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ON THE MAXIMAL SPECTRUM OF A MODULE

H. ANSARI-TOROGHY∗, AND S. KEYVANI

Abstract. Let R be a commutative ring with identity. The pur-
pose of this paper is to introduce and study two classes of modules
over R, called Max-injective and Max-strongly top modules and
explore some of their basic properties. Our concern is to extend
some properties of X-injective and strongly top modules to these
classes of modules and obtain some related results.

1. Introduction

Throughout this paper, R is a commutative ring with non-zero iden-
tity and M is a unitary R-module. For any ideal I of R containing
AnnR(M), R̄ and Ī denote R/AnnR(M) and I/AnnR(M), respectively.
Further, N, Z and Q denote the set of positive integers, the ring of in-
tegers, and the field of rational numbers, respectively.

For M as an R-module and P , N its submodules, the colon ideal of
M into N is defined as (N : M) = {r ∈ R|rM ⊆ N} = AnnR(M/N).

A submodule P of M is said to be a prime submodule or p-prime
submodule if P ̸= M and for p = (P : M), whenever re ∈ P for r ∈ R
and e ∈ M , we have r ∈ p or e ∈ P . If Q is a maximal submodule of
M , then Q is a prime submodule and (Q : M) := m is a maximal ideal
of R. In this case, we say Q is an m-maximal submodule of M [8, p.
61].

The prime spectrum (or simply, the spectrum) of M is the set of all
prime submodules of M and denoted by SpecR(M) or X.
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The set of all maximal submodules of M is denoted by MaxR(M).
Moreover, if p ∈ Spec(R) (resp., m ∈ Max(R)), then Specp(M) (resp.,
Maxm(M)) is the set of all p-prime (resp., m-maximal) submodules of
M .

If SpecR(M) ̸= ∅ (resp., MaxR(M) ̸= ∅), the mapping ψ : SpecR(M)

→ Spec(R̄) (resp., ϕ : MaxR(M) → Max(R̄) such that ψ(P ) = (P : M)

(resp., ϕ(Q) = (Q : M)) for every P ∈SpecR(M) (resp., Q∈MaxR(M)),
is called the natural map of SpecR(M) (resp., MaxR(M)) [11, p. 417].
M is said to be X-injective if either X = ∅ or X ̸= ∅ and the natural

map of X is injective [2, Definition 3.2].
The Zariski topology onX = SpecR(M) is the topology τM described

by taking the set Z(M) = {V (N)|N is a submodule of M} as the set
of closed sets of X, where V (N) = {P ∈ X|(P : M) ⊇ (N : M)} [11,
p. 417].

The quasi-Zariski topology on X = SpecR(M) is described as follows:
put V ∗(N) = {P ∈ X|P ⊇ N} and Z∗(M) = {V ∗(N)|N is a sub-
module of M}. Then there exists a topology τ ∗M on X having Z∗(M)
as the set of closed subsets of X if and only if Z∗(M) is closed under
the finite union. When this is the case, τ ∗M is called the quasi-Zariski
topology on X and M is called a top R-module [13, p. 85].

There exists a topology on MaxR(M) having Zm(M) = {V m(N)|N
is a submodule of M} as the set of closed sets of MaxR(M), where
V m(N) = {Q ∈ MaxR(M)|(Q : M) ⊇ (N : M)}. We denote this
topology by τmM . In fact, this topology is the same as the subspace
topology induced by τM on MaxR(M).

The quasi-Zariski topology on MaxR(M) is described as follows: put
V ∗m(N) = {Q ∈ MaxR(M)|Q ⊇ N} and Z∗m(M) = {V ∗m(N)|N is
a submodule of M}. Then there exists a topology τ ∗mM on MaxR(M)
having Z∗m(M) as the set of closed subsets of MaxR(M) if and only
if Z∗m(M) is closed under the finite union. When this is the case,
τ ∗mM is called the quasi-Zariski topology on MaxR(M) and M is called
a Max-top (or M -top) R-module [7, Notation 1.1.7]. We recall that
when M is a top module, this topology is the same as the subspace
topology induced by τ ∗M on MaxR(M).

