Journal of Algebraic Systems Vol. 5, No. 1, (2017), pp 73-84

ON THE MAXIMAL SPECTRUM OF A MODULE

H. ANSARI-TOROGHY*, AND S. KEYVANI

ABSTRACT. Let R be a commutative ring with identity. The purpose of this paper is to introduce and study two classes of modules over R, called Max-injective and Max-strongly top modules and explore some of their basic properties. Our concern is to extend some properties of X-injective and strongly top modules to these classes of modules and obtain some related results.

1. INTRODUCTION

Throughout this paper, R is a commutative ring with non-zero identity and M is a unitary R-module. For any ideal \mathfrak{I} of R containing $\operatorname{Ann}_R(M)$, \overline{R} and $\overline{\mathfrak{I}}$ denote $R/\operatorname{Ann}_R(M)$ and $\mathfrak{I}/\operatorname{Ann}_R(M)$, respectively. Further, \mathbb{N} , \mathbb{Z} and \mathbb{Q} denote the set of positive integers, the ring of integers, and the field of rational numbers, respectively.

For M as an R-module and P, N its submodules, the colon ideal of M into N is defined as $(N : M) = \{r \in R | rM \subseteq N\} = \operatorname{Ann}_R(M/N)$.

A submodule P of M is said to be a prime submodule or \mathfrak{p} -prime submodule if $P \neq M$ and for $\mathfrak{p} = (P : M)$, whenever $re \in P$ for $r \in R$ and $e \in M$, we have $r \in \mathfrak{p}$ or $e \in P$. If Q is a maximal submodule of M, then Q is a prime submodule and $(Q : M) := \mathfrak{m}$ is a maximal ideal of R. In this case, we say Q is an \mathfrak{m} -maximal submodule of M [8, p. 61].

The prime spectrum (or simply, the spectrum) of M is the set of all prime submodules of M and denoted by $\operatorname{Spec}_R(M)$ or X.

MSC(2010): Primary: 13C13; Secondary: 13C99

Keywords: Prime submodule, Maximal submodule, Max-injective module, Max-strongly top module.

Received: 19 December 2016, Accepted: 7 May 2017.

^{*}Corresponding author.

The set of all maximal submodules of M is denoted by $\operatorname{Max}_R(M)$. Moreover, if $\mathfrak{p} \in \operatorname{Spec}(R)$ (resp., $\mathfrak{m} \in \operatorname{Max}(R)$), then $\operatorname{Spec}_{\mathfrak{p}}(M)$ (resp., $\operatorname{Max}_{\mathfrak{m}}(M)$) is the set of all \mathfrak{p} -prime (resp., \mathfrak{m} -maximal) submodules of M.

If $\operatorname{Spec}_R(M) \neq \emptyset$ (resp., $\operatorname{Max}_R(M) \neq \emptyset$), the mapping $\psi : \operatorname{Spec}_R(M) \to \operatorname{Spec}(\overline{R})$ (resp., $\phi : \operatorname{Max}_R(M) \to \operatorname{Max}(\overline{R})$ such that $\psi(P) = \overline{(P:M)}$ (resp., $\phi(Q) = \overline{(Q:M)}$) for every $P \in \operatorname{Spec}_R(M)$ (resp., $Q \in \operatorname{Max}_R(M)$), is called the *natural map* of $\operatorname{Spec}_R(M)$ (resp., $\operatorname{Max}_R(M)$) [11, p. 417].

M is said to be *X*-injective if either $X = \emptyset$ or $X \neq \emptyset$ and the natural map of *X* is injective [2, Definition 3.2].

The Zariski topology on $X = \operatorname{Spec}_R(M)$ is the topology τ_M described by taking the set $Z(M) = \{V(N)|N \text{ is a submodule of } M\}$ as the set of closed sets of X, where $V(N) = \{P \in X | (P : M) \supseteq (N : M)\}$ [11, p. 417].

The quasi-Zariski topology on $X = \operatorname{Spec}_R(M)$ is described as follows: put $V^*(N) = \{P \in X | P \supseteq N\}$ and $Z^*(M) = \{V^*(N) | N \text{ is a sub$ $module of } M\}$. Then there exists a topology τ_M^* on X having $Z^*(M)$ as the set of closed subsets of X if and only if $Z^*(M)$ is closed under the finite union. When this is the case, τ_M^* is called the quasi-Zariski topology on X and M is called a top R-module [13, p. 85].

There exists a topology on $\operatorname{Max}_R(M)$ having $Z^m(M) = \{V^m(N)|N$ is a submodule of $M\}$ as the set of closed sets of $\operatorname{Max}_R(M)$, where $V^m(N) = \{Q \in \operatorname{Max}_R(M) | (Q : M) \supseteq (N : M)\}$. We denote this topology by τ_M^m . In fact, this topology is the same as the subspace topology induced by τ_M on $\operatorname{Max}_R(M)$.

