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SOME REMARKS ON ALMOST UNISERIAL RINGS
AND MODULES

H. R. DORBIDI

Abstract. In this paper, we study almost uniserial rings and
modules. An R−module M is called almost uniserial if any two
non-isomorphic submodules of M are linearly ordered by inclusion.
A ring R is an almost left uniserial ring if RR is almost uniserial.
We give some necessary and sufficient condition for an Artinian
ring to be almost left uniserial.

1. Introduction

In this paper, all rings have identity elements and all modules are
unitary left modules. A left R-module M is called uniserial if its sub-
modules are linearly ordered by inclusion. A ring R is called left unise-
rial if RR is uniserial. The notion of almost left uniserial ring is defined
in [1], as a straightforward common generalization of left uniserial rings
and left principal ideal domains. A ring R is called almost left unise-
rial if any two non-isomorphic left ideals of R are comparable. We note
that each left uniserial ring is almost left uniserial, but the converse is
not true, in general. For instance, any principal left ideal domain is
almost left uniserial, but is not necessarily a left uniserial ring. We say
that a left R-module M is almost uniserial if any two non-isomorphic
submodules are linearly ordered by inclusion. It is clear that every
submodule of an almost uniserial module is almost uniserial. But this
is not true for quotient of uniserial modules. In this paper, we give
some examples of quotient of almost uniserial modules which are al-
most uniserial. In [1], a structure theorem for commutative Artinian
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almost uniserial rings is obtained. We generalize this result by using
the socle series of the ring R to the non-commutative case. Also, we
prove that in a commutative almost left uniserial ring, the ideal Nil(R)
is a prime ideal.

Here we give some notions and definitions. A ring R is a local ring
if R has a unique left maximal ideal. The Jacobson radical of R is
denoted by J(R), and the set of all nilpotent elements of a ring R is
denoted by Nil(R). For an R−module M , the Socle series of M is
defined inductively as follows: Soc0(M) = 0 and Soc1(M) = Soc(M)
is the sum of all simple submodules of M . Also, for any ordinal i, we
have Soci+1(M)/Soci(M) = Soc(M/Soci(M)) and for a limit ordinal
α, we have Socα(M) =

∪
β<α Socβ(M). If S ⊆ M , we denote the left

annihilator of S in R by ann(S). The length of a module M is denoted
by l(M). An R-module M is called indecomposable if it is non-zero and
can not be written as a direct sum of two non-zero submodules. We
recall that an R-module M is called uniform if the intersection of any
two non-zero submodules is non-zero. A submodule N of M is said
to be an essential submodule of M if N

∩
K ̸= (0) for each non-zero

submodule K of M . A submodule N of M is said to be fully invariant
if f(N) ⊆ N , for each endomorphism f ∈ End(M).

2. Main results

Before stating our main results, we need some results of [1].

Proposition 2.1. [1, Proposition 2.1.] Let M be an almost uniserial
module. Then, either M is an indecomposable module or M is a di-
rect sum of two isomorphic simple modules. Moreover, every finitely
generated submodule of M is at most two-generated and the set of all
non-cyclic submodules of M is a chain.

Corollary 2.2. [1, Corollary 2.2.] Let M be an almost uniserial mod-
ule. Then one of the following two conditions hold:

(1) Either M is a uniform module, or
(2) Soc(M) is a direct sum of two isomorphic simple modules and

is an essential sub-module of M.

Proposition 2.3. [1, Proposition 2.3.] Let R be an almost left unis-
erial ring. Then RR is indecomposable or R ∼= M2(D), where D is a
division ring. In both cases, R is an indecomposable ring, every finitely
generated left ideal of R is at most two-generated, and the set of all
non-cyclic left ideals of R is a chain.
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Remark 2.4. It is clear that if M is an almost uniserial module and
N ≤ M , then N is also an almost uniserial module. But the quo-
tient modules of an almost uniserial module are not necessarily almost
uniserial. For example, Z is almost uniserial but Z6

∼= Z2

⊕
Z3 is not

almost uniserial, by Proposition 2.1.

Remark 2.5. Let M be an almost uniserial module and N ≤ M . If N
is not essential in M , then there exists a submodule K of M such that
N

∩
K = 0. Since N

⊕
K is an almost uniserial module, so N ∼= K

and N is a simple module. Hence, every submodule of M is essential
or simple.

Lemma 2.6. Let M be an almost uniserial R−module. If N,K ⊆ M
and N is not cyclic, then N and K are comparable.

