@article {
author = {Nikseresht, A. and Sharif, H.},
title = {ON COMULTIPLICATION AND R-MULTIPLICATION MODULES},
journal = {Journal of Algebraic Systems},
volume = {2},
number = {1},
pages = {1-19},
year = {2014},
publisher = {Shahrood University of Technology},
issn = {2345-5128},
eissn = {2345-511X},
doi = {10.22044/jas.2014.298},
abstract = {We state several conditions under which comultiplication and weak comultiplication modules are cyclic and study strong comultiplication modules and comultiplication rings. In particular, we will show that every faithful weak comultiplication module having a maximal submodule over a reduced ring with a finite indecomposable decomposition is cyclic. Also we show that if M is an strong comultiplication R-module, then R is semilocal and M is finitely cogenerated.Furthermore, we define an R-module M to be p-comultiplication, if every nontrivial submodule of M is the annihilator of some prime ideal of R containing the annihilator of M and give a characterization of all cyclic p-comultiplication modules. Moreover, we prove that every pcomultiplication module which is not cyclic, has no maximal submodule and its annihilator is not prime. Also we give an example of a module over a Dedekind domain which is not weak comultiplication, but all of whose localizations at prime ideals are comultiplication and hence serves as a counterexample to [10, Proposition 2.3] and [11, Proposition 2.4].},
keywords = {Comultiplication Module,r-Multiplication Module,p-Comultiplication Module},
url = {http://jas.shahroodut.ac.ir/article_298.html},
eprint = {http://jas.shahroodut.ac.ir/article_298_f888f28d2d7511ee49e8903f7599a544.pdf}
}
@article {
author = {Kamali Ardekani, L. and Davvaz, B.},
title = {DIFFERENTIAL MULTIPLICATIVE HYPERRINGS},
journal = {Journal of Algebraic Systems},
volume = {2},
number = {1},
pages = {21-35},
year = {2014},
publisher = {Shahrood University of Technology},
issn = {2345-5128},
eissn = {2345-511X},
doi = {10.22044/jas.2014.299},
abstract = {There are several kinds of hyperrings, for example, Krasnerhyperrings, multiplicative hyperring, general hyperrings and$H_v$-rings. In a multiplicative hyperring, the multiplication isa hyperoperation, while the addition is a binary operation. In this paper, the notion of derivation on multiplicative hyperrings is introduced and some related properties are investigated. {bf Keywords:} multiplicative hyperring, derivation, differential hyperring.},
keywords = {multiplicative hyperring,derivation,differential hyperring},
url = {http://jas.shahroodut.ac.ir/article_299.html},
eprint = {http://jas.shahroodut.ac.ir/article_299_420674ca212578f4903402930ff38459.pdf}
}
@article {
author = {Taherifar, A.},
title = {A CHARACTERIZATION OF BAER-IDEALS},
journal = {Journal of Algebraic Systems},
volume = {2},
number = {1},
pages = {37-51},
year = {2014},
publisher = {Shahrood University of Technology},
issn = {2345-5128},
eissn = {2345-511X},
doi = {10.22044/jas.2014.300},
abstract = {An ideal I of a ring R is called right Baer-ideal if there exists an idempotent e 2 R such that r(I) = eR. We know that R is quasi-Baer if every ideal of R is a right Baer-ideal, R is n-generalized right quasi-Baer if for each I E R the ideal In is right Baer-ideal, and R is right principaly quasi-Baer if every principal right ideal of R is a right Baer-ideal. Therefore the concept of Baer ideal is important. In this paper we investigate some properties of Baer-ideals and give a characterization of Baer-ideals in 2-by-2 generalized triangular matrix rings, full and upper triangular matrix rings, semiprime ring and ring of continuous functions. Finally, we find equivalent conditions for which the 2-by-2 generalized triangular matrix ring is right SA.},