The quasi-Zariski topology on $\operatorname{Max}_R(M)$ is described as follows: put $V^{*m}(N) = \{Q \in \operatorname{Max}_R(M) | Q \supseteq N\}$ and $Z^{*m}(M) = \{V^{*m}(N) | N \text{ is a submodule of } M\}$. Then there exists a topology τ_M^{*m} on $\operatorname{Max}_R(M)$ having $Z^{*m}(M)$ as the set of closed subsets of $\operatorname{Max}_R(M)$ if and only if $Z^{*m}(M)$ is closed under the finite union. When this is the case, τ_M^{*m} is called the quasi-Zariski topology on $\operatorname{Max}_R(M)$ and M is called a Max-top (or M-top) R-module [7, Notation 1.1.7]. We recall that when M is a top module, this topology is the same as the subspace topology induced by τ_M^* on $\operatorname{Max}_R(M)$.

The present authors introduced the concept of strongly top modules and investigated some important properties of this family of modules. A top *R*-module *M* is called strongly top if $\tau_M^* = \tau_M[4, \text{Definition 3.1}]$.

In this paper, we will introduce two classes of modules, called Maxinjective and Max-strongly top modules (see Definitions 3.1 and 3.12). It is shown that the class of Max-injective (resp., Max-strongly top)

74

modules contains the family of X-injective (resp., strongly top) modules properly (see Propositions 3.3 and 3.13).

2. Preliminaries

In this section, we review some properties of prime and maximal submodules.

Remark 2.1. Let M be an R-module.

- (a) Let K be a submodule of M such that (K : M) is a maximal ideal of R. Then, K is a prime submodule of M [8, Proposition 2];
- (b) If N is a maximal submodule of M, then N is a prime submodule of M and (N : M) is a maximal ideal of R [8, Proposition 4];
- (c) Let N be a prime submodule of M and S be a multiplicatively closed subset of R. Then, $S^{-1}(N:_R M) = (S^{-1}N:_{S^{-1}R}S^{-1}M)$ [10, Corollary 1].

Remark 2.2. [1, Proposition 3.3]. Let M be an R-module and $\mathfrak{p} \in Max(R)$. Then every \mathfrak{p} -prime submodule of M is contained in some \mathfrak{p} -maximal submodule of M.

Remark 2.3. [9, Lemma 2]. Let N and L be submodules of an R-module M, and P a \mathfrak{p} -prime submodule of M such that $N \cap L \subseteq P$. If $(N:M) \not\subseteq \mathfrak{p}$, then $L \subseteq P$.

Remark 2.4. [13, Lemma 1.6]. Let \mathfrak{p} be a prime ideal of R and let M be an R-module. Let N be any submodule of M and let $K \in \operatorname{Spec}_{\mathfrak{p}}(M)$. Then, $K \cap N = N$ or $K \cap N \in \operatorname{Spec}_{\mathfrak{p}}(N)$.

3. Main results

Definition 3.1. Let M be an R-module. We say that M is a Maxinjective module if $\operatorname{Max}_R(M) = \emptyset$ or $\operatorname{Max}_R(M) \neq \emptyset$ and the natural map of $\operatorname{Max}_R(M)$ is injective.

Proposition 3.2.

- (a) Every X-injective module is Max-injective;
- (b) $\mathbb{Q} \oplus \mathbb{Q}$ is not Max-injective \mathbb{Q} -module.

Proof. (a) This is clear by Remark 2.1 (b). (b) $0 \oplus \mathbb{Q}$ and $\mathbb{Q} \oplus 0$ are maximal submodules of the \mathbb{Q} -module $\mathbb{Q} \oplus \mathbb{Q}$ with $(0 \oplus \mathbb{Q} : \mathbb{Q} \oplus \mathbb{Q}) = (\mathbb{Q} \oplus 0 : \mathbb{Q} \oplus \mathbb{Q})$, while $0 \oplus \mathbb{Q} \neq \mathbb{Q} \oplus 0$. \Box

The following proposition shows that the class of Max-injective modules contains X-injective modules properly.

Proposition 3.3. In the following cases, the \mathbb{Z} -module M is Maxinjective, while it is not X-injective.

- (a) $M = \mathbb{Q} \oplus \mathbb{Q};$
- (b) $M = \mathbb{Q} \oplus \prod_{i \in \mathbb{N}} \mathbb{Z}/p_i \mathbb{Z}$, where $\{p_i\}_{i \in \mathbb{N}}$ are prime integers.

Proof. (a) See [3, Table of Example 3.1]. (b) It is not difficult to see that $Max_{\mathbb{Z}}(M) = \{p_i M | i \in \mathbb{N}\}$ and

$$\{0 \oplus (\prod_{i \in \mathbb{N}} \mathbb{Z}/p_i \mathbb{Z}), \mathbb{Q} \oplus (\oplus_{i \in \mathbb{N}} \mathbb{Z}/p_i \mathbb{Z})\},\$$

is a set of prime submodules of M. Hence, by the above arguments, M is a Max-injective module. But M is not X-injective, because $(0 \oplus (\prod_{i \in \mathbb{N}} \mathbb{Z}/p_i\mathbb{Z}) : M) = (\mathbb{Q} \oplus (\oplus_{i \in \mathbb{N}} \mathbb{Z}/p_i\mathbb{Z}) : M)$, while $0 \oplus (\prod_{i \in \mathbb{N}} \mathbb{Z}/p_i\mathbb{Z}) \neq \mathbb{Q} \oplus (\oplus_{i \in \mathbb{N}} \mathbb{Z}/p_i\mathbb{Z})$.