Proof. Assume K ⊈ N . If k ∈ K\N , then Rk ⊈ N and Rk ≇ N . So,
N ⊆ Rk as desired. □
Definition 2.7. Let R be an almost left uniserial ring. If R is a left
uniserial ring or R ∼= M2(D) for some division ring D, we say R is type
(1), otherwise R is type (2).

The following lemma gives some properties of socle series. Its proof
is easy and uses transfinite induction. So we omit the proof.

Lemma 2.8. Let M and N be two R−modules and α, β be two ordinal
numbers. Then the following holds:

(1) Socα(M) is a fully invariant submodule of M ;
(2) If f : M → N is an isomorphism, then f(Socα(M)) = Socα(N);
(3) If N ⩽M , then Socα(N) ⩽ Socα(M);
(4) If N ⩽ M and Socα(M) ⩽ N , then Socα(N) = Socα(M). In

particular, Socα(Socα(M)) = Socα(M);
(5) Socα(M/Socβ(M)) = Socα+β(M)/Socβ(M).

Lemma 2.9. Let M be an R−module. If N ⩽M and N ∼= Socα(M),
then N ≤ Socα(M).

Proof. Let K = Socα(M). So, Socα(K) = K, by Lemma 2.8(4). Since
N ∼= K, so N = Socα(N) ⊆ Socα(M), by Lemma 2.8(3). □
Corollary 2.10. Assume M is an almost uniserial module. Then any
submodule N of M is comparable to Socα(M) for each ordinal number
α.

Proof. If N ∼= Socα(M), then N ⊆ Socα(M), by Lemma 2.9. □
Corollary 2.11. AssumeM is an almost uniserial module. If N/Socα(
M) is a simple module for some ordinal number α, then N is a cyclic
module.
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Proof. Let a ∈ N\Socα(M). Then, Socα(M) ⫋ Ra, by Corollary 2.10.
So Ra = N . □
Theorem 2.12. IfM is an almost uniserial module, thenM/Socα(M)
is an almost uniserial module for each ordinal number α.

Proof. Let α be an ordinal number and K/Socα(M) and N/Socα(M)
be two submodules ofM/Socα(M). So, Socα(M)=Socα(N)=Socα(K),
by Lemma 2.8(4). If N and K are comparable, then K/Socα(M) and
N/Socα(M) are comparable. Otherwise, let f : N → K be an iso-
morphism. So Socα(M) = Socα(K) = f(Socα(N)) = f(Socα(M)), by

Lemma 2.8(2). Hence, f gives rise to an isomorphism f̃ : N/Socα(M) →
K/Socα(M). □
Remark 2.13. Let R be a commutative ring and M be an almost left
uniserial R−module. Then for each m,n ∈ M the ideals ann(m) and
ann(n) are comparable.

Lemma 2.14. Let R be a commutative ring. If ann(a) ⊆ ann(b) and
an = 0 for some n ∈ N, then bian−i = 0, for each 0 ≤ i ≤ n. In
particular, bn = 0 and (a+ b)n = 0.

Proof. We proceed by induction on i. If i = 0, then an = 0. If 0 ≤ i < n
and bian−i = 0, then bian−i−1 ∈ ann(a) ⊆ ann(b). So, bi+1an−(i+1) =
0. □
Lemma 2.15. Let R be a commutative ring and I is an ideal of R.
Suppose that f : I → R is an R−homomorphism. Then,

(1) If an = 0, then f(a)n = 0;
(2) If f is injective, then an = 0 if and only if f(a)n = 0.

Proof. It suffices to prove that f i(ai) = f(a)i. For i = 1 this is triv-
ial. If f i(ai) = f(a)i, then f i+1(ai+1) = f(f i(ai+1)) = f(af i(ai)) =
f i(ai)f(a) = f(a)i+1. □
Lemma 2.16. Let R be a commutative almost uniserial ring. For each
n ∈ N, if In = {a ∈ R : an = 0}, then In is an ideal of R and Inn = 0.

