1 and m43 = p. By using Sylow Theorem, we can show that
H5 is normal subgroup of Fp2,q, and so the fifth row of this table can
be resulted from Theorem 2.1 (e). The subgroups of order p in Q5 are
Hi,j = ⟨ci, aj⟩ (1 ≤ i, j ≤ p − 1). It is not difficult to see that there
are exactly (p − 1)(p − 1)/(p − 1)q = k non-conjugate subgroups of
this form. In addition, two subgroups {e} × Zp and Zp × {e} are of
order p. In general, there are k + 2 non-conjugate subgroups of order
p denoted by H1 = {e} × Zp, H2 = Zp × {e}, H3, . . . , Hk+2. We claim
that for i ∈ {3, . . . , k + 2}, we have NQ5(Hi) = ⟨c, a⟩. To do this,
suppose that Hi = ⟨cr, as⟩ and g = ckbjai ∈ Q5 is an arbitrary element

such that g−1Hig = Hi. Hence, g
−1Hig = b−jHib

j = ⟨cr, asuj⟩, thus by
using Theorem 2.1, we get mii = p (5 ≤ i ≤ k + 4). Since H1 and H2

are normal subgroups of Q5, hence mii = pq (i = 3, 4). On the other
hand, all subgroups of order pq are G1 = ⟨c, b⟩ and G2 = ⟨a, b⟩. For
g = ckbjar ∈ Q5, we have g−1Gig = Gi, thus NQ5(Gi) = Gi (i = 1, 2)
and so according to Theorem 2.1, we have mk+5,k+5 = mk+6,k+6 = 1.
The other entries of this table can be derived from Theorem 2.1. But
the Sylow p-subgroup P is a normal subgroup of Q5 and thus by using
Theorem 2.1, the latest column and row of the table can be computed.
The Sylow q-subgroup Q5 is Q = ⟨b⟩ and for g = ckbjai ∈ Q5 we have
g−1Qg = Q, so m22 = 1. Since H2 ⊆ G1, it follows that mk+5,4 = p and
since H1 ⊆ G2, we have mk+6,3 = p. Also, the other entries are zero,
and so M(Q5) is as given in Table 19.

The subgroups Hi,j = ⟨ci, aj⟩ (1 ≤ i, j ≤ p − 1) of group G = Q6

are of order p. The number of non-conjugate subgroups of this form
is exactly (p − 1)(p − 1)/(p − 1)q = k. We denote these subgroups
by H1, . . . , Hk. Let Hi = ⟨cr, as⟩ and suppose g = ckbjai ∈ Q6 is an
arbitrary element such that g−1Hig = Hi. Hence, g

−1Hig = b−jHib
j =

⟨cr, asuj⟩ and so NQ6(Hi) = ⟨c, a⟩. By using Theorem 2.1, we can verify
that mii = p (3 ≤ i ≤ k+2). On the other hand, G has no subgroup of
order pq and the Sylow p-subgroup P of Q6 is normal. Now, Theorem
2.1 yields the latest row and column of Table 21. The Sylow q-subgroup
of Q6 is Q = ⟨b⟩ and we can prove that NQ6(Q) = Q. Hence, the second
column and row of Table 21 can be derived. □

2.2. Computing the Markaracter Table. The matrix MC(G) ob-
tained from the table of marks M(G) of group G in which we select
rows and columns corresponding to cyclic subgroups of G is called the
markaracter table of G. It is merit to mention here that the markarac-
ter table of a finite group was firstly introduced by Shinsaku Fujita to
discuss marks and characters of a finite group in a common basis, see
[4, 5]. Fujita originally developed his theory to be the foundation for
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enumeration of molecules [4]. We encourage the interested readers to
consult papers [5, 6, 7, 8, 9] as well as [2, 11], for more information on
this topic.

Suppose A and B are m × n and p × q matrices, respectively. The
tensor product A⊗B of matrices A and B is the mp×nq block matrix:

A⊗B =

 a11B · · · a1nB
...

. . .
...

am1B · · · amnB

 .