We recall that a topological space (X, τ) is a T_0 space if for each pair $x, y \in X$, there exists an open set U such that $x \in U$ but $y \notin U$.

Lemma 3.4. Let M be an R-module. Then the following are equivalent:

- (a) *M* is Max-injective;
- (b) $(Max_R(M), \tau_M^m)$ is a T_0 space;
- (c) For every $P, Q \in Max_R(M), (P:M) = (Q:M)$ implies that P = Q;
- (d) $|Max_{\mathfrak{p}}(M)| \leq 1$ for every $\mathfrak{p} \in Max(R)$.

Proof. The proof is straightforward.

Lemma 3.5. Let $(M_i)_{i \in I}$ be a family of *R*-modules and let $\mathfrak{p} \in Max(R)$. Set $M = \bigoplus_{i \in I} M_i$. Then for each $Q_j \in Max_{\mathfrak{p}}(M_j)$, we have $Q_j \oplus (\bigoplus_{j \neq i \in I} M_i) \in Max_{\mathfrak{p}}(M)$.

Proof. It is enough to prove the lemma in the case that $M = M_1 \oplus M_2$. So, let $Q_1 \in \operatorname{Max}_R(M_1)$. Then, $M/Q_1 \oplus M_2$ is isomorphic to M_1/Q_1 is a simple *R*-module so that $Q_1 \oplus M_2$ is a maximal submodule of *M*. We have similar argument for $M_1 \oplus Q_2$, where $Q_2 \in \operatorname{Max}_R(M_2)$. Hence, the proof is complete. \Box

Proposition 3.6. Let M be an R-module and let $\mathfrak{p} \in Max(R)$. Then

- (a) Every homomorphic image of Max-injective R-module is Maxinjective;
- (b) If M is a finitely generated Max-injective module, then M_p is a Max-injective R_p-module;
- (c) Let M be a free R-module. Then M is Max-injective if and only if M is cyclic.

Proof. (a) This is straightforward by using the fact that if N is a submodule of M, then Max_R(M/N) = {Q/N : Q ∈ Max_R(M), Q ⊇ N}. (b) Let W₁ and W₂ be maximal submodules of M_p and (W₁ : M_p) = (W₂ : M_p). Then W₁ ∩ M and W₂ ∩ M are p-maximal submodules of M, by [5, Lemma 2.7]. Hence by hypothesis, W₁ ∩ M = W₂ ∩ M. Therefore, (W₁ ∩ M)_p = (W₂ ∩ M)_p. This means W₁ = W₂, as desired. (c) (⇐) This follows from Proposition 3.2 (a). (⇒) Since M is a free module, we have $M = \bigoplus_{i \in I} R$. We claim that |I| = 1. Otherwise if |I| > 1, then we can choose $\alpha, \beta \in I$ such that $\alpha \neq \beta$. Suppose that $\mathfrak{m} \in Max(R)$. Then, $\mathfrak{m} \oplus (\bigoplus_{\alpha \neq i \in I} R) \in Max_{\mathfrak{m}}(M)$ and $\mathfrak{m} \oplus (\bigoplus_{\alpha \neq i \in I} R) \in \mathfrak{m} \oplus (\bigoplus_{\beta \neq i \in I} R)$, a contradiction. Hence, M is cyclic, as desired.

Definition 3.7. A family $(M_i)_{i \in I}$ of *R*-modules is said to be *max*compatible if for all $i \neq j$ in *I*, there does not exist a maximal ideal **p** in *R* with $\operatorname{Max}_{\mathfrak{p}}(M_i)$ and $\operatorname{Max}_{\mathfrak{p}}(M_j)$ both non-empty.

Theorem 3.8. Let $(M_i)_{i \in I}$ be a family of *R*-modules and let $M = \bigoplus_{i \in I} M_i$. Assume that *M* is a Max-injective *R*-module. Then

(a) $(M_i)_{i \in I}$ is a family of max-compatible Max-injective modules; (b) $\operatorname{Max}_R(M) = \{Q_j \oplus (\bigoplus_{j \neq i \in I} M_i) | Q_j \in \operatorname{Max}_R(M_j), j \in I\}.$