The present authors introduced the concept of strongly top modules
and investigated some important properties of this family of modules.
A top R-module M is called strongly top if τ ∗M = τM [4, Definition 3.1].

In this paper, we will introduce two classes of modules, called Max-
injective and Max-strongly top modules (see Definitions 3.1 and 3.12).
It is shown that the class of Max-injective (resp., Max-strongly top)
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modules contains the family of X-injective (resp., strongly top) mod-
ules properly (see Propositions 3.3 and 3.13).

2. Preliminaries

In this section, we review some properties of prime and maximal
submodules.

Remark 2.1. Let M be an R-module.

(a) Let K be a submodule of M such that (K : M) is a maximal
ideal of R. Then, K is a prime submodule of M [8, Proposition
2];

(b) If N is a maximal submodule of M , then N is a prime submod-
ule of M and (N : M) is a maximal ideal of R [8, Proposition
4];

(c) Let N be a prime submodule of M and S be a multiplicatively
closed subset of R. Then, S−1(N :R M) = (S−1N :S−1R S

−1M)
[10, Corollary 1].

Remark 2.2. [1, Proposition 3.3]. Let M be an R-module and p ∈
Max(R). Then every p-prime submodule of M is contained in some
p-maximal submodule of M .

Remark 2.3. [9, Lemma 2]. Let N and L be submodules of an R-
module M , and P a p-prime submodule of M such that N ∩L ⊆ P . If
(N : M) ̸⊆ p, then L ⊆ P .

Remark 2.4. [13, Lemma 1.6]. Let p be a prime ideal of R and let M be
an R-module. Let N be any submodule of M and let K ∈ Specp(M).
Then, K ∩N = N or K ∩N ∈ Specp(N).

3. Main results

Definition 3.1. Let M be an R-module. We say that M is a Max-
injective module if MaxR(M) = ∅ or MaxR(M) ̸= ∅ and the natural
map of MaxR(M) is injective.

Proposition 3.2.

(a) Every X-injective module is Max-injective;
(b) Q⊕Q is not Max-injective Q-module.

Proof. (a) This is clear by Remark 2.1 (b).
(b) 0 ⊕Q and Q⊕ 0 are maximal submodules of the Q-module Q⊕Q
with (0 ⊕Q : Q⊕Q) = (Q⊕ 0 : Q⊕Q), while 0 ⊕Q ̸= Q⊕ 0. □

The following proposition shows that the class of Max-injective mod-
ules contains X-injective modules properly.
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Proposition 3.3. In the following cases, the Z-module M is Max-
injective, while it is not X-injective.

(a) M = Q⊕Q;
(b) M = Q⊕

∏
i∈N Z/piZ, where {pi}i∈N are prime integers.

Proof. (a) See [3, Table of Example 3.1].
(b) It is not difficult to see that MaxZ(M) = {piM |i ∈ N} and

{0 ⊕ (
∏
i∈N

Z/piZ),Q⊕ (⊕i∈NZ/piZ)},

is a set of prime submodules of M . Hence, by the above arguments,
M is a Max-injective module. But M is not X-injective, because (0 ⊕
(
∏

i∈N Z/piZ) : M) = (Q⊕(⊕i∈NZ/piZ) : M), while 0⊕(
∏

i∈N Z/piZ) ̸=
Q⊕ (⊕i∈NZ/piZ). □

We recall that a topological space (X, τ) is a T0 space if for each pair
x, y ∈ X, there exists an open set U such that x ∈ U but y ̸∈ U .

Lemma 3.4. Let M be an R-module. Then the following are equiva-
lent:

(a) M is Max-injective;
(b) (MaxR(M), τmM) is a T0 space;
(c) For every P , Q ∈ MaxR(M), (P : M) = (Q : M) implies that

P = Q;
(d) |Maxp(M)| ≤ 1 for every p ∈ Max(R).

Proof. The proof is straightforward. □
Lemma 3.5. Let (Mi)i∈I be a family of R-modules and let p ∈ Max(R).
Set M = ⊕i∈IMi. Then for each Qj ∈ Maxp(Mj), we have Qj ⊕
(⊕j ̸=i∈IMi) ∈ Maxp(M).

