• Home
  • Browse
    • Current Issue
    • By Issue
    • By Author
    • By Subject
    • Author Index
    • Keyword Index
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Editorial Staff
    • Publication Ethics
    • Indexing and Abstracting
    • Related Links
    • FAQ
    • Peer Review Process
    • News
  • Guide for Authors
  • Submit Manuscript
  • Reviewers
  • Contact Us
 
  • Login
  • Register
Home Articles List Article Information
  • Save Records
  • |
  • Printable Version
  • |
  • Recommend
  • |
  • How to cite Export to
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • Share Share
    CiteULike Mendeley Facebook Google LinkedIn Twitter Telegram
Journal of Algebraic Systems
Articles in Press
Current Issue
Journal Archive
Volume Volume 6 (2018-2019)
Volume Volume 5 (2017-2018)
Issue Issue 2
Issue Issue 1
Volume Volume 4 (2016-2017)
Volume Volume 3 (2015-2016)
Volume Volume 2 (2014-2015)
Volume Volume 1 (2013-2014)
Estaji, A., Karimi Feizabadi, A., Abedi, M. (2018). INTERSECTION OF ESSENTIAL IDEALS IN THE RING OF REAL-VALUED CONTINUOUS FUNCTIONS ON A FRAME. Journal of Algebraic Systems, 5(2), 149-161. doi: 10.22044/jas.2017.5302.1272
A. A. Estaji; A. Gh. Karimi Feizabadi; M. Abedi. "INTERSECTION OF ESSENTIAL IDEALS IN THE RING OF REAL-VALUED CONTINUOUS FUNCTIONS ON A FRAME". Journal of Algebraic Systems, 5, 2, 2018, 149-161. doi: 10.22044/jas.2017.5302.1272
Estaji, A., Karimi Feizabadi, A., Abedi, M. (2018). 'INTERSECTION OF ESSENTIAL IDEALS IN THE RING OF REAL-VALUED CONTINUOUS FUNCTIONS ON A FRAME', Journal of Algebraic Systems, 5(2), pp. 149-161. doi: 10.22044/jas.2017.5302.1272
Estaji, A., Karimi Feizabadi, A., Abedi, M. INTERSECTION OF ESSENTIAL IDEALS IN THE RING OF REAL-VALUED CONTINUOUS FUNCTIONS ON A FRAME. Journal of Algebraic Systems, 2018; 5(2): 149-161. doi: 10.22044/jas.2017.5302.1272

INTERSECTION OF ESSENTIAL IDEALS IN THE RING OF REAL-VALUED CONTINUOUS FUNCTIONS ON A FRAME

Article 6, Volume 5, Issue 2, Winter and Spring 2018, Page 149-161  XML PDF (211 K)
Document Type: Original Manuscript
DOI: 10.22044/jas.2017.5302.1272
Authors
A. A. Estaji1; A. Gh. Karimi Feizabadi2; M. Abedi 3
1Faculty of Mathematics and Computer Sciences, Hakim Sabzevari University, Sabze- var, Iran.
2Department of Mathematics, Gorgan Branch, Islamic Azad University, Gorgan,
3Esfarayen University of Technology, Esfarayen, Iran.
Abstract
A frame $L$ is called {\it coz-dense} if $\Sigma_{coz(\alpha)}=\emptyset$ implies $\alpha=\mathbf 0$. Let $\mathcal RL$ be the ring of real-valued continuous functions on a coz-dense and completely regular frame $L$. We present a description of the socle of the ring $\mathcal RL$ based on minimal ideals of $\mathcal RL$ and zero sets in pointfree topology. We show that socle of $\mathcal RL$ is an essential ideal in $\mathcal RL$ if and only if the set of isolated points of $ \Sigma L$ is dense in $ \Sigma L$ if and only if the intersection of any family of essential ideals is essential in $\mathcal RL$. Besides, the counterpart of some results in the ring $C(X)$ is studied for the ring $\mathcal RL$. For example, an ideal $E$ of $\mathcal RL$ is an essential ideal if and only if $\bigcap Z[E]$ is a nowhere dense subset of $\Sigma L.$
Keywords
Frame; essential ideal; socle; zero sets in pointfree topology; ring of real-valued continuous functions on a frame
Statistics
Article View: 274
PDF Download: 297
Home | Glossary | News | Aims and Scope | Sitemap
Top Top

web site stat


Creative Commons License
JAS is licensed under a Creative Commons Attribution 4.0 International License.

Journal Management System. Designed by sinaweb.