Proof. (a) Let $M = \bigoplus_{i \in I} M_i$ be a Max-injective R-module. Then for each $i \in I$, M_i is Max-injective, by Proposition 3.6 (a). Now, let $k, j \in I$ with $k \neq j$ and $\mathfrak{p} \in \operatorname{Max}(R)$. We will prove that $\operatorname{Max}_{\mathfrak{p}}(M_k) = \emptyset$ or $\operatorname{Max}_{\mathfrak{p}}(M_j) = \emptyset$. If both are non-empty, we can find $Q_k \in \operatorname{Max}_{\mathfrak{p}}(M_k)$ (resp., $Q_j \in \operatorname{Max}_{\mathfrak{p}}(M_j)$). Hence, $Q_k \oplus (\bigoplus_{k\neq i \in I} M_i) \in \operatorname{Max}_{\mathfrak{p}}(M)$ (resp., $Q_j \oplus (\bigoplus_{j\neq i \in I} M_i) \in \operatorname{Max}_{\mathfrak{p}}(M)$), by Lemma 3.5. Since M is Maxinjective, it follows that $Q_k \oplus (\bigoplus_{k\neq i \in I} M_i) = Q_j \oplus (\bigoplus_{j\neq i \in I} M_i)$, a contradiction. (b) Let $Q \in \operatorname{Max}_R(M)$ so that $(Q : M) = \mathfrak{p}$ for some $\mathfrak{p} \in \operatorname{Max}(R)$. Since $Q \neq M$, there exists $j \in I$ such that $Q \cap M_j \neq M_j$. Then we have $Q \cap M_j \in \operatorname{Spec}_{\mathfrak{p}}(M_j)$, by Remark 2.4. Hence, there exists $W \in \operatorname{Max}_{\mathfrak{p}}(M_j)$ such that $Q \cap M_j \subseteq W$, by Remark 2.2. Thus, $W \oplus (\bigoplus_{j\neq i \in I} M_i) \in \operatorname{Max}_{\mathfrak{p}}(M)$, by Lemma 3.5. Since M is Max-injective, it follows that $Q = W \oplus (\bigoplus_{j\neq i \in I} M_i)$. Therefore,

$$\operatorname{Max}_{R}(M) \subseteq \{Q_{j} \oplus (\bigoplus_{j \neq i \in I} M_{i}) | Q_{j} \in \operatorname{Max}_{R}(M_{j}), j \in I\}.$$

The reverse inclusion is obvious by Lemma 3.5, and we are done. \Box

A submodule N of an R-module M is semi-maximal if N is an intersection of maximal submodules. Also, by $\operatorname{Rad}(N)$ we mean the intersection of all maximal submodules of M containing N, and in case N is not contained in any maximal submodule, $\operatorname{Rad}(N)$ is defined to be M.

We need the following proposition.

Proposition 3.9. Let M be an R-module. Then the following statements are equivalent:

- (a) M is Max-top;
- (b) For every maximal submodule Q of M, whenever N and L are semi-maximal submodules of M with N ∩ L ⊆ Q, then N ⊆ Q or L ⊆ Q.

Proof. (a) \Rightarrow (b) Let $Q \in \operatorname{Max}_R(M)$ and also N, L be semi-maximal submodules of M such that $N \cap L \subseteq Q$. Since N and L are semimaximal submodules of M, we have $N = \bigcap_{i \in \Lambda_1} N_i$ and $L = \bigcap_{t \in \Lambda_2} L_t$, where N_i , $L_t \in \operatorname{Max}_R(M)$ for all $i \in \Lambda_1$ and $t \in \Lambda_2$. Since M is Maxtop, there exists submodule J of M such that $V^{*m}(N) \cup V^{*m}(L) =$ $V^{*m}(J)$. It is easy to see that $J \subseteq N \cap L$. Hence, $V^{*m}(N \cap L) \subseteq V^{*m}(J)$. Now, we have

$$V^{*m}(N) \cup V^{*m}(L) \subseteq V^{*m}(N \cap L) \subseteq V^{*m}(J) \subseteq V^{*m}(N) \cup V^{*m}(L).$$

Therefore, $V^{*m}(N \cap L) = V^{*m}(N) \cup V^{*m}(L)$. Now, $N \cap L \subseteq Q$ implies that $Q \in V^{*m}(N \cap L)$, so that $Q \in V^{*m}(N)$ or $Q \in V^{*m}(L)$. Therefore, $N \subseteq Q$ or $L \subseteq Q$, as required.

 $(b) \Rightarrow (a)$ Let S and T be submodules of M. We will show that

$$V^{*m}(S) \cup V^{*m}(T) = V^{*m}(\operatorname{Rad}(S) \cap \operatorname{Rad}(T)).$$

Clearly, for every submodule K of M, we have $V^{*m}(K) = V^{*m}(\text{Rad}(K))$. Hence,

$$V^{*m}(S) \cup V^{*m}(T) \subseteq V^{*m}(\operatorname{Rad}(S) \cap \operatorname{Rad}(T)).$$

To see the reverse inclusion, let $P \in V^{*m}(\operatorname{Rad}(S) \cap \operatorname{Rad}(T))$, so that $\operatorname{Rad}(S) \cap \operatorname{Rad}(T) \subseteq P$. It then follows that $\operatorname{Rad}(S) \subseteq P$ or $\operatorname{Rad}(T) \subseteq P$, by hypothesis. In either case, we have $P \in V^{*m}(S) \cup V^{*m}(T)$, and the proof is complete.

Remark 3.10. We recall that every top module is X-injective, by [2, Proposition 3.3]. The following example shows that this property is not true for Max-top and Max-injective modules, in general.

