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THE LATTICE OF CONGRUENCES ON A TERNARY
SEMIGROUP

N. ASHRAFI∗ AND Z. YAZDANMEHR

Abstract. In this paper, we investigate some properties of con-
gruences on ternary semigroups. We also define the notion of con-
gruence on a ternary semigroup generated by a relation and we
determine the method of obtaining a congruence on a ternary semi-
group T from a relation R on T . Furthermore, we study the lattice
of congruences on a ternary semigroup and we show that this lat-
tice is not generally modular, it is not even semimodular. Then,
we indicate some conditions under which this lattice is modular.

1. Introduction

The theory of ternary algebraic systems was introduced by D. H.
Lehmer [5] in 1932, but before that such structures were studied by
E. Kanser [3], who gave the idea of n-ary algebras. Lehmer [5] studied
certain ternary algebraic systems called triplexes, commutative ternary
groups in fact. Ternary structures and their generalization, the so
called n-ary structures, are outstanding for their application in physics.
The notion of ternary semigroup was known for the first time by S.
Banach. By bringing an example, he showed that a ternary semigroup
does not necessarily reduce to an ordinary semigroup (T = {−i, i} is
a ternary semigroup under the multiplication over complex numbers
while T is not an ordinary semigroup under complex number multipli-
cation). J. Los [6], studied some properties of ternary semigroups and
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he proved that every ternary semigroup can be embedded in an ordi-
nary semigroup. The notion of congruence was first introduced by Karl
Fredrich Gauss in the beginning of the nineteenth century. Congru-
ences are a special type of equivalence relations which play a vital role
in the study of quotient structures of different algebraic structures. In
1997, V. N. Dixit and S. Dewan [1], represented the concept of congru-
ences on a ternary semigroups and they studied some interesting prop-
erties of them. In 2007, S. Kar and B. K. Maity [4], introduced some
concepts such as cancelative congruences, group congruences and Rees
congruences. They also investigated these congruences in ternary semi-
groups. In this paper, we define the notion of congruence on a ternary
semigroup generated by a relation and we determine the method of
obtaining a congruence on a ternary semigroup T from a relation R
on T , when ternary semigroup T admits an element 1 as an identity.
Making of congruences is important because we can gain new ternary
semigroups (in fact quotiont semigroups) from them. We also study
some properties of congruences on ternary semigroups. Moreover, we
study the lattice of congruences on a ternary semigroup. By giving an
example, we show that this lattice is not generally modular, it is not
even semimodular. However, if every element of a ternary semigroup T
is invertible, then the lattice of congruences on T is a modular lattice.
We start with some elemantary notions that we need them in the next
sections.

Definition 1.1. A non-empty set T is called a ternary semigroup if
there exists a ternary operation T × T × T → T , written as (a, b, c) →
abc satisfying the following statement:

(abc)de = a(bcd)e = ab(cde) for all a, b, c, d, e ∈ T.

Remark 1.2. Let T be a ternary semigroup, m,n ∈ N (m ≤ n) and
x1, x2, . . . , x2n+1 ∈ T . Then we can write

(x1x2...x2n+1) = (x1...((xmxm+1xm+2)xm+3xm+4)...x2n+1)

Example 1.3. Let Z−
0 be the set of non-positive integers. Then to-

gether with usual ternary multiplication of integers, Z−
0 forms a ternary

semigroup.

Remark 1.4. Let S be an ordinary semigroup under the binary opera-
tion (a, b) 7→ a∗b. Then S with the ternary operation (a, b, c) 7→ (a∗b)∗c
is a ternary semigroup, while a ternary semigroup does not necessarily
reduce to an ordinary semigroup.
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Definition 1.5. An element e of a ternary semigroup T is called;
(i) a left identity (left unital element) if eex = x for all x ∈ T ;
(ii) a right identity (right unital element) if xee = x for all x ∈ T ;
(iii) a lateral identity (lateral unital element) if exe = x for all x ∈ T ;
(iv) a two-sided identity (bi-unital element) if eex = xee = x for all
x ∈ T ;
(v) an identity (unital element) if eex = exe = xee = x for all x ∈ T .

Remark 1.6. There is no need any ternary semigroup to have unique
identity. For example, the set of all integers Z, with usual ternary
multiplication of integers is a ternary semigroup and both of 1 and -1
are identity elements of Z.

