Volume 10 (2022-2023)
Volume 9 (2021-2022)
Volume 8 (2020-2021)
Volume 7 (2019-2020)
Volume 6 (2018-2019)
Volume 5 (2017-2018)
Volume 4 (2016-2017)
Volume 3 (2015-2016)
Volume 2 (2014-2015)
Volume 1 (2013-2014)
A NOTE ON RELATIVE GENERALIZED COHEN-MACAULAY MODULES

A. Ghanbari Doust

Volume 10, Issue 1 , September 2022, , Pages 69-78

http://dx.doi.org/10.22044/jas.2021.10593.1523

Abstract
  Let a be a proper ideal of a ring R. A finitely generated R-module M is said to be a-relative generalized Cohen-Macaulay if f_a (M)=cd(a ,M). In this note, we introduce a suitable notion of length of a module to characterize the above mentioned modules. Also certain syzygy modules over a relative Cohen-Macaulay ...  Read More

ANNIHILATOR OF LOCAL COHOMOLOGY MODULES UNDER THE RING EXTENSION R⊂R[X]

M. Seidali Samani; K. Bahmanpour

Volume 8, Issue 1 , September 2020, , Pages 95-102

http://dx.doi.org/10.22044/jas.2019.8232.1401

Abstract
  Let R be a commutative Noetherian ring, I an ideal of R and M a non-zero R-module. In this paper we calculate the extension of annihilator of localcohomology modules H^t_I(M), t≥0, under the ring extension R⊂R[X] (resp.R⊂R[[X]]). By using this extension we will present some of the faithfulness ...  Read More

UPPER BOUNDS FOR FINITENESS OF GENERALIZED LOCAL COHOMOLOGY MODULES

Moharram Aghapournahr

Volume 1, Issue 1 , September 2013, , Pages 1-9

http://dx.doi.org/10.22044/jas.2013.169

Abstract
  Let $R$ be a commutative Noetherian ring with non-zero identity and $a$ an ideal of $R$. Let $M$ be a finite $R$--moduleof finite projective dimension and $N$ an arbitrary finite $R$--module. We characterize the membership of the generalized local cohomology modules $H^{i}_{a}(M,N)$ in certain Serre ...  Read More