Example 3.11. Consider $M = \mathbb{Z}_2 \oplus \mathbb{Z}_2$ as a \mathbb{Z}_2 -module. Then, M is Max-top but is not Max-injective. (See [7, Example 1.1.16].)

Definition 3.12. Let M be a Max-top R-module. We say that M is a Max-strongly top module if $\tau_M^{*m} = \tau_M^m$.

78

It is easy to check that every strongly top module is Max-strongly top. The following proposition shows that this containment is proper in general.

Proposition 3.13. Let $M = \mathbb{Q} \oplus \mathbb{Q}$. Then M is a Max-strongly top \mathbb{Z} -module, while it is not strongly top.

Proof. This follows by [3, Table of Example 3.1] and the fact that every strongly top module is a top module. \Box

Remark 3.14. Let (X, τ) be a topological space and $Y \subseteq X$. We write $(cl(Y))_{(X,\tau)}$ to denote the topological closure of Y in (X, τ) .

Lemma 3.15. Let M be an R-module. Then the following statements are equivalent:

- (a) *M* is an Max-strongly top module;
- (b) For every submodule N of M, there exists submodule K of M such that $V^{*m}(N) = V^m(K)$;
- (c) $V^{*m}(N) = V^m(Rad(N))$, for every submodule N of M.

Proof. (a) \Leftrightarrow (b) This follows from the fact that we have always $\tau_M^m \subseteq \tau_M^{*m}$.

(a) \Leftrightarrow (c) Let M be an Max-strongly top R-module and N a submodule of M. By hypothesis, there exists submodule K of M such that $V^{*m}(N) = V^m(K)$. But, $V^m(K)$ is a closed subset of $(\operatorname{Max}_R(M), \tau_M^m)$, hence

$$(cl(V^m(K)))_{(\operatorname{Max}_R(M),\tau_M^m)} = V^m(K).$$

On the other hand, it is well known that

$$(cl(V^m(K)))_{(\operatorname{Max}_R(M),\tau_M^m)} = (cl(V^m(K)))_{(\operatorname{Spec}_R(M),\tau_M)} \cap \operatorname{Max}_R(M).$$

Now, by [11, Proposition 5.1], we have

$$cl(V^{m}(K)))_{(\operatorname{Max}_{R}(M),\tau_{M}^{m})} = V(\cap_{Q \in V^{m}(K)}Q) \cap \operatorname{Max}_{R}(M).$$

We claim that

$$V(\cap_{Q \in V^m(K)} Q) \cap \operatorname{Max}_R(M) = V^m(\operatorname{Rad}(N)).$$

To see this, Let $P \in V(\cap_{Q \in V^m(K)}Q) \cap \operatorname{Max}_R(M)$. Then,

$$(P:M) \supseteq (\cap_{Q \in V^m(K)} Q:M) \supseteq \cap_{Q \in V^m(K)} (Q:M) \supseteq (K:M).$$

Hence, $P \in V^m(K)$. But, $V^m(K) = V^{*m}(N) \subseteq V^m(\text{Rad}(N))$. Therefore,

$$V(\cap_{Q \in V^m(K)} Q) \cap \operatorname{Max}_R(M) \subseteq V^m(\operatorname{Rad}(N)).$$

To see the reverse inclusion, let $W \in V^m(\text{Rad}(N))$. Then, we have

 $(W:M) \supseteq (\operatorname{Rad}(N):M) \supseteq (\cap_{Q \in V^m(K)}Q:M).$

This implies that, $W \in V(\cap_{Q \in V^m(K)} Q) \cap \operatorname{Max}_R(M)$ and

 $V^m(\operatorname{Rad}(N)) \subseteq V(\cap_{Q \in V^m(K)}Q) \cap \operatorname{Max}_R(M).$

By the above arguments, we have $V^{*m}(N) = V^m(\text{Rad}(N))$. The reverse implication follows from the fact that $\tau_M^m \subseteq \tau_M^{*m}$.

Remark 3.16. The ring R is a perfect ring if it is satisfies DCC condition on principal ideals. Clearly, every Artinian ring is perfect. One can easily see that if R is a perfect ring, then every prime ideal of R is a maximal ideal. Furthermore, every perfect ring is a semilocal ring [6, Theorem P or Example 3(6)].

Proposition 3.17. Let M be a Max-injective R-module. Then M is Max-strongly top in the following cases:

- (a) M is non-faithful and R is PID;
- (b) $|Max(R)| < \infty;$
- (c) R is a perfect ring.

Proof. (a) Let N be a submodule of M. To prove M is Max-strongly top module, it is enough to show that $V^{*m}(N) = V^m(\text{Rad}(N))$, by Proposition 3.15. Clearly, $V^{*m}(N) \subseteq V^m(\text{Rad}(N))$. To see the reverse inclusion, let

$$\Lambda = \{ W | W \in \operatorname{Max}_R(M), W \supseteq N \}.$$

Obviously, Λ is a finite set because R is PID and each $W \in \Lambda$ is a maximal submodule and M is non-faithful. Now, let $Q \in V^m(\operatorname{Rad}(N))$. Then, $Q \in \operatorname{Max}_R(M)$ and we have

 $(Q:M) \supseteq (\operatorname{Rad}(N):M) \supseteq \cap_{W \in \Lambda} (W:M).$

This implies that (Q: M) = (K: M), for some $K \in \Lambda$. So, Q = K by hypothesis. Therefore, $Q \supseteq N$ so that $Q \in V^{*m}(N)$, as desired.