Theorem 2.7. [15] Let p be a prime number, q be a positive integer
such that q|p−1 and q = qα1

1 qα2
2 . . . qαs

s be its decomposition into distinct
primes q1 < q2 < · · · < qs. Suppose τ(n) denotes the number of divisors
of n and d1, . . . , dτ(q) are positive divisors of q. Then, the markaracter
table of the Frobenius group Fp,q can be computed as reported in Table
22.

Lemma 2.8. Suppose G1 and G2 are two finite groups with co-prime
orders. Then, the markaracter table of G1 × G2 is tensor product of
MC(G1) and MC(G2).

Proof. LetA, A1 andA2 be the set of all non-conjugate cyclic subgroups
of G1 × G2, G1 and G2, respectively. Suppose that U = ⟨u⟩ ∈ A1 and
V = ⟨v⟩ ∈ A2. Then U × V is a cyclic group generated by (u, v).
So, U × V is conjugate with a cyclic subgroup in A. On the other
hand, if H = ⟨h⟩ ∈ A, then h = (u, v) such that u ∈ G1, v ∈ G2 and
gcd(o(u), o(v)) = 1. Then, there are U ∈ A1 and V ∈ A2 conjugate
with ⟨u⟩ and ⟨v⟩, respectively, such that H = U × V . Therefore,
MC(G1 ×G2) = MC(G1)⊗MC(G2). □

Theorem 2.9. Suppose G is a group of order p3. Then, the markar-
acter table of G is given in Tables 23-25.

Proof. If G = Zp3 , then clearly MC(G) = M(G). When G = Zp×Zp2 ,
by using Theorem 2.3, all non-conjugate subgroups are cyclic. So,
MC(G) = M(G). In this case, we have G = Zp × Zp × Zp, all non-
conjugate subgroups of order p are cyclic and since these subgroups are
normal, the markaracter table of G can be computed from Theorem
2.3. The markaracter tables of two non-abelian groups of order p3 can
be derived from Tables 6,7, respectively. □

Let G be a cyclic group of order n = pα1
1 . . . aαr

r . Then, Lemma 2.8
shows that

MC(Zn) = MC(Zp
α1
1
)⊗ . . .⊗MC(Zpαr

r
).
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Theorem 2.10. The markaracter table of a group of order pqr (p >
q > r) is equal with one of the following matrices:

i) MC(G1) = MC(Zp)⊗MC(Zq)⊗MC(Zr),
ii) MC(G2) = MC(Fp,q)⊗MC(Zr)(q|p− 1),
iii) MC(G3) = MC(Fp,r)⊗MC(Zq)(r|p− 1),
iv) MC(G4) = MC(Fq,r)⊗MC(Zp)(r|q − 1),
v) If qr|p− 1 then MC(G5) = MC(Fp,qr),
vi) If r|p− 1, q − 1, then the markaracter of Gi+5 is as reported in

Table 24.

Proof. Let G be a group of order pqr. If G is isomorphic to one of
groups G1, . . . , G4, then by applying Lemma 2.8, the proof is clear. If
G is isomorphic to G5, then the markaracter of G can be computed
from Theorem 2.7. It remains to compute the markaracter table of
groups Gi+5 (1 ≤ i ≤ r − 1). Letting G = G6, it is easy to see that
⟨aα⟩ = ⟨aβ⟩, ⟨bδ⟩ = ⟨bη⟩, ⟨cθ⟩ = ⟨cλ⟩ and ⟨bµaν⟩ = ⟨bρaφ⟩, where 1 ≤
α, β, ν, φ ≤ p−1, 1 ≤ δ, η, µ, ρ ≤ q−1 and 1 ≤ θ, λ ≤ r−1. Therefore,
all non-conjugate cyclic subgroups of G are ⟨e⟩, ⟨a⟩, ⟨b⟩, ⟨ab⟩, ⟨c⟩. Let
H1 = ⟨e⟩, H2 = ⟨c⟩, H3 = ⟨b⟩, H4 = ⟨a⟩ and H5 = ⟨ab⟩. One can easily
check that NG(H2) = H2 and NG(H3) = NG(H4) = NG(H5) = G.
Hence, by Theorem 2.1, all entries of the diagonal and the first column
of markaracter table can be derived. Since p, q, r are distinct prime
numbers, according to Theorem 2.1, we have m32 = m42 = m43 =
m52 = 0. Finally, the relations ab = ba, c−1bc = bu and c−1ac = av

i

yield that the subgroup H5 is normal. This completes the proof. □
In continuing, we determine the markaracter table of groups of order

p2q.