Proof. It is enough to prove the lemma in the case that M = M1⊕M2.
So, let Q1 ∈ MaxR(M1). Then, M/Q1 ⊕M2 is isomorphic to M1/Q1 is
a simple R-module so that Q1⊕M2 is a maximal submodule of M . We
have similar argument for M1 ⊕ Q2, where Q2 ∈ MaxR(M2). Hence,
the proof is complete. □
Proposition 3.6. Let M be an R-module and let p ∈ Max(R). Then

(a) Every homomorphic image of Max-injective R-module is Max-
injective;

(b) If M is a finitely generated Max-injective module, then Mp is a
Max-injective Rp-module;

(c) Let M be a free R-module. Then M is Max-injective if and only
if M is cyclic.
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Proof. (a) This is straightforward by using the fact that if N is a sub-
module of M , then MaxR(M/N) = {Q/N : Q ∈ MaxR(M), Q ⊇ N}.
(b) Let W1 and W2 be maximal submodules of Mp and (W1 : Mp) =
(W2 : Mp). Then W1 ∩ M and W2 ∩ M are p-maximal submodules
of M , by [5, Lemma 2.7]. Hence by hypothesis, W1 ∩M = W2 ∩M .
Therefore, (W1 ∩M)p = (W2 ∩M)p. This means W1 = W2, as desired.
(c) (⇐) This follows from Proposition 3.2 (a). (⇒) Since M is a
free module, we have M = ⊕i∈IR. We claim that |I| = 1. Oth-
erwise if |I| > 1, then we can choose α, β ∈ I such that α ̸= β.
Suppose that m ∈ Max(R). Then, m ⊕ (⊕α ̸=i∈IR) ∈ Maxm(M) and
m⊕ (⊕β ̸=i∈IR) ∈ Maxm(M), by Lemma 3.5. Since M is Max-injective,
then m ⊕ (⊕α ̸=i∈IR) = m ⊕ (⊕β ̸=i∈IR), a contradiction. Hence, M is
cyclic, as desired. □

Definition 3.7. A family (Mi)i∈I of R-modules is said to be max-
compatible if for all i ̸= j in I, there does not exist a maximal ideal p
in R with Maxp(Mi) and Maxp(Mj) both non-empty.

Theorem 3.8. Let (Mi)i∈I be a family of R-modules and let M =
⊕i∈IMi. Assume that M is a Max-injective R-module. Then

(a) (Mi)i∈I is a family of max-compatible Max-injective modules;
(b) MaxR(M) = {Qj ⊕ (⊕j ̸=i∈IMi)|Qj ∈ MaxR(Mj), j ∈ I}.

Proof. (a) Let M = ⊕i∈IMi be a Max-injective R-module. Then for
each i ∈ I, Mi is Max-injective, by Proposition 3.6 (a). Now, let k, j ∈ I
with k ̸= j and p ∈ Max(R). We will prove that Maxp(Mk) = ∅ or
Maxp(Mj) = ∅. If both are non-empty, we can find Qk ∈ Maxp(Mk)
(resp., Qj ∈ Maxp(Mj)). Hence, Qk ⊕ (⊕k ̸=i∈IMi) ∈ Maxp(M) (resp.,
Qj ⊕ (⊕j ̸=i∈IMi) ∈ Maxp(M)), by Lemma 3.5. Since M is Max-
injective, it follows that Qk ⊕ (⊕k ̸=i∈IMi) = Qj ⊕ (⊕j ̸=i∈IMi), a con-
tradiction. (b) Let Q ∈ MaxR(M) so that (Q : M) = p for some
p ∈ Max(R). Since Q ̸= M , there exists j ∈ I such that Q∩Mj ̸= Mj.
Then we have Q ∩Mj ∈ Specp(Mj), by Remark 2.4. Hence, there ex-
ists W ∈ Maxp(Mj) such that Q ∩Mj ⊆ W , by Remark 2.2. Thus,
W⊕(⊕j ̸=i∈IMi) ∈ Maxp(M), by Lemma 3.5. Since M is Max-injective,
it follows that Q = W ⊕ (⊕j ̸=i∈IMi). Therefore,

MaxR(M) ⊆ {Qj ⊕ (⊕j ̸=i∈IMi)|Qj ∈ MaxR(Mj), j ∈ I}.