 \square

(b) and (c) We have similar argument as in part (a).

Corollary 3.18. Let M be a Max-injective R-module. Then M is Max-top in each case listed in Proposition 3.17.

Proposition 3.19. In the following, in each case, the *R*-module *M* is Max-strongly top:

- (a) $M = \mathbb{Z}_{(p)} = S^{-1}\mathbb{Z}$, where p is a prime integer, $S = \mathbb{Z} \setminus (p)$ and $R = \mathbb{Z}$;
- (b) $|Max(R)| < \infty$ and for every $Q \in Max_R(M)$, there exists $\mathfrak{p} \in Max(R)$ such that $Q = \mathfrak{p}M$;
- (c) $M = \bigoplus_{i \in I} M_i$, where $(M_i)_{i \in I}$ is a family of prime compatible X-injective R-modules and R is a perfect ring;
- (d) $M = \bigoplus_{\lambda \in \Lambda} R/I_{\lambda}$, where Λ is a finite index set and I_{λ} ($\lambda \in \Lambda$) are comaximal ideals of R.

Proof. (a) This follows from [3, Table of Example 3.1], Proposition 3.2 (a), and Proposition 3.17 (a).

(b) Follows from Proposition 3.17 (b).

(c) Follows from [2, Proposition 3.7 (c)], Proposition 3.2 (a), and Proposition 3.17 (c).

(d) Follows from [13, Corollary 5.5], Theorem 3.8 (b), and Lemma 3.15.

Proposition 3.20. Let M be an R-module and also $\mathfrak{p} \in Max(R)$. Then,

- (a) Every homomorphic image of Max-strongly top R-module is Max-strongly top;
- (b) If M is a finitely generated Max-strongly top module, then M_p is Max-strongly top R_p-module.

Proof. (a) Let M be a Max-strongly top R-module and N a submodule of M. Let K/N be a submodule of M/N. By Lemma 3.15, it is enough to prove that $V^m(\operatorname{Rad}(K/N)) = V^{*m}(K/N)$. To see this, let $L \in V^m(\operatorname{Rad}(K/N))$. Then, L = Q/N, where $N \subseteq Q \in \operatorname{Max}_R(M)$. This implies that

$$(Q/N: M/N) \supseteq (\bigcap_{N \subseteq P \in V^{*m}(K)} P/N: M/N)$$
$$= \bigcap_{N \subseteq P \in V^{*m}(K)} (P/N: M/N).$$

Therefore, we have $(Q: M) \supseteq (\bigcap_{N \subseteq P \in V^{*m}(K)} P: M)$, by [12, Result 1]. It then follows that $Q \in V^m(\text{Rad}(K))$. Since M is a Max-strongly top R-module, we have $V^{*m}(K) = V^m(\text{Rad}(K))$, by Lemma 3.15 so that $Q \in V^{*m}(K)$. Hence, $V^m(\text{Rad}(K/N)) \subseteq V^{*m}(K/N)$. The reverse inclusion is clear, and the proof is complete.

(b) Let $N_{\mathfrak{p}}$ a submodule of $M_{\mathfrak{p}}$ for some submodule N of M. By Lemma 3.15, it is enough to prove that $V^{*m}(N_{\mathfrak{p}}) = V^m(\operatorname{Rad}(N_{\mathfrak{p}}))$. It is clear that $V^{*m}(N_{\mathfrak{p}}) \subseteq V^m(\operatorname{Rad}(N_{\mathfrak{p}}))$. Conversely, assume that $W \in V^m(\operatorname{Rad}(N_{\mathfrak{p}}))$. Then, there exists $Q \in \operatorname{Max}_R(M)$ such that $W = Q_{\mathfrak{p}}$ and $(Q :_R M) = \mathfrak{p}$, by [5, Lemma 2.7]. It then follows that

$$(Q_{\mathfrak{p}}:_{R_{\mathfrak{p}}}M_{\mathfrak{p}}) \supseteq (\operatorname{Rad}(N_{\mathfrak{p}}):_{R_{\mathfrak{p}}}M_{\mathfrak{p}})$$
$$\supseteq ((\operatorname{Rad}(N))_{\mathfrak{p}}:_{R_{\mathfrak{p}}}M_{\mathfrak{p}})$$
$$\supseteq (\operatorname{Rad}(N):_{R}M)_{\mathfrak{p}}.$$

But $(Q_{\mathfrak{p}}:_{R_{\mathfrak{p}}} M_{\mathfrak{p}}) = (Q:_{R} M)_{\mathfrak{p}}$, by Remark 2.1 (c). Therefore, $Q \in V^{m}(\operatorname{Rad}(N))$, so that $Q \in V^{*m}(N)$, by Lemma 3.15. This implies that $W \in V^{*m}(N_{\mathfrak{p}})$. Hence the proof is complete.