Theorem 2.11. Let p and q be two prime numbers such that q >
p, p|q − 1 and G ∈ G(p2, q). Then, the markaracter table of G is
isomorphic with one of Tables 26 - 30.

Proof. Let G ∼= L1. Since L1 is cyclic, then clearly MC(L1) = M(Zp2q)
(see Table 26). All cyclic subgroups of L2 are Hi,j = ⟨(ci, aj)⟩ (1 ≤
i, j ≤ p − 1), where cp = ap = 1, ac = ca and {e} × Zp, Zp × {e}. We
show them by H1, . . . Hp+1. On the other hand, all cyclic subgroups of
order pq of G are Gi,j = ⟨(ci, bj)⟩ (1 ≤ i ≤ p − 1), (1 ≤ j ≤ q − 1),
where cp = bq = 1, bc = cb and {e} × Zpq, Zp × Zq. We show them
by G1, . . . , Gp+1. Also, the Sylow q-subgroup Q is cyclic. So, by using
Theorem 2.5, the markaracter table of L2 is as given in Tasble 27.

All cyclic subgroups of order p in L3 are Li,j = ⟨(ci, bj)⟩ (1 ≤ i, j ≤
p− 1), where cp = bp = 1, bc = cb and {e} × Zp, Zp × {e}, denoted by
G1, . . . , Gp+1. The other cyclic subgroups of L3 are Gp+2 = Q, where
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Q = ⟨a⟩ is Sylow q-subgroup and Gp+3 = ⟨c, b⟩. By using Theorem 2.5,
MC(L3) is isomorphic with Table 28.

All cyclic subgroups of L4 are G1 = ⟨e⟩, Gi = ⟨ bk |k = p or 1⟩,
(2 ≤ i ≤ 3) and G4 = ⟨a⟩. So, the markaracter table can be derived
from Theorem 2.5 (see Table 29).

Finally, all cyclic subgroups of L5 are H1 = ⟨e⟩, H2 = ⟨ap⟩, H3 = ⟨a⟩,
H4 = ⟨b⟩ and H5 = ⟨(ap, b)⟩. The markaracter table of L5 can be
derived from Theorem 2.5 (see Table 30). □
Theorem 2.12. Let p and q be two prime numbers such that p > q,
q|p − 1 and G ∈ G(p2, q). Then, MC(Q1) = M(Q1) and the markar-
acter table of groups Q2, . . . , Q6 are as reported in Tables 31-33.

Proof. All cyclic subgroups of Fp2,q are G1 = ⟨e⟩, G2 = ⟨b⟩, G3 = ⟨ap⟩
and G4 = ⟨a⟩. So, the markaracter table is as given in Table 31. All
cyclic subgroups of order p of Q5 are H1, H2, H3, . . . , Hk+2, as defined
in Theorem 2.6. On the other hand, the Sylow q-subgroup Q = ⟨b⟩ and
⟨e⟩ which are cyclic subgroups of Q5. The markaracter table of Fp2,q

can be derived from Theorem 2.6 (see Table 32). Finally, in group Q6,
the cyclic subgroups are ⟨e⟩, H1, . . . , Hk, as introduced in Theorem 2.6
together with Sylow q-subgroup Q = ⟨b⟩. So, the markaracter table is
as given in Table 33. □
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Appendix.
The Table of Marks and Markaracter Table of Groups

Table 3. The Table of Marks of the Cyclic Group of Order p3.

M(Zp3) G1 G2 G3 Zp3

Zp3/G1 p3 0 0 0
Zp3/G2 p2 p2 0 0
Zp3/G3 p p p 0
Zp3/Zp3 1 1 1 1

Table 4. The Table of Marks of Group Zp × Zp2 .

M(Zp × Zp2) ⟨⟩ H1 H2 . . . Hp+1 G1 G2 . . . Gp+1 G
G/⟨⟩ p3 0 0 . . . 0 0 0 . . . 0 0
G/H1 p2 p2 0 . . . 0 0 0 . . . 0 0
G/H2 p2 0 p2 . . . 0 0 0 . . . 0 0

...
...