The reverse inclusion is obvious by Lemma 3.5, and we are done. □

A submodule N of an R-module M is semi-maximal if N is an in-
tersection of maximal submodules. Also, by Rad(N) we mean the
intersection of all maximal submodules of M containing N , and in case
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N is not contained in any maximal submodule, Rad(N) is defined to
be M .

We need the following proposition.

Proposition 3.9. Let M be an R-module. Then the following state-
ments are equivalent:

(a) M is Max-top;
(b) For every maximal submodule Q of M , whenever N and L are

semi-maximal submodules of M with N ∩ L ⊆ Q, then N ⊆ Q
or L ⊆ Q.

Proof. (a)⇒(b) Let Q ∈ MaxR(M) and also N , L be semi-maximal
submodules of M such that N ∩ L ⊆ Q. Since N and L are semi-
maximal submodules of M , we have N = ∩i∈Λ1Ni and L = ∩t∈Λ2Lt,
where Ni, Lt ∈ MaxR(M) for all i ∈ Λ1 and t ∈ Λ2. Since M is Max-
top, there exists submodule J of M such that V ∗m(N) ∪ V ∗m(L) =
V ∗m(J). It is easy to see that J ⊆ N∩L. Hence, V ∗m(N∩L) ⊆ V ∗m(J).
Now, we have

V ∗m(N) ∪ V ∗m(L) ⊆ V ∗m(N ∩ L) ⊆ V ∗m(J) ⊆ V ∗m(N) ∪ V ∗m(L).

Therefore, V ∗m(N ∩L) = V ∗m(N)∪ V ∗m(L). Now, N ∩L ⊆ Q implies
that Q ∈ V ∗m(N ∩L), so that Q ∈ V ∗m(N) or Q ∈ V ∗m(L). Therefore,
N ⊆ Q or L ⊆ Q, as required.

(b)⇒ (a) Let S and T be submodules of M . We will show that

V ∗m(S) ∪ V ∗m(T ) = V ∗m(Rad(S) ∩ Rad(T )).

Clearly, for every submoduleK ofM , we have V ∗m(K) = V ∗m(Rad(K)).
Hence,

V ∗m(S) ∪ V ∗m(T ) ⊆ V ∗m(Rad(S) ∩ Rad(T )).

To see the reverse inclusion, let P ∈ V ∗m(Rad(S) ∩ Rad(T )), so that
Rad(S) ∩ Rad(T ) ⊆ P . It then follows that Rad(S) ⊆ P or Rad(T ) ⊆
P , by hypothesis. In either case, we have P ∈ V ∗m(S) ∪ V ∗m(T ), and
the proof is complete. □

Remark 3.10. We recall that every top module is X-injective, by [2,
Proposition 3.3]. The following example shows that this property is
not true for Max-top and Max-injective modules, in general.

Example 3.11. Consider M = Z2 ⊕ Z2 as a Z2-module. Then, M is
Max-top but is not Max-injective. ( See [7, Example 1.1.16].)

Definition 3.12. Let M be a Max-top R-module. We say that M is
a Max-strongly top module if τ ∗mM = τmM .
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It is easy to check that every strongly top module is Max-strongly
top. The following proposition shows that this containment is proper
in general.

Proposition 3.13. Let M = Q ⊕ Q. Then M is a Max-strongly top
Z-module, while it is not strongly top.

Proof. This follows by [3, Table of Example 3.1] and the fact that every
strongly top module is a top module. □
Remark 3.14. Let (X, τ) be a topological space and Y ⊆ X. We write
(cl(Y ))(X,τ) to denote the topological closure of Y in (X, τ).

Lemma 3.15. Let M be an R-module. Then the following statements
are equivalent:

(a) M is an Max-strongly top module;
(b) For every submodule N of M , there exists submodule K of M

such that V ∗m(N) = V m(K);
(c) V ∗m(N) = V m(Rad(N)), for every submodule N of M .

Proof. (a) ⇔ (b) This follows from the fact that we have always τmM ⊆
τ ∗mM .