Theorem 3.21. Let $(M_i)_{i \in I}$ be a family of *R*-modules and let $M = \bigoplus_{i \in I} M_i$. Suppose that there exists $t \in I$ such that M_t is simple and faithful. Then,

- (a) If M is Max-strongly top, then for every $j \in I$ with $j \neq t$, we have $Max_R(M_j) = \emptyset$;
- (b) If M is Max-injective and $(M_i)_{i \in I}$ is a family of X-injective modules, then M is Max strongly top if and only if $|\operatorname{Max}_R(M)| = 1$;
- (c) If M is X-injective, then M is Max strongly top if and only if $|\operatorname{Max}_R(M)| = 1;$
- (d) If M is X-injective and $\operatorname{Max}_R(M_t) = \{0\}$, then M is $\operatorname{Max}_{strongly}$ top if and only if for every $j \in I$ with $j \neq t$, $\operatorname{Max}_R(M_j) = \emptyset$.

Proof. (a) Let $j \in I$ with $j \neq t$. We will show that $\operatorname{Max}_R(M_j) = \emptyset$. Otherwise, choose $Q_j \in \operatorname{Max}_R(M_j)$. Set $M^j := \bigoplus_{j \neq i \in I} M_i$. Then, by Lemma 3.5, $K_j := Q_j \oplus M^j \in \operatorname{Max}_R(M)$. Clearly, $0 \in \operatorname{Max}_R(M_t)$ so that $K_t = 0 \oplus M^t \in \operatorname{Max}_R(M)$, by Lemma 3.5. Clearly, $(K_t : M) = 0$ and hence $K_j \in V^m(K_t)$. Now, by Lemma 3.15,

$$V^{*m}(K_t) = V^m(\operatorname{Rad}(K_t)) = V^m(K_t).$$

Therefore, $K_j \in V^{*m}(K_t)$ so that $K_j \supseteq K_t$. This implies that $Q_j \supseteq M_j$, a contradiction.

(b) (\Leftarrow) This is clear by Lemma 3.15. Conversely, by Theorem 3.8 (b),

$$\operatorname{Max}_{R}(M) = \{ Q_{j} \oplus (\bigoplus_{j \neq i \in I} M_{i}) | Q_{j} \in \operatorname{Max}_{R}(M_{j}), j \in I \}.$$

Now the result follows from part (a).

(c) and (d) Follows by Lemma 3.15, Theorem 3.8 (c), and part (a). \Box

We need the following simple lemma.

Lemma 3.22. Let M be an R-module and $\phi : Max_R(M) \to Max(\overline{R})$ be the natural map of $Max_R(M)$. Then, $\phi^{-1}(V^m(\overline{\mathfrak{I}})) = V^m(\mathfrak{I}M)$, for every ideal \mathfrak{I} of R containing Ann(M).

Proof. Straightforward.

An *R*-module *M* is said to be Max-surjective if either M = (0) or $M \neq (0)$ and the natural map of $\text{Max}_R(M)$ is surjective [1, Definition 3.1].

Theorem 3.23. Let M be Max-surjective, Max-injective, and a Maxstrongly top R-module. Then $(Max_R(M), \tau_M^m)$ and $(Max_R(M), \tau_M^{*m})$ are homeomorphic with $Max(\bar{R})$ with its topology induced by the Zariski topology of Spec (\bar{R}) . Proof. Let $\phi : \operatorname{Max}_R(M) \to \operatorname{Max}(R)$ be the natural map of $\operatorname{Max}_R(M)$. As M is a Max-surjective, a Max-injective module, ϕ is a bijective map. Now, let \mathfrak{I} be an ideal of R such that $\operatorname{Ann}_R(M) \subseteq \mathfrak{I}$. By Lemma 3.22 and [11, Result 3], we have

$$\phi^{-1}(V^m(\bar{\mathfrak{I}})) = V^m(\mathfrak{I}M) = \operatorname{Max}_R(M) \cap V(\mathfrak{I}M)$$
$$= \operatorname{Max}_R(M) \cap V^*(\mathfrak{I}M) = V^{*m}(\mathfrak{I}M).$$

So, $\phi : (\operatorname{Max}_R(M), \tau_M^{*m}) \to \operatorname{Max}(\overline{R})$ is continuous. Now, let N be a non-zero submodule of M. Then, by Lemma 3.22 and Lemma 3.15, we get

$$\phi^{-1}(V^m(\overline{(\operatorname{Rad}(N):M)})) = V^m((\operatorname{Rad}(N):M)M)$$
$$= V^m(\operatorname{Rad}(N)) = V^{*m}(N).$$

Since ϕ is surjective, then

$$\phi(V^{*m}(N)) = V^m(\overline{(\operatorname{Rad}(N):M)}).$$

Hence, $\phi : (\operatorname{Max}_R(M), \tau_M^{*m}) \to \operatorname{Max}(R)$ is a closed map. Therefore, $(\operatorname{Max}_R(M), \tau_M^{*m})$ is homeomorphic with $\operatorname{Max}(\bar{R})$. Now, since M is Max-strongly top, we have $\tau_M^m = \tau_M^{*m}$. Hence, $(\operatorname{Max}_R(M), \tau_M^m)$ is homeomorphic with $\operatorname{Max}(\bar{R})$, as required. \Box