...
...

. . .
...

...
... . . .

...
...

G/Hp+1 p2 0 0 . . . p2 0 0 . . . 0 0
G/G1 p p 0 . . . 0 p 0 . . . 0 0
G/G2 p p p . . . p 0 p . . . 0 0

...
...

...
...

. . .
...

...
... . . .

...
...

G/Gp+1 p p 0 . . . 0 0 0 . . . p 0
G/G 1 1 1 . . . 1 1 1 . . . 1 1

Table 5. The Table of Marks of Group Zp × Zp × Zp.
M(Zp × Zp × Zp) ⟨⟩ H1 H2 . . . Ht G1 G2 . . . Gt G

G/⟨⟩ p3 0 0 . . . 0 0 0 . . . 0 0
G/H1 p2 p2 0 . . . 0 0 0 . . . 0 0
G/H2 p2 0 p2 . . . 0 0 0 . . . 0 0

...
...

...
...

. . .
...

...
... . . .

...
...

G/Ht p2 0 0 . . . p2 0 0 . . . 0 0
G/G1 p p 0 . . . 0 p 0 . . . 0 0
G/G2 p p p . . . p 0 p . . . 0 0

...
...

...
...

. . .
...

...
... . . .

...
...

G/Gt p p 0 . . . 0 0 0 . . . p 0
G/G 1 1 1 . . . 1 1 1 . . . 1 1

Table 6. The Table of Marks of Group Zp ⋉ Zp2 .
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M(H) H1 H2 H3 H4 H5 . . . Hp+4 H
H/H1 p3 0 0 0 0 . . . 0 0
H/H2 p2 p2 0 0 0 . . . 0 0
H/H3 p2 0 p 0 0 . . . 0 0
H/H4 p p 0 p 0 . . . 0 0
H/H5 p p p 0 p . . . 0 0

...
...

...
...

...
...

. . .
...

...
H/Hp+4 p p 0 0 0 . . . p 0
H/H 1 1 1 1 1 . . . 1 1

Table 7. The Table of Marks of Group Zp ⋉ (Zp × Zp).

M(G) ⟨⟩ H1 H2 H3 . . . Hp+2 G1 G2 . . . Gp+1 G
G/⟨⟩ p3 0 0 0 . . . 0 0 0 . . . 0 0
G/H1 p2 p2 0 0 . . . 0 0 0 . . . 0 0
G/H2 p2 0 p 0 . . . 0 0 0 . . . 0 0
G/H3 p2 0 0 p . . . 0 0 0 . . . 0 0

...
...

...
...

...
. . .

...
...

... . . .
...

...
G/Hp+2 p2 0 0 0 . . . p 0 0 . . . 0 0
G/G1 p p p 0 . . . 0 p 0 . . . 0 0
G/G2 p p 0 p . . . 0 0 p . . . 0 0

...
...

...
...

...
. . .

...
. . .

... . . .
...

...
G/Gp+1 p p 0 0 . . . p 0 0 . . . p 0
G/G 1 1 1 1 . . . 1 1 1 . . . 1 1

Table 8. The Table of Marks of Group Zpqr.

M(Zpqr) G1 G2 G3 G4 G5 G6 G7 G8

G/G1 pqr 0 0 0 0 0 0 0
G/G2 pq pq 0 0 0 0 0 0
G/G3 pr 0 pr 0 0 0 0 0
G/G4 qr 0 0 qr 0 0 0 0
G/G5 p p p 0 p 0 0 0
G/G6 q q 0 q 0 q 0 0
G/G7 r 0 r r 0 0 r 0
G/G8 1 1 1 1 1 1 1 1

Table 9. The Table of Marks of Group Zr × Fp,q (q|p− 1).



TABLE OF MARKS OF FINITE GROUPS 43

M(Zr × Fp,q) H1 H2 H3 H4 H5 H6 H7 H8

H/H1 pqr 0 0 0 0 0 0 0
H/H2 pq pq 0 0 0 0 0 0
H/H3 pr 0 r 0 0 0 0 0
H/H4 p p 1 1 0 0 0 0
H/H5 qr 0 0 0 qr 0 0 0
H/H6 q q 0 0 q q 0 0
H/H7 r 0 r 0 r 0 r 0
H/H8 1 1 1 1 1 1 1 1

Table 10. The Table of Marks of Group Fp,qr (qr|p− 1).

