2020-06-04T12:35:24Z http://jas.shahroodut.ac.ir/?_action=export&rf=summon&issue=75
2015-06-01 10.22044
Journal of Algebraic Systems JAS 2345-5128 2345-5128 2015 3 1 THE CONCEPT OF (I; J)-COHEN MACAULAY MODULES M. Aghapournahr Kh. Ahmadi-amoli M. Sadeghi ‎We introduce a generalization of the notion of‎ depth of an ideal on a module by applying the concept of‎ local cohomology modules with respect to a pair‎ ‎of ideals‎. <br />‎We also introduce the concept of \$(I,J)\$-Cohen--Macaulay modules as a generalization of concept of Cohen--Macaulay modules‎. ‎These kind of modules are different from Cohen--Macaulay modules‎, as an example shows‎. ‎Also an artinian result for such modules is given‎. local cohomology modules defined by a pair of ideals system of ideals depth of a pair of ideals \$(I J)\$-Cohen--Macaulay modules 2015 06 01 1 10 http://jas.shahroodut.ac.ir/article_482_3406cd1fa845d38b77f2556344be6005.pdf
2015-06-01 10.22044
Journal of Algebraic Systems JAS 2345-5128 2345-5128 2015 3 1 AN INTEGRAL DEPENDENCE IN MODULES OVER COMMUTATIVE RINGS S. Karimzadeh R. Nekooei In this paper, we give a generalization of the integral dependence from rings to modules. We study the stability of the integral closure with respect to various module theoretic constructions. Moreover, we introduce the notion of integral extension of a module and prove the Lying over, Going up and Going down theorems for modules. Prime submodule Integral element Integrally closed 2015 06 01 11 22 http://jas.shahroodut.ac.ir/article_483_975f783e6699718e23896ed95ef10f18.pdf
2015-06-01 10.22044
Journal of Algebraic Systems JAS 2345-5128 2345-5128 2015 3 1 GENERALIZED PRINCIPAL IDEAL THEOREM FOR MODULES A.R. Naghipour The Generalized Principal Ideal Theorem is one of the cornerstones of dimension theory for Noetherian rings. For an R-module M, we identify certain submodules of M that play a role analogous to that of prime ideals in the ring R. Using this <br />definition, we extend the Generalized Principal Ideal Theorem to modules. Generalized Principal Ideal Theorem Prime submodule Completely prime submodule 2015 06 01 23 30 http://jas.shahroodut.ac.ir/article_484_b8aa3a43cefa546233e3447390d3917d.pdf
2015-06-01 10.22044
Journal of Algebraic Systems JAS 2345-5128 2345-5128 2015 3 1 GENERALIZED JOINT HIGHER-RANK NUMERICAL RANGE H. R. Afshin S. Bagheri M. A. Mehrjoofard The rank-k numerical range has a close connection to the construction of quantum error correction code for a noisy quantum channel. For noisy quantum channel, a quantum error correcting code of dimension k exists if and only if the associated joint rank-k numerical range is non-empty. In this paper the notion of joint rank-k numerical range is generalized and some statements of [2011, Generalized numerical ranges and quantum error correction, J. Operator Theory, 66: 2, 335-351.] are extended. generalized projector joint higher rank numerical range joint matrix numerical range joint matrix higher rank numerical range generalized joint higher rank numerical range 2015 06 01 31 38 http://jas.shahroodut.ac.ir/article_486_30a2c8fdb2eec77f2ced44e835d901de.pdf
2015-06-01 10.22044
Journal of Algebraic Systems JAS 2345-5128 2345-5128 2015 3 1 ANNIHILATING SUBMODULE GRAPHS FOR MODULES OVER COMMUTATIVE RINGS M. Baziar In this article, we give several generalizations of the concept of annihilating ideal graph over a commutative ring with identity to modules. We<br />observe that over a commutative ring \$R\$, \$Bbb{AG}_*(_RM)\$ is<br />connected and diam\$Bbb{AG}_*(_RM)leq 3\$. Moreover, if \$Bbb{AG}_*(_RM)\$ contains a cycle, then \$mbox{gr}Bbb{AG}_*(_RM)leq 4\$. Also for an \$R\$-module \$M\$ with<br />\$Bbb{A}_*(M)neq S(M)setminus {0}\$, \$Bbb{A}_*(M)=emptyset\$<br />if and only if \$M\$ is a uniform module and ann\$(M)\$ is a prime<br />ideal of \$R\$. zero-divisor graph Annihilating submodule graph Weakly annihilating submodule 2015 06 01 39 47 http://jas.shahroodut.ac.ir/article_487_8c19ee23c3f1660ea1bf09bce9b1e051.pdf
2015-06-01 10.22044
Journal of Algebraic Systems JAS 2345-5128 2345-5128 2015 3 1 HvMV-ALGEBRAS II M. Bakhshi In this paper, we continue our study on HvMV-algebras. The quotient structure of an HvMV-algebra by a suitable types of congruences is studied and some properties and related results are given. Some homomorphism theorems are given, as well. Also, the fundamental HvMV-algebra and the direct product of a family of HvMV-algebras are investigated and some related results are obtained. MV-algebra HvMV-algebra HvMV-ideal fundamental MV-algebra 2015 06 01 49 64 http://jas.shahroodut.ac.ir/article_488_e0ce643e38d53b19a931c7ee7e0298a6.pdf
2015-06-01 10.22044
Journal of Algebraic Systems JAS 2345-5128 2345-5128 2015 3 1 FUZZY NEXUS OVER AN ORDINAL A. A. Estaji T. Haghdadi J. Farokhi Ostad ‎‎In this paper‎, ‎we define fuzzy subnexuses over a nexus \$N\$‎. <br />‎Define and study the notions of the prime fuzzy subnexuses and the fractions‎<br />‎induced by them‎.<br /> ‎Finally‎, ‎we show that if S is a meet‎<br />‎closed subset of the set Fsub(N), ‎of fuzzy subnexuses of a nexus N‎, ‎and‎<br />‎h= ⋀S ϵ S, ‎then the fractions S^-1 N and h^-1 N are isomorphic as meet-semilattices‎. ‎Nexus‎ ‎ordinal‎ ‎Prime fuzzy subnexus‎ ‎Fraction‎ ‎of a nexus‎ 2015 06 01 65 82 http://jas.shahroodut.ac.ir/article_489_a9a4ba1f624488e61c5e37175e928284.pdf
2015-06-01 10.22044
Journal of Algebraic Systems JAS 2345-5128 2345-5128 2015 3 1 COMPUTING THE PRODUCTS OF CONJUGACY CLASSES FOR SPECIFIC FINITE GROUPS M. Jalali A. R. Ashrafi Suppose \$G\$ is a finite group, \$A\$ and \$B\$ are conjugacy classes of \$G\$ and \$eta(AB)\$ denotes the number of conjugacy classes contained in \$AB\$. The set of all \$eta(AB)\$ such that \$A, B\$ run over conjugacy classes of \$G\$ is denoted by \$eta(G)\$.<br />The aim of this paper is to compute \$eta(G)\$, \$G in { D_{2n}, T_{4n}, U_{6n}, V_{8n}, SD_{8n}}\$ or \$G\$ is a decomposable group of order \$2pq\$, a group of order \$4p\$ or \$p^3\$, where \$p\$ and \$q\$ are primes. Conjugacy class normal subset \$p-\$group 2015 06 01 88 95 http://jas.shahroodut.ac.ir/article_490_ad72cc6d7ccfdda1a417ad5e72b51945.pdf