Definition 1.7. A ternary semigroup T is called a ternary monoid if
it has an identity.

Definition 1.8. An element a of a ternary semigroup T is said to be
invertible in T if there exists an element b in T such that abx = bax =
xab = xba = x, for all x ∈ T .

Definition 1.9. Let X be a set. Then every subset ρ of the cartesian
product X ×X is called a (binary) relation on X. We denote the set
of all binary relations on X by BX and we define the binary operation
o on BX by the rule that, for all ρ, σ ∈ BX ,

ρoσ = {(x, y) ∈ X ×X | (x, z) ∈ ρ and (z, y) ∈ σ for some z ∈ X}.

It is clear that (BX , o) is a ternary semigroup.

Definition 1.10. For every ρ ∈ BX , we denote ρoρ by ρ2, ρoρoρ by
ρ3, etc. We also denote the set {(x, y) ∈ X × X | (y, x) ∈ ρ} by
ρ−1. Also, let R be a relation on X. Then, the smallest equivalence
on X containing R (the intersection of all equivalence relations on X
containing R) is called the equivalence relation on X generated by R
and it is denoted by Re. Moreover, if R is a reflexive relation on X
then we denote ∪n≥1R

n by R∞, and we call it the transitive closure of
the relation R.

Proposition 1.11. For every relation R on a set X, we have Re =
(R ∪R−1 ∪ 1X)

∞.

Proof. See [2, Proposition 1.4.9]. �
Corollary 1.12. Let R be a relation on a set X. Then (x, y) ∈ Re

if and only if either x = y or for some n ∈ N, there is a sequence
x = z1, z2, . . . , zn−1, zn = y of elements of T such that, for each i ∈
{1, 2, . . . , n− 1}, either (zi, zi+1) ∈ R or (zi+1, zi) ∈ R.
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We denote by E(X), the set of all equivalence relations on set X.
By [2, Section 5] we can see that (E(X),⊆,∩,∪e) is a complete lattice,
for every set X.

2. Congruence on a ternary semigroup generated by a
relation

In this section, we investigate some properties of congruences on
ternary semigroups. Furthermore we try to obtain a congruence on a
ternary semigroup T from a relation R on T , when semigroup T admits
an identity.

Definition 2.1. A relation ρ on a ternary semigroup T is said to be,
(i) a left compatible relation if for every a, b ∈ T , aρb implies at1t2ρbt1t2
for all t1, t2 ∈ T ;
(ii) a right compatible relation if for every a, b ∈ T , aρb implies t1t2aρt1t2b
for all t1, t2 ∈ T ;
(iii) a lateral compatible relation if for every a, b ∈ T , aρb implies
t1at2 ρ t1bt2 for all t1, t2 ∈ T ;
(iv) a compatible relation if for all a, b, c, a′, b′, c′ ∈ T , aρa′, bρb′, cρc′

imply abc ρ a′b′c′.

We note that a compatible relation on a ternary semigroup may not
be a left (right, lateral) compatible relation.

Example 2.2. Let T = {a, b, c, d}. Define a ternary operation [ ] on
T as [abc] = a ·b ·c, where · is the binary operation defined as following:

· a b c d
a a a a a
b a a a b
c a a a a
d a a c d

Then (T, [ ]) is a ternary semigroup. Consider the relation ρ = {(a, d)}
on T . Then ρ is compatible, since an = a and dn = d for every n, but
ρ is not a left (right, lateral) compatible relation, because (bda, bdd) =
(a, b) /∈ ρ ((adc, ddc) = (a, c) /∈ ρ, (bad, bdd) = (a, b) /∈ ρ).

Example 2.3. Let T be a set such that |T | > 3 and let 0 be a fixed
element of T . Then, T with the ternary operation defined by

xyz =

{
x if x = y = z
0 otherwise

,
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is a ternary semigroup. Suppose that 0 ̸= x ∈ T and consider relation
ρ = {(x, x)}. Then, ρ is a compatible relation on T , but ρ is not a left
(right, lateral) compatible relation.

In the following example, we will see that a left, right and lateral
compatible relation on a ternary semigroup may not be compatible.