M(Fp,qr) K1 K2 K3 K4 K5 K6 K7 K8

K/K1 pqr 0 0 0 0 0 0 0
K/K2 pq q 0 0 0 0 0 0
K/K3 pr 0 r 0 0 0 0 0
K/K4 p 1 1 1 0 0 0 0
K/K5 qr 0 0 0 qr 0 0 0
K/K6 q q 0 0 q q 0 0
K/K7 r 0 r 0 r 0 r 0
K/K8 1 1 1 1 1 1 1 1

Table 11. The Table of Marks of Group Gi+5 (1 ≤ i ≤ r − 1).

M(Gi+5) P1 P2 P3 P4 P5 P6 P7 P8

P/P1 pqr 0 0 0 0 0 0 0
P/P2 pq 1 0 0 0 0 0 0
P/P3 pr 0 pr 0 0 0 0 0
P/P4 pq 0 0 pq 0 0 0 0
P/P5 p 1 p 0 1 0 0 0
P/P6 q 1 0 q 0 q 0 0
P/P7 r 0 r r 0 0 r 0
P/P8 1 1 1 1 1 1 1 1
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Table 12. The Table of Marks of Group Zp2q.

M(Zp2q) G1 G2 G3 G4 G5 G6

G/G1 p2q 0 0 0 0 0
G/G2 pq pq 0 0 0 0
G/G3 q q q 0 0 0
G/G4 p2 0 0 p2 0 0
G/G5 p p 0 p p 0
G/G6 1 1 1 1 1 1

Table 13. The Table of Marks of Group Zp × Zpq.

M(Zp × Zpq) ⟨⟩ H1 H2 . . . Hp+1 P Q G1 G2 . . . Gp+1 G
G/⟨⟩ p2q 0 0 . . . 0 0 0 0 0 . . . 0 0
G/H1 pq pq 0 . . . 0 0 0 0 0 . . . 0 0
G/H2 pq 0 pq . . . 0 0 0 0 0 . . . 0 0

...
...

...
...

. . .
...

. . .
...

...
... . . .

...
...

G/Hp+1 pq 0 0 . . . pq 0 0 0 0 . . . 0 0
G/P q q q . . . q q 0 0 0 . . . 0 0
G/Q p2 0 0 . . . 0 0 p2 0 0 . . . 0 0
G/G1 p p 0 . . . 0 0 p p 0 . . . 0 0
G/G2 p p 0 . . . 0 0 p 0 p . . . 0 0

...
...

...
...

. . .
...

. . .
...

...
... . . .

...
...

G/Gp+1 p p 0 . . . 0 0 p 0 0 . . . p 0
G/G 1 1 1 . . . 1 1 1 1 1 . . . 1 1
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Table 14. The Table of Marks of Group Zp × Fq,p.

M(Zp × Fq,p) ⟨⟩ H1 H2 . . . Hp+1 P Q G1 G2 . . . Gp+1 G
G/⟨⟩ p2q 0 0 . . . 0 0 0 0 0 . . . 0 0
G/H1 pq pq 0 . . . 0 0 0 0 0 . . . 0 0
G/H2 pq 0 p . . . 0 0 0 0 0 . . . 0 0

...
...

...
...

. . .
...

. . .
...

...
... . . .

...
...

G/Hp+1 pq 0 0 . . . p 0 0 0 0 . . . 0 0
G/P q q 1 . . . 1 1 0 0 0 . . . 0 0
G/Q p2 0 0 . . . 0 0 p2 0 0 . . . 0 0
G/G1 p p 0 . . . 0 0 p p 0 . . . 0 0
G/G2 p p 0 . . . 0 0 p 0 p . . . 0 0

...
...

...
...

. . .
...

. . .
...

...
... . . .

...
...

G/Gp+1 p p 0 . . . 0 0 p 0 0 . . . p 0
G/G 1 1 1 . . . 1 1 1 1 1 . . . 1 1

Table 15. The Table of Marks of Frobenius Group Fq,p2 .