Example 3.24. Let $M = \mathbb{Z}_2 \oplus \mathbb{Z}_3$. Then $(\operatorname{Max}_{\mathbb{Z}}(M), \tau_M^m)$ and $(\operatorname{Max}_{\mathbb{Z}}(M), \tau_M^{*m})$ are homeomorphic with $\operatorname{Max}(\mathbb{Z}/\operatorname{Ann}_{\mathbb{Z}}(M))$, by [3, Table of Example 3.1], Proposition 3.17 (a), and Theorem 3.23.

An *R*-module *M* is a *multiplication module* if for every submodule *N* of *M*, there exists an ideal \Im of *R* such that $N = \Im M$ [13, p. 91].

Corollary 3.25. Let M be a finitely generated multiplication R-module. Then $(Max_R(M), \tau_M^m)$ and $(Max_R(M), \tau_M^{*m})$ are homeomorphic to $Max(\bar{R})$.

Proof. M is both Max-surjective and Max-injective by [1, Example 3.2], [2, Proposition 3.3], and Proposition 3.2 (a). Now, the result follows by [4, Example 3.1 (a)] and Theorem 3.23 and the fact that every strongly top module is Max-strongly top.

Acknowledgments

The authors would like to thank the referee for the careful reading of the manuscript and valuable comments.

References

- 1. H. Ansari-Toroghy and R. Ovlyaee-Sarmazdeh, Modules for which the natural map of the maximal spectrum is surjective, *Colloq. Math.* **119** (2010), 217–227.
- H. Ansari-Toroghy and R. Ovlyaee-Sarmazdeh, On the prime spectrum of X-injective modules, Comm. Algebra. 38 (2010), 2606–2621.
- H. Ansari-Toroghy and R. Ovlyaee-Sarmazdeh, On the prime spectrum of a module and Zariski topologies, *Comm. Algebra.* 38 (2010), 4461–4475.
- H. Ansari-Toroghy and S. Keyvani, Strongly top modules, Bull. Malays. Math. Sci. Soc. 37(1) (2014), 73–82.
- A. Azizi, Intersection of prime submodules and dimension of modules, Acta Math. Sci. 25(3) (2005), 385–394.
- H. Bass, Finistic dimension and a homological generalization of semiprimary rings, Trans. Amer. Math. Soc. 95(3) (1960), 466–488.
- E. Y. Habeeb, On the space of maximal submodules, Thesis, College of Education for Girls, University of Kufa, 2009.
- C. P. Lu, Prime submodules of modules, Comment. Math. Univ. St. Pauli. 33(1) (1984), 61–69.
- 9. C. P. Lu, M-radicals of submodules in modules, *Math. Japonica.* **34**(2) (1989), 211–219.
- 10. C. P. Lu, Spectra of modules, Comm. Algebra. 23(10) (1995), 3741-3752.
- C. P. Lu, The zariski topology on the prime spectrum of a module, *Houston J. Math.* 25(3) (1999), 417–432.
- C. P. Lu, Saturations of submodules, Comm. Algebra. 31(6) (2003), 2655– 2673.
- R. L. McCasland, M. E. Moore and P. F. Smith, On the spectrum of a module over a commutative ring, *Comm. Algebra.* 25(1) (1997), 79–103.

Habibollah Ansari-Toroghy

Department of Pure Mathematics, Faculty of Mathematical Science, University of Guilan, P.O. Box 41335-19141, Rasht, Iran.

Email: ansari@guilan.ac.ir

Siamak Keyvani

Department of Mathematics, Bandar Anzali Branch, Islamic Azad University, Bandar Anzali, Iran.

Email: siamk_keyvani@guilan.ac.ir, keivani@iaubanz.ac.ir

Journal of Algebraic Systems

ON THE MAXIMAL SPECTRUM OF A MODULE

H. ANSARI-TOROGHY, AND S. KEYVANI

تحقیقی روی طیف ماکزیمال یک مدول

حبیب اله انصاری طرقی و سیامک کیوانی^۲ ۱گروه ریاضی محض، دانشکده علوم ریاضی، دانشگاه گیلان، رشت، ایران ۲گروه ریاضی، واحد بندر انزلی، دانشگاه آزاد اسلامی، بندر انزلی، ایران

فرض کنید R یک حلقه جابجایی با عنصرهای ناصفر و M یک R-مدول یکانی باشد. هدف از این مقاله معرفی و مطالعه پارهای از خواص اساسی دو رده از مدولها به نامهای Max-اِنژکتیو و Max-قویاً تاپ و تعمیم بعضی از خواص مدولهای X-انژکتیو و قویاً تاپ به این دو رده از مدولها و به دست آوردن برخی از نتایج مرتبط است.

كلمات كليدى: زيرمدول اول، زيرمدول ماكزيمال، مدول Max-اِنژكتيو، مدول Max-قوياً تاپ.