(a) ⇔ (c) Let M be an Max-strongly top R-module and N a sub-
module of M . By hypothesis, there exists submodule K of M such that
V ∗m(N) = V m(K). But, V m(K) is a closed subset of (MaxR(M), τmM),
hence

(cl(V m(K)))
(MaxR(M),τmM )

= V m(K).

On the other hand, it is well known that

(cl(V m(K)))
(MaxR(M),τmM )

= (cl(V m(K)))
(SpecR(M),τM )

∩ MaxR(M).

Now, by [11, Proposition 5.1], we have

(cl(V m(K)))
(MaxR(M),τmM )

= V (∩Q∈V m(K)Q) ∩ MaxR(M).

We claim that

V (∩Q∈V m(K)Q) ∩ MaxR(M) = V m(Rad(N)).

To see this, Let P ∈ V (∩Q∈V m(K)Q) ∩ MaxR(M). Then,

(P : M) ⊇ (∩Q∈V m(K)Q : M) ⊇ ∩Q∈V m(K)(Q : M) ⊇ (K : M).

Hence, P ∈ V m(K). But, V m(K) = V ∗m(N) ⊆ V m(Rad(N)). There-
fore,

V (∩Q∈V m(K)Q) ∩ MaxR(M) ⊆ V m(Rad(N)).

To see the reverse inclusion, let W ∈ V m(Rad(N)). Then, we have

(W : M) ⊇ (Rad(N) : M) ⊇ (∩Q∈V m(K)Q : M).
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This implies that, W ∈ V (∩Q∈V m(K)Q) ∩ MaxR(M) and

V m(Rad(N)) ⊆ V (∩Q∈V m(K)Q) ∩ MaxR(M).

By the above arguments, we have V ∗m(N) = V m(Rad(N)). The re-
verse implication follows from the fact that τmM ⊆ τ ∗mM . □
Remark 3.16. The ring R is a perfect ring if it is satisfies DCC condition
on principal ideals. Clearly, every Artinian ring is perfect. One can
easily see that if R is a perfect ring, then every prime ideal of R is a
maximal ideal. Furthermore, every perfect ring is a semilocal ring [6,
Theorem P or Example 3(6)].

Proposition 3.17. Let M be a Max-injective R-module. Then M is
Max-strongly top in the following cases:

(a) M is non-faithful and R is PID;
(b) |Max(R)| <∞;
(c) R is a perfect ring.

Proof. (a) Let N be a submodule of M . To prove M is Max-strongly
top module, it is enough to show that V ∗m(N) = V m(Rad(N)), by
Proposition 3.15. Clearly, V ∗m(N) ⊆ V m(Rad(N)). To see the reverse
inclusion, let

Λ = {W |W ∈ MaxR(M),W ⊇ N}.
Obviously, Λ is a finite set because R is PID and each W ∈ Λ is a
maximal submodule andM is non-faithful. Now, letQ ∈ V m(Rad(N)).
Then, Q ∈ MaxR(M) and we have

(Q : M) ⊇ (Rad(N) : M) ⊇ ∩W∈Λ(W : M).

This implies that (Q : M) = (K : M), for some K ∈ Λ. So, Q = K by
hypothesis. Therefore, Q ⊇ N so that Q ∈ V ∗m(N), as desired.

(b) and (c) We have similar argument as in part (a). □
Corollary 3.18. Let M be a Max-injective R-module. Then M is
Max-top in each case listed in Proposition 3.17.

Proposition 3.19. In the following, in each case, the R-module M is
Max-strongly top:

(a) M = Z(p) = S−1Z, where p is a prime integer, S = Z \ (p) and
R = Z;

(b) |Max(R)| < ∞ and for every Q ∈ MaxR(M), there exists p ∈
Max(R) such that Q = pM ;

(c) M = ⊕i∈IMi, where (Mi)i∈I is a family of prime compatible
X-injective R-modules and R is a perfect ring;

(d) M = ⊕λ∈ΛR/Iλ, where Λ is a finite index set and Iλ (λ ∈ Λ)
are comaximal ideals of R.
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Proof. (a) This follows from [3, Table of Example 3.1], Proposition 3.2
(a), and Proposition 3.17 (a).
(b) Follows from Proposition 3.17 (b).
(c) Follows from [2, Proposition 3.7 (c)], Proposition 3.2 (a), and Propo-
sition 3.17 (c).
(d) Follows from [13, Corollary 5.5], Theorem 3.8 (b), and Lemma
3.15. □

Proposition 3.20. Let M be an R-module and also p ∈ Max(R).
Then,

(a) Every homomorphic image of Max-strongly top R-module is
Max-strongly top;

(b) If M is a finitely generated Max-strongly top module, then Mp

is Max-strongly top Rp-module.