M(Fq,p2) H1 H2 H3 H4 H5 H6

H/H1 p2q 0 0 0 0 0
H/H2 pq p 0 0 0 0
H/H3 q 1 1 0 0 0
H/H4 p2 0 0 p2 0 0
H/H5 p p 0 p p 0
H/H6 1 1 1 1 1 1

Table 16. The Table of Marks of Group L5.

M(L5) K1 K2 K3 K4 K5 K6

L5/K1 p2q 0 0 0 0 0
L5/K2 pq pq 0 0 0 0
L5/K3 q q 1 0 0 0
L5/K4 p2 0 0 p2 0 0
L5/K5 p p 0 p p 0
L5/K6 1 1 1 1 1 1
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Table 17. The Table of Marks of Group Zp × Fp,q, (k = p− 1/q).

M(Zp × Fp,q) ⟨⟩ Q H1 H2 H3 . . . Hk+2 G1 G2 P G
G/⟨⟩ p2q 0 0 0 0 . . . 0 0 0 0 0
G/Q p2 p 0 0 0 . . . 0 0 0 0 0
G/H1 pq 0 pq 0 0 . . . 0 0 0 0 0
G/H2 pq 0 0 pq 0 . . . 0 0 0 0 0
G/H3 pq 0 0 0 p . . . 0 0 0 0 0

...
...

...
...

...
...

. . .
...

...
...

...
...

G/Hk+2 pq 0 0 0 0 . . . p 0 0 0 0
G/G1 p p 0 p 0 . . . 0 p 0 0 0
G/G2 p 1 p 0 0 . . . 0 0 1 0 0
G/P q 0 q q q . . . q 0 0 q 0
G/G 1 1 1 1 1 . . . 1 1 1 1 1

Table 18. The Table of Marks of Group Fp2,q.

M(Fp2,q) H1 H2 H3 H4 H5 H6

H/H1 p2q 0 0 0 0 0
H/H2 p2 1 0 0 0 0
H/H3 pq 0 pq 0 0 0
H/H4 p 1 p 1 0 0
H/H5 q 0 q 0 q 0
H/H6 1 1 1 1 1 1

Table 19. The Table of Marks of Group Q5, (k = p− 1/q).

M(Q5) ⟨⟩ Q H1 H2 H3 . . . Hk+2 G1 G2 P Q5

Q5/⟨⟩ p2q 0 0 0 0 . . . 0 0 0 0 0
Q5/Q p2 1 0 0 0 . . . 0 0 0 0 0
Q5/H1 pq 0 pq 0 0 . . . 0 0 0 0 0
Q5/H2 pq 0 0 pq 0 . . . 0 0 0 0 0
Q5/H3 pq 0 0 0 p . . . 0 0 0 0 0

...
...

...
...

...
...

. . .
...

...
...

...
...

Q5/Hk+2 pq 0 0 0 0 . . . p 0 0 0 0
Q5/G1 p 1 0 p 0 . . . 0 1 0 0 0
Q5/G2 p 1 p 0 0 . . . 0 0 1 0 0
Q5/P q 0 q q q . . . q 0 0 q 0
Q5/Q5 1 1 1 1 1 . . . 1 1 1 1 1

Table 20. The Table of Marks of Group Q6, (k = p− 1/q).
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M(Q6) ⟨⟩ Q H1 H2 . . . Hk+2 P Q6

Q6/⟨⟩ p2q 0 0 0 . . . 0 0 0
Q6/Q p2 1 0 0 . . . 0 0 0
Q6/H1 pq 0 p 0 . . . 0 0 0
Q6/H2 pq 0 0 p . . . 0 0 0

...
...

...
...

...
. . .

...
...

...
Q6/Hk+2 pq 0 0 0 . . . p 0 0
Q6/P q 0 q q . . . q q 0
Q6/Q6 1 1 1 1 . . . 1 1 1

Table 21. The Markaracter Table of the Frobenius Group Fp,q.

MC(Fp,q) G1 G2 G3 . . . Gi . . . Gτ(q) Gτ(q)+1

G/G1 pq 0 0 . . . 0 . . . 0 0
G/G2

pq
d2

dτ(q)−1 0 . . . 0 . . . 0 0

G/G3
pq
d3

0 dτ(q)−2 . . . 0 . . . 0 0
...

...
...

...
. . .

...
. . .