Example 2.4. Let A = {1, 2} and T = A × A. Then, under ternary
operation (x1, x2)(y1, y2)(z1, z2) = (x1, z2), T is a ternary semigroup.
Consider the relation R = 1T ∪ {(x, y), (x, z), (y, t), (z, t)} where x =
(1, 1), y = (1, 2), z = (2, 1) and t = (2, 2). It is easy to see that R is
left, right and lateral compatible, while it is not a compatible relation,
because xR z and xR y but (x, t) = (xxx, zzy) /∈ R

Due to the previous examples, a compatible relation on a ternary
semigroup T is not generally left (right, lateral) compatible and a left,
right and lateral compatible relation on a ternary semigroup may not
be a compatible. However, we have the following proposition.

Proposition 2.5. Let S be a ternary semigroup and let R,C l, Cm, Cr, C
and T denote respectively, the set of reflexive, left compatible, lateral
compatible, right compatible, compatible and transitive relation on S.
Then, we have:
(1) C ∩R ⊆ (C l ∩ Cm ∩ Cr) ∩R.
(2) (C l ∩ Cm ∩ Cr) ∩ T ⊆ C ∩ T .
Proof. (1) Let ρ ∈ C∩R. Then, ρ is a reflexive and compatible relation
on S. Suppose that aρb and s, t ∈ S are arbitrary elements. Then, by
reflexivity, sρs and tρt and hence staρstb, astρbst and satρsbt. Thus,
ρ is a left, right and lateral compatible relation on S. Consequently,
ρ ∈ (C l ∩ Cm ∩ Cr) ∩R.

(2) Let ρ ∈ (C l ∩Cm ∩Cr)∩ T . Then, ρ is a left, right and lateral
compatible relation on S and ρ is transitive. Suppose that aρa′, bρb′

and cρc′. Then, abc ρ a′bc, a′bc ρ a′b′c and a′b′c ρ a′b′c′. This implies
abc ρ a′b′c′. Thus, ρ is compatible. Consequently, ρ ∈ C ∩ T . �
Corollary 2.6. Let S be a ternary semigroup and let R,C l, Cm, Cr, C
and T denote respectively, the set of reflexive, left compatible, lateral
compatible, right compatible, compatible and transitive relation on S.
Then, C ∩ (R ∩ T ) = (C l ∩ Cm ∩ Cr) ∩ (R ∩ T ) i.e., a reflexive and
transitive relation on S is compatible if and only if it is left, right and
lateral compatible.

Proposition 2.7. Let T be a ternary semigroup with an identity ele-
ment e. Then every left and right compatible relation on T is a lateral
compatible relation on T .
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Proof. Let ρ be a left and right compatible relation on T and sup-
pose that (a, b) ∈ ρ and s, t ∈ T are arbitrary elements. Then,
(esa, esb) ∈ ρ. Hence, ((esa)te, (esb)te) ∈ ρ. Therefore, (sat, sbt) =
(e(sat)e, e(sbt)e) ∈ ρ. Consequently, ρ is lateral compatible. �
Proposition 2.8. Let R be a left (right, lateral) compatible relation on
a ternary semigroup T . Then, Rn is a left (right, lateral) compatible
relation on T for every n ≥ 1.

Proof. Let R be left compatible and let (a, b) ∈ Rn. Then, there exist
c1, c2, . . . , cn−1 ∈ T such that (a, c1), (c1, c2), . . . , (cn−1, b) ∈ R. Since R
is left compatible, it follows that

(sta, stc1), (stc1, stc2), . . . , (stcn−1, stb) ∈ R,

for every s, t ∈ T . Hence, (sta, stb) ∈ Rn for every s, t ∈ T . Conse-
quently, Rn is left compatible. We have a similar proof when R is right
or lateral compatible. �
Definition 2.9. An equivalence relation ρ on a ternary semigroup T is
said to be a right (left, lateral) congruence if it is a right (left, lateral)
compatible relation. Furthermore, a compatible equivalence relation ρ
on a ternary semigroup T is called a congruence on T .

Proposition 2.10. An equivalence relation ρ on a ternary semigroup
T is congruence if and only if it is left, right and lateral congruence.

Proof. By attention to Corollary 2.6, the result follows. �
Proposition 2.11. Let ρ1 and ρ2 be two left (right, lateral) congru-
ences on a ternary semigroup T . Then, ρ1oρ2 is a left (right, lateral)
congruence on T .