Proof. (a) Let M be a Max-strongly top R-module and N a submodule
of M . Let K/N be a submodule of M/N . By Lemma 3.15, it is
enough to prove that V m(Rad(K/N)) = V ∗m(K/N). To see this, let
L ∈ V m(Rad(K/N)). Then, L = Q/N , where N ⊆ Q ∈ MaxR(M).
This implies that

(Q/N : M/N) ⊇ (∩N⊆P∈V ∗m(K)P/N : M/N)

= ∩N⊆P∈V ∗m(K)(P/N : M/N).

Therefore, we have (Q : M) ⊇ (
∩

N⊆P∈V ∗m(K) P : M), by [12, Result

1]. It then follows that Q ∈ V m(Rad(K)). Since M is a Max-strongly
top R-module, we have V ∗m(K) = V m(Rad(K)), by Lemma 3.15 so
that Q ∈ V ∗m(K). Hence, V m(Rad(K/N)) ⊆ V ∗m(K/N). The reverse
inclusion is clear, and the proof is complete.

(b) Let Np a submodule of Mp for some submodule N of M . By
Lemma 3.15, it is enough to prove that V ∗m(Np) = V m(Rad(Np)).
It is clear that V ∗m(Np) ⊆ V m(Rad(Np)). Conversely, assume that
W ∈ V m(Rad(Np)). Then, there exists Q ∈ MaxR(M) such that
W = Qp and (Q :R M) = p, by [5, Lemma 2.7]. It then follows
that

(Qp :Rp Mp) ⊇ (Rad(Np) :Rp Mp)

⊇ ((Rad(N))p :Rp Mp)

⊇ (Rad(N) :R M)p.

But (Qp :Rp Mp) = (Q :R M)p, by Remark 2.1 (c). Therefore, Q ∈
V m(Rad(N)), so that Q ∈ V ∗m(N), by Lemma 3.15. This implies that
W ∈ V ∗m(Np). Hence the proof is complete. □
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Theorem 3.21. Let (Mi)i∈I be a family of R-modules and let M =
⊕i∈IMi. Suppose that there exists t ∈ I such that Mt is simple and
faithful. Then,

(a) If M is Max-strongly top, then for every j ∈ I with j ̸= t, we
haveMaxR(Mj) = ∅;

(b) If M is Max-injective and (Mi)i∈I is a family of X-injective
modules, thenM is Max strongly top if and only if |MaxR(M)|=
1;

(c) If M is X-injective, then M is Max strongly top if and only if
|MaxR(M)| = 1;

(d) If M is X-injective and MaxR(Mt) = {0}, then M is Max-
strongly top if and only if for every j ∈ I with j ̸= t, MaxR(Mj)=
∅.

Proof. (a) Let j ∈ I with j ̸= t. We will show that MaxR(Mj) = ∅.
Otherwise, choose Qj ∈ MaxR(Mj). Set M j := ⊕j ̸=i∈IMi. Then, by
Lemma 3.5, Kj := Qj ⊕M j ∈ MaxR(M). Clearly, 0 ∈ MaxR(Mt) so
that Kt = 0 ⊕M t ∈ MaxR(M), by Lemma 3.5. Clearly, (Kt : M) = 0
and hence Kj ∈ V m(Kt). Now, by Lemma 3.15,

V ∗m(Kt) = V m(Rad(Kt)) = V m(Kt).

Therefore, Kj ∈ V ∗m(Kt) so that Kj ⊇ Kt. This implies that Qj ⊇Mj,
a contradiction.
(b) (⇐) This is clear by Lemma 3.15. Conversely, by Theorem 3.8 (b),

MaxR(M) = {Qj ⊕ (⊕j ̸=i∈IMi)|Qj ∈ MaxR(Mj), j ∈ I}.
Now the result follows from part (a).
(c) and (d) Follows by Lemma 3.15, Theorem 3.8 (c), and part (a). □

We need the following simple lemma.