...
...

G/Gi
pq
di

mi,3 mi,4 . . . dτ(q)−i+1 . . . 0 0
...

...
...

...
. . .

...
. . .

...
...

G/Gτ(q) p 1 1 . . . 1 . . . 1 0
G/Gτ(q)+1 q 0 0 . . . 0 . . . 0 q

where mi,j =

{ q
di
, dj|di

0, o.w.
.

Table 22. The Markaracter Table of Group Zp × Zp × Zp, t = p2 + p+ 1.

MC(Zp × Zp × Zp) ⟨⟩ H1 H2 . . . Ht

G/⟨⟩ p3 0 0 . . . 0
G/H1 p2 p2 0 . . . 0
G/H2 p2 0 p2 . . . 0

...
...

...
...

. . .
...

G/Ht p2 0 0 . . . 0
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Table 23. The Markaracter Table of Group Zp ⋉ Zp2 , t = p+ 1.

MC(Zp ⋊ Zp2) ⟨⟩ H1 H2 . . . Ht

G/⟨⟩ p3 0 0 . . . 0
G/H1 p2 p2 0 . . . 0
G/H2 p2 0 p2 . . . 0

...
...

...
...

. . .
...

G/Ht p2 0 0 . . . 0

Table 24. The Markaracter Table of Group Zp ⋉ (Zp × Zp).

MC(Zp ⋊ (Zp × Zp)) ⟨⟩ H1 H2 H3 . . . Hp+2

G/⟨⟩ p3 0 0 0 . . . 0
G/H1 p2 p2 0 0 . . . 0
G/H2 p2 0 p 0 . . . 0
G/H3 p2 0 0 p . . . 0

...
...

...
...

...
. . .

...
G/Hp+2 p2 0 0 0 . . . p

Table 25. The Markaracter Table of Group G ∼= Gi+5 of order pqr.

MC(G) H1 H2 H3 H4 H5

G/H1 pqr 0 0 0 0
G/H2 pq 1 0 0 0
G/H3 pr 0 pr 0 0
G/H4 qr 0 0 qr 0
G/H5 r 0 r r r

Table 26. The Markaracter Table of Group Zp2q.

MC(Zp2q) G1 G2 G3 G4 G5 G6

G/G1 p2q 0 0 0 0 0
G/G2 p2 p2 0 0 0 0
G/G3 pq 0 pq 0 0 0
G/G4 p p p p 0 0
G/G5 q 0 q 0 q 0
G/G6 1 1 1 1 1 1
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Table 27. The Markaracter Table of Group Zp × Zpq.

MC(Zp × Zpq) ⟨⟩ H1 H2 . . . Hp+1 Q G1 G2 . . . Gp+1

G/⟨⟩ p2q 0 0 . . . 0 0 0 0 . . . 0
G/H1 pq pq 0 . . . 0 0 0 0 . . . 0
G/H2 pq 0 pq . . . 0 0 0 0 . . . 0

...
...

...
...

. . .
...

... 0 0 . . . 0
G/Hp+1 pq 0 0 . . . pq 0 0 0 . . . 0
G/Q p2 0 0 . . . 0 p2 0 0 . . . 0
G/G1 p p 0 . . . 0 p p 0 . . . 0
G/G2 p p 0 . . . 0 p 0 p . . . 0

...
...

...
...

. . .
...

... 0 0 . . . 0
G/Gp+1 p p 0 . . . 0 p 0 0 . . . p

Table 28. The Markaracter Table of Group Zp × Fq,p = ⟨c⟩ × ⟨a, b⟩.

MC(Zp × Fq,p) ⟨⟩ G1 G2 . . . Gp+1 Gp+2 Gp+3

G/⟨⟩ p2q 0 0 . . . 0 0 0
G/G1 pq pq 0 . . . 0 0 0
G/G2 pq 0 p . . . 0 0 0

...
...

...
...

. . .
...

...
...

G/Gp+1 pq 0 0 . . . p 0 0
G/Gp+2 p2 0 0 . . . 0 p2 0
G/Gp+3 p p 0 . . . 0 p p

Table 29. The Markaracter Table of Frobenius Group Fq,p2 .