Proof. See [4, Proposition 3.8]. �
Corollary 2.12. Let ρ1 and ρ2 be two congruences on a ternary semi-
group T . Then ρ1oρ2 is a congruence on T .

Proposition 2.13. The non-empty intersection of any family of con-
gruences on a ternary semigroup T is a congruence on T .

Proof. See [4, Proposition 3.11]. �
Notice that if T is an ordinary semigroup and ρ is congruence on T ,

then ρ is congruence on the ternary semigroup T with ternary opera-
tion, defined by the binary operation of semigroup T .

Proposition 2.14. Let T be a ternary semigroup whose elements are
invertible. Then, ρoσ = σoρ for any two congruences ρ and σ on T .
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Proof. Suppose that (a, b) ∈ ρoσ. Then, there exists c ∈ T such that
(a, c) ∈ ρ and (c, b) ∈ σ. Since c is invertible, then there exists c′ ∈ T
such that cc′x = c′cx = xcc′ = xc′c = x for all x ∈ T . On the
other hand, ρ and σ are congruences on T . Thus, (ac′b, cc′b) ∈ ρ and
(ac′c, ac′b) ∈ σ. Hence, (ac′b, b) ∈ ρ and (a, ac′b) ∈ σ. Consequently,
(a, b) ∈ σoρ and therefore ρoσ ⊆ σoρ. Similarly, we can show that
σoρ ⊆ ρoσ, by interchanging the roles of ρ and σ. �
Definition 2.15. A ternary monoid T is called a ternary group if for
every a, b, c ∈ T , the equation abx = c, axb = c and xab = c have
solutions in T .

Proposition 2.16. A ternary monoid T is a ternary group if and only
if every element of T is invertible.

Proof. Let T be a ternary group and e is an identity of T and let a ∈ T
be an arbitrary element. Then, there exists b ∈ T such that abe = e.
Now, suppose that x ∈ T . Then, we have abx = a(bee)x = (abe)ex =
eex = x and xab = xa(bee) = x(abe)e = xee = x. Moreover, there
exist c, d ∈ T such that bec = x and dea = x. Now, we have bax =
ba(bec) = b(abe)c = bec = x and xba = (dea)ba = d(eab)a = dea = x.
Therefore, a is invertible.
Conversely, suppose that every element of T is invertible and let a, b, c ∈
T . Then, since a and b are invertible, so there exist a′, b′ ∈ T such
that for every x ∈ T , aa′x = a′ax = xaa′ = xa′a = x and bb′x =
b′bx = xbb′ = xb′b = x. Hence, ab(b′a′c) = (abb′)a′c = aa′c = c,
(cb′a′)ab = cb′(a′ab) = cb′b = c and a(a′cb′)b = (aa′c)b′b = cb′b = c.
Consequently, T is a ternary group. �
Corollary 2.17. Let T be a ternary group. Then, ρoσ = σoρ for any
two congruences ρ and σ on T .

Definition 2.18. Let R be a relation on a ternary semigroup T . Then,
the smallest congruence on T containing R (the intersection of all con-
gruences on T containing R) is called the congruence generated by R
and it is denoted by R#.

For making a congruence on a ternary semigroup T from a relation
R on T , we need to adjoin an extra element 1 to T as identity element.
Although every ordinary semigroup can be extended to a monoid by
adjoining an extra element as identity but it is important to note that
not every ternary semigroup extend to a ternary monoid. However, in
the following, we will mention an equivalent condition in which ternary
semigroup T can be extended to a ternary monoid.
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Remark 2.19. Let (T, .) be a ternary monoid with the identity e. Then
T can be reduced to an ordinary semigroup.

Proof. It is enough to define the binary operation ∗ : T × T −→ T by
a ∗ b = a.b.e for every a, b ∈ T . Then, (T, ∗) is an ordinary semigroup
and a.b.c = (a ∗ b) ∗ c, for every a, b, c ∈ T . �
Proposition 2.20. Let (T, .) be a ternary semigroup. Then T can be
extended to a ternary monoid if and only if it can be reduced to an
ordinary semigroup.