Proof. Let a, b ∈ In. Since ann(a) and ann(b) are comparable, by
Remark 2.13, so a + b ∈ In, by Lemma 2.14. It is clear that rIn ⊆ In
for each r ∈ R. Thus, I is an ideal of R. Let a1, . . . , an ∈ In. Without
loss of generality, we can assume that ann(a1) ⊆ · · · ⊆ ann(an). Since
an1 = 0, so an−1

1 a2 = 0. By iterating this process and inserting ai’s, we
get a1 . . . an = 0, as needed. □
Lemma 2.17. Let R be a commutative almost uniserial ring. Then
every ideal J is comparable to any ideal I ∈ {In : n ∈ N} ∪Nil(R).
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Proof. The proof follows by Lemma 2.15 and Lemma 2.16. □
Remark 2.18. Let R be a commutative almost uniserial ring. If ab = 0,
then a2 = 0 or b2 = 0.

Recall that a ring R is called reduced if it has no non-zero nilpotent
element.

Theorem 2.19. Let R be a commutative almost uniserial ring. Then
Nil(R) is a prime ideal. In particular, R is an integral domain if and
only if R is a reduced ring.

Proof. If ab ∈ Nil(R), then anbn = (ab)n = 0, for some n ∈ N. So,
a2n = 0 or b2n = 0, by remark 2.18. Thus, a ∈ Nil(R) or b ∈ Nil(R).

□
Theorem 2.20. Let R be a commutative almost uniserial ring and
In = {a ∈ R : an = 0}, for each n ∈ N. Then, R/I is a commutative
almost uniserial ring for any ideal I ∈ {In : n ∈ N} ∪Nil(R).

Proof. Let I ∈ {In : n ∈ N}
∪
{Nil(R)} and K/I and N/I be two

ideals of R/I. If N and K are comparable, then K/I and N/I are
also comparable. Otherwise, let f : N → K be an R−isomorphism.
So, f(I) = I, by Lemma 2.15. Thus, f gives rise to an isomorphism

f̃ : N/I → K/I. □

3. Local Artinian almost left uniserial rings

In this section, we study local Artinian almost left uniserial rings.
Specially, we generalize the results of [1] for commutative local Artinian
almost uniserial rings.

Theorem 3.1. Let (R,m) be a local Artinian almost left uniserial ring.
Assume k is the least integer number such that Sock(R) = R. Then,
mi = Sock−i(R) for each 0 ≤ i ≤ k. In particular, mk = 0.

Proof. We proceed by induction on i. If i = 0, then m0 = R =
Sock(R). Since R = Sock(R), so R/Sock−1(R) is a local semi-simple
almost left uniserial ring, by Theorem 2.12. Thus, R/Sock−1(R) is
a division ring by Artin-Wedderburn Theorem and Proposition 2.3.
Hence, m = Sock−1(R). Assume mi = Sock−i(R). Since the socle of
any R−module is annihilated by ideal m, so mi+1 = mSock−i(R) ⊆
Sock−(i+1)(R). Hence, l(

Sock−(i+1)(R)

mi+1 ) < l( mi

mi+1 ). Since mi is at most
two generated and mi/mi+1 is a vector space over the division ring

R/m, so l(mi/mi+1) ≤ 2. If l( Sock−i(R)

Sock−(i+1)(R)
) = 1, then mi = Sock−i(R)

is a cyclic module by, Corollary 2.11. So, l(mi/mi+1) = 1. Hence,
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l(
Sock−(i+1)(R)

mi+1 ) = 0 < 1 = l( mi

mi+1 ). So, Sock−(i+1)(R) = mi+1. If

l( Sock−i(R)

Sock−(i+1)(R)
) = 2, then l(mi/mi+1) = 2. Hence, mi+1 = Sock−(i+1)(R),

and the proof is complete. □
We need the following theorem [2, Theorem 9] for the proof of our

next theorem.

Theorem 3.2. Let R be a left Artinian ring. Then R is a left uniserial
ring if and only if R is a local ring and J(R) is a principal ideal as a
left ideal.

The following theorem is proved in [1, Proposition 2.7.] by a different
method.

Theorem 3.3. Let R be a left Artinian principal left ideal ring. If R
is almost left uniserial, then it is of type (1).

Proof. If R ≇ M2(D), then RR is indecomposable by Proposition 2.3.
Hence, R has no nontrivial idempotent. Since J(R) is nilpotent, so
idempotents of semi-simple ring R/J(R) can be lifted. Hence, R/J(R)
is a division ring and R is a local ring. Thus, it is uniserial by Theorem
3.2. □
Lemma 3.4. Let M be an R−module. If the set of two-generated
non-cyclic submodules of M is a chain, then every finitely generated
submodule of M is at most two-generated.