MC(Fq,p2) G1 G2 G3 G4

G/G1 p2q 0 0 0
G/G2 pq p 0 0
G/G3 q 1 1 0
G/G4 p2 0 0 p2

Table 30. The Markaracter Table of Group L5.

MC(L5) H1 H2 H3 H4 H5

L5/H1 p2q 0 0 0 0
L5/H2 pq pq 0 0 0
L5/H3 q q 1 0 0
L5/H4 p2 0 0 p2 0
L5/H5 p p 0 p p

Table 31. The Markaracter Table of Group Zp × Zqp.
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MC(Zp × Zqp) ⟨⟩ H1 H2 . . . Hp+1 Q G1 G2 . . . Gp+1

G/⟨⟩ p2q 0 0 . . . 0 0 0 0 . . . 0
G/H1 pq pq 0 . . . 0 0 0 0 . . . 0
G/H2 pq 0 pq . . . 0 0 0 0 . . . 0

...
...

...
...

. . .
...

... 0 0 . . . 0
G/Hp+1 pq 0 0 . . . pq 0 0 0 . . . 0
G/Q p2 0 0 . . . 0 p2 0 0 . . . 0
G/G1 p p 0 . . . 0 p p 0 . . . 0
G/G2 p p 0 . . . 0 p 0 p . . . 0

...
...

...
...

. . .
...

... 0 0 . . . 0
G/Gp+1 p p 0 . . . 0 p 0 0 . . . p

Table 32. The Markaracter Table of Group Zp × Fp,q.

MC(Zp × Fq,p) ⟨⟩ G1 G2 . . . Gp+1 Gp+2 Gp+3

G/⟨⟩ p2q 0 0 . . . 0 0 0
G/G1 pq pq 0 . . . 0 0 0
G/G2 pq 0 p . . . 0 0 0

...
...

...
...

. . .
...

...
...

G/Gp+1 pq 0 0 . . . p 0 0
G/Gp+2 p2 0 0 . . . 0 p2 0
G/Gp+3 p p 0 . . . 0 p p

Table 33. The Markaracter Table of Group Fp2,q.

MC(Fp2,q) G1 G2 G3 G4

G/G1 p2q 0 0 0
G/G2 p2 1 0 0
G/G3 pq 0 pq 0
G/G4 q 0 q q
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Table 34. The Markaracter Table of Group Q5, (k = p− 1/q).

MC(Q5) ⟨⟩ Q H1 H2 H3 . . . Hk+2

Q5/⟨⟩ p2q 0 0 0 0 . . . 0
Q5/Q p2 1 0 0 0 . . . 0
Q5/H1 pq 0 pq 0 0 . . . 0
Q5/H2 pq 0 0 pq 0 . . . 0
Q5/H3 pq 0 0 0 p . . . 0

...
... 0 0 0 0

. . .
...

Q5/Hk+2 pq 0 0 0 0 . . . p

Table 35. The Markaracter Table of Group Q6, (k = p− 1/q).

MC(Q6) ⟨⟩ Q H1 H2 . . . Hk+2

Q6/⟨⟩ p2q 0 0 0 . . . 0
Q6/Q p2 1 0 0 . . . 0
Q6/H1 pq 0 p 0 . . . 0
Q6/H2 pq 0 0 p . . . 0

...
... 0 0 0

. . . 0
Q6/Hk+2 pq 0 0 0 . . . p
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متناهی گروه های نمره جدول

برفراز عباسی فاطمه قربانی، مجتبی
ریاضی گروه پایه، علوم دانشکده رجایی، شهید دبیر تربیت دانشگاه تهران، ایران،

باشد. G مزدوج غیر دوبه دو زیرگروه های از خانواده یک C(G) و متناهی گروه یک G کنید فرض
نمره جدول را باشد H عمل تحت G/K مجموعه ثابت نقاط تعداد آن HK−ام درایه که ماتریسی
و نمره جدول های مقاله، این در می کنند. تغییر C(G) عناصر میان در K و H آن در که می نامیم، G

می کنیم. محاسبه را هستند متمایز اول اعداد r و q ،p آن در که را pqr مرتبه از گروه های نمرشت

گروه. یک مزدوج غیر دوبه دو زیرگروه های نمره، جدول فروبنیوس، گروه کلیدی: کلمات

٣