Lemma 3.22. Let M be an R-module and ϕ : MaxR(M) → Max(R̄)
be the natural map of MaxR(M). Then, ϕ−1(V m(Ī)) = V m(IM), for
every ideal I of R containing Ann(M).

Proof. Straightforward. □
An R-module M is said to be Max-surjective if either M = (0) or

M ̸= (0) and the natural map of MaxR(M) is surjective [1, Definition
3.1].

Theorem 3.23. Let M be Max-surjective, Max-injective, and a Max-
strongly top R-module. Then (MaxR(M), τmM) and (MaxR(M), τ ∗mM ) are
homeomorphic with Max(R̄) with its topology induced by the Zariski
topology of Spec(R̄).
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Proof. Let ϕ : MaxR(M) → Max(R̄) be the natural map of MaxR(M).
As M is a Max-surjective, a Max-injective module, ϕ is a bijective map.
Now, let I be an ideal of R such that AnnR(M) ⊆ I. By Lemma 3.22
and [11, Result 3],we have

ϕ−1(V m(Ī)) = V m(IM) = MaxR(M) ∩ V (IM)

= MaxR(M) ∩ V ∗(IM) = V ∗m(IM).

So, ϕ : (MaxR(M), τ ∗mM ) → Max(R̄) is continuous. Now, let N be a
non-zero submodule of M . Then, by Lemma 3.22 and Lemma 3.15, we
get

ϕ−1(V m((Rad(N) : M))) = V m((Rad(N) : M)M)

= V m(Rad(N)) = V ∗m(N).

Since ϕ is surjective, then

ϕ(V ∗m(N)) = V m((Rad(N) : M)).

Hence, ϕ : (MaxR(M), τ ∗mM ) → Max(R̄) is a closed map. Therefore,
(MaxR(M), τ ∗mM ) is homeomorphic with Max(R̄). Now, since M is
Max-strongly top, we have τmM = τ ∗mM . Hence, (MaxR(M), τmM) is home-
omorphic with Max(R̄), as required. □

Example 3.24. Let M = Z2 ⊕ Z3. Then (MaxZ(M), τmM) and (MaxZ(
M), τ ∗mM ) are homeomorphic with Max(Z/AnnZ(M)), by [3, Table of
Example 3.1], Proposition 3.17 (a), and Theorem 3.23.

An R-module M is a multiplication module if for every submodule
N of M , there exists an ideal I of R such that N = IM [13, p. 91].

Corollary 3.25. LetM be a finitely generated multiplication R-module.
Then (MaxR(M), τmM) and (MaxR(M), τ ∗mM ) are homeomorphic to Max(
R̄).

Proof. M is both Max-surjective and Max-injective by [1, Example 3.2],
[2, Proposition 3.3], and Proposition 3.2 (a). Now, the result follows by
[4, Example 3.1 (a)] and Theorem 3.23 and the fact that every strongly
top module is Max-strongly top. □
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مدول یک ماکزیمال طیف روی تحقیقی
کیوانی٢ سیامک و طرقی١ انصاری اله حبیب

ایران رشت، گیلان، دانشگاه ریاضی، علوم دانشکده محض، ریاضی گروه ١

ایران انزلی، بندر اسلامی، آزاد دانشگاه انزلی، بندر واحد ریاضی، گروه ٢

هدف باشد. یکانی R−مدول یک M و ناصفر عنصرهای با جابجایی حلقه یک R کنید فرض
و Max-انژکتیو نام های به مدول ها از رده دو اساسی خواص از پاره ای مطالعه و معرفی مقاله این از
مدول ها از رده دو این به تاپ قویاً و X-انژکتیو مدول های خواص از بعضی تعمیم و تاپ Max-قویاً

است. مرتبط نتایج از برخی آوردن دست به و

تاپ. Max-قویاً مدول Max-انژکتیو، مدول ماکزیمال، زیرمدول اول، زیرمدول کلیدی: کلمات
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