Proof. By contrary, assumeM has a submoduleN = ⟨x, y, z⟩ which can
not be generated by two elements. So, N1 = ⟨x, y⟩ and N2 = ⟨y, z⟩ are
two-generated non-cyclic submodules of M . So, they are comparable.
Hence, N = N1 +N2 is two generated, which is a contradiction. □
Remark 3.5. Let (R,m) be a local ring. If N = ⟨x, y⟩ is a cyclic module,
then N = Rx or N = Ry, by Nakayama’s Lemma.

Theorem 3.6. Let (R,m) be a local left Artinian ring. Assume that
the set of two-generated non-cyclic ideals of R is S = {mi : 1 ≤ i < k},
where k is the nilpotency index of m. Then every ideal of R is at most
two-generated and each ideal I /∈ S is cyclic and is between mi and
mi+1 for some i. In particular, every left ideal is comparable to each
mi.

Proof. Since S is chain, so every ideal of R is at most two-generated, by
Lemma 3.4. Hence, each ideal I /∈ S is a cyclic ideal. Let Ra /∈ S be a
cyclic ideal of R and i be the maximum integer such that Ra ⊆ mi. So,
a /∈ mi+1. Let x ∈ mi+1 and J = ⟨a, x⟩. It is clear that J ⊈ mi+1 and
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J ⊆ mi. If J = mi, then mi/mi+1 is a cyclic module. So, mi = Ra is
a cyclic module, which is a contradiction. Thus, J /∈ S. Hence, J is a
cyclic ideal. So, J = Ra, by remark 3.5. This implies that mi+1 ⊆ Ra.

□

Theorem 3.7. Let (R,m) be a local left Artinian ring. Assume that
the set of two-generated non-cyclic ideals of R is S = {mi : 1 ≤ i < k},
where k is a nilpotency index of m. Then, R is an almost left uniserial
ring of type (2).

Proof. First note that l(mi/mi+1) = 2. So, l(R) = 2k + 1 and l(mi) =
2k − 2i. Since every ideal is comparable to mi for each 1 ≤ i ≤ k, by
Theorem 3.6, so the only ideals of even length are mi’s. Let I and J be
two incomparable left ideals of R. So there exist an integer i such that
mi+1 ⫋ I, J ⫋ mi. Also, I and J are cyclic. If I = Ra and J = Rb,
then l(Ra) = l(Rb) = 2k − 2i− 1. So, l(ann(a)) = l(ann(b)) = 2i+ 2.
Hence, ann(a) = ann(b) = mk−i−1 and Ra ∼= Rb. □

Theorem 3.8. Let (R,m) be a local left Artinian ring. If R is an
almost left uniserial ring of type (2), then the set of two-generated non-
cyclic ideals of R is contained in {mi : 1 ≤ i < k}, where k is the
nilpotency index of m and every other ideal is cyclic and is between mi

and mi+1 for some i.

Proof. Since R is a local Artinian almost left uniserial ring, so mi =
Sock−i(R) by Theorem 3.1. Hence, every ideal is between mi and mi+1

for some i, by Theorem 2.10. Also, every ideal of R is at most two-
generated, by Proposition 2.1. Assume I is a left ideal which is strictly
between mi and mi+1. Let a ∈ I\mi+1. Since Ra ⊈ mi+1, so mi+1 ⫋
Ra. Hence, l(Ra/mi+1) = l(I/mi+1) = 1. So, I = Ra is a cyclic ideal.

□
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زنجیر تک تقریباً مدول های و حلقه ها بر یادداشتی

دربیدی رضا حمید
-ایران ٧٨۶٧١۶١١۶٧-جیرفت-کرمان جیرفت-کدپستی دانشگاه علوم- ریاضی-دانشکده گروه

R-مدول یک می دهیم. قرار مطالعه مورد را زنجیر تک تقریباً مدول های و حلقه ها ما مقاله، این در
مقایسه قابل شمول رابطه با آن یکریخت غیر زیرمدول دو هر هرگاه می شود نامیده زنجیر تک تقریباً M
تک تقریباً چپ R-مدول عنوان به R هرگاه است چپ زنجیر تک تقریباً حلقه یک R حلقه یک باشند.
چپ زنجیر تک تقریباً آرتینی، حلقه یک اینکه برای کافی و لازم شرایط مقاله این در ما باشد. زنجیر

می دهیم. ارائه را باشد

یک ساده زیرمدول های جمع زنجیر، تک تقریباً مدول های زنجیر، تک تقریباً حلقه های کلیدی: کلمات
مدول.

۵