keywords = {Quasi-Baer ring,Generalized right quasi-Baer,Semicentral idempotent,Spec(R),Extremally disconnected space},
url = {http://jas.shahroodut.ac.ir/article_300.html},
eprint = {http://jas.shahroodut.ac.ir/article_300_2e4cb45d9d8d73d64020a61a5b0b5a76.pdf}
}
@article {
author = {Mohammadzadeh, B.},
title = {APPROXIMATE IDENTITY IN CLOSED CODIMENSION ONE IDEALS OF SEMIGROUP ALGEBRAS},
journal = {Journal of Algebraic Systems},
volume = {2},
number = {1},
pages = {53-59},
year = {2014},
publisher = {Shahrood University of Technology},
issn = {2345-5128},
eissn = {2345-511X},
doi = {10.22044/jas.2014.301},
abstract = {Let S be a locally compact topological foundation semigroup with identity and Ma(S) be its semigroup algebra. In this paper, we give necessary and sufficient conditions to have a bounded approximate identity in closed codimension one ideals of the semigroup algebra $M_a(S)$ of a locally compact topological foundation semigroup with identity.},
keywords = {Approximate identity,codimension one ideal,foundation semigroup,semigroup algebras},
url = {http://jas.shahroodut.ac.ir/article_301.html},
eprint = {http://jas.shahroodut.ac.ir/article_301_7ee4ea8311e307d1890f997207da12dd.pdf}
}
@article {
author = {Amouzegar, T.},
title = {LIFTING MODULES WITH RESPECT TO A PRERADICAL},
journal = {Journal of Algebraic Systems},
volume = {2},
number = {1},
pages = {61-65},
year = {2014},
publisher = {Shahrood University of Technology},
issn = {2345-5128},
eissn = {2345-511X},
doi = {10.22044/jas.2014.302},
abstract = {Let $M$ be a right module over a ring $R$, $tau_M$ a preradical on $sigma[M]$, and $Ninsigma[M]$. In this note we show that if $N_1, N_2in sigma[M]$ are two $tau_M$-lifting modules such that $N_i$ is $N_j$-projective ($i,j=1,2$), then $N=N_1oplus N_2$ is $tau_M$-lifting. We investigate when homomorphic image of a $tau_M$-lifting module is $tau_M$-lifting.},
keywords = {preradical,hereditary,$tau_M$-lifting module},
url = {http://jas.shahroodut.ac.ir/article_302.html},
eprint = {http://jas.shahroodut.ac.ir/article_302_b20995498df3389eed9b24a2342bd647.pdf}
}
@article {
author = {Iranmanesh, M. and Solimani, F.},
title = {BEST APPROXIMATION IN QUASI TENSOR PRODUCT SPACE AND DIRECT SUM OF LATTICE NORMED SPACES},
journal = {Journal of Algebraic Systems},
volume = {2},
number = {1},
pages = {67-81},
year = {2014},
publisher = {Shahrood University of Technology},
issn = {2345-5128},
eissn = {2345-511X},
doi = {10.22044/jas.2014.303},
abstract = {We study the theory of best approximation in tensor product and the direct sum of some lattice normed spacesX_{i}. We introduce quasi tensor product space and discuss about the relation between tensor product space and thisnew space which we denote it by X boxtimes Y. We investigate best approximation in direct sum of lattice normed spaces by elements which are not necessarily downward or upward and we call them I_{m}-quasi downward or I_{m}-quasi upward.We show that these sets can be interpreted as downward or upward sets. The relation of these sets withdownward and upward subsets of the direct sum of lattice normed spaces X_{i} is discussed. This will be done by homomorphism functions. Finally, we introduce the best approximation of these sets.},
keywords = {Best approximation,proximinal set,downward set,tensor product,quasi tensor product},
url = {http://jas.shahroodut.ac.ir/article_303.html},
eprint = {http://jas.shahroodut.ac.ir/article_303_47a2d4b1a718f29bd44bf701d6db4309.pdf}
}