Proof. Suppose that T can be extended to ternary monoid (T 1, .) with
identity 1. Then, T can be reduced to the ordinary semigroup (T, ∗)
with a ∗ b = a.b.1, for every a, b ∈ T . Conversely, let (T, .) be a ternary
semigroup that can be reduced to an ordinary semigroup (T, ∗). Then,
ordinary semigroup (T, ∗) is extended to monoid T 1. Now, T 1 with
ternary operation [ ] defined as following is a ternary monoid.

[abc] = a.b.c ∀a, b, c ∈ T ;
[a11] = [1a1] = [11a] = a ∀a ∈ T 1;
[a1b] = [ab1] = [1ab] = a ∗ b ∀a, b ∈ T .

Therefore, T can be extended to ternary monoid T 1. �
From now on, we suppose that we can adjoin an element 1 to T as

identity.

Lemma 2.21. Let T be a ternary semigroup and R be a relation on
T . Then, Rc = {(xay, xby) | x, y ∈ T 1, (a, b) ∈ R} is the smallest left,
right and lateral compatible relation on T containing R.

Proof. It is clear that R ⊆ Rc (let x = y = 1 in Rc). Suppose
that (xay, xby) ∈ Rc and s, t ∈ T . Then, (a, b) ∈ R and therefore
(st(xay), st(xby)) = ((stx)ay, (stx)by) ∈ Rc. Hence, Rc is left com-
patible. Right compatibility follows in a similar way. Also, we get
(s(xay)t, s(xby)t) = (1(sxayt)1, 1(sxbyt)1) = ((1sx)a(yt1), (1sx)b(yt1))
in Rc. Hence, Rc is lateral compatible. Now, Let ρ be a left, right and
lateral compatible relation on T containing R and (xay, xby) ∈ Rc.
Then, (a, b) ∈ R and consequently (a, b) ∈ ρ. Since ρ is lateral com-
patible, then (xay, xby) ∈ ρ. Therefore, Rc ⊆ ρ, as desired. �
Lemma 2.22. Let R and S be two relations on a ternary semigroup
T . Then, we have:
(1) R ⊆ S ⇒ Rc ⊆ Sc.
(2) (R−1)c = (Rc)−1.
(3) (R ∪ S)c = Rc ∪ Sc.
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Proof. (1). Suppose that (xay, xby) ∈ Rc. Then, (a, b) ∈ R ⊆ S and
x, y ∈ T 1. Hence, (xay, xby) ∈ Sc.

(2) Suppose that (xay, xby) ∈ (R−1)c. Then, (a, b) ∈ R−1 and
x, y ∈ T 1. Hence, (b, a) ∈ R and (xby, xay) ∈ Rc. Therefore, (xay, xby) ∈
(Rc)−1. Consequently, (R−1)c ⊆ (Rc)−1. We can prove that (Rc)−1 ⊆
(R−1)c in a similar way.

(3) Suppose that (xay, xby) ∈ (R ∪ S)c. Then, (a, b) ∈ R ∪ S and
x, y ∈ T 1. Therefore, (xay, xby) ∈ Rc or (xay, xby) ∈ Sc. Conse-
quently, (R ∪ S)c ⊆ Rc ∪ Sc. We can prove that Rc ∪ Sc ⊆ (R ∪ S)c in
a similar way. �

Theorem 2.23. For every relation R on a ternary semigroup T , we
have R# = (Rc)e.

Proof. We know that (Rc)e is an equivalence relation on T containing
Rc and so certainly containing R. To show that (Rc)e is a congruence,
we must show that it is left, right and lateral compatible by Proposition
2.10. So, suppose that (a, b) ∈ (Rc)e. Then, by Proposition 1.11,
(a, b) ∈ (Rc ∪ (Rc)−1 ∪ 1T )

∞ = ((R ∪R−1 ∪ 1T )
c)∞. Therefore, (a, b) ∈

((R∪R−1∪1T )c)n for some n ≥ 1. Now, by Proposition 2.8 and Lemma
2.21, ((R ∪R−1 ∪ 1T )

c)n is a left, right and lateral compatible. Hence,
(sta, stb), (ast, bst), (sat, sbt) ∈ ((R ∪ R−1 ∪ 1T )

c)n for every s, t ∈ T .
Therefore, (sta, stb), (ast, bst), (sat, sbt) ∈ (Rc)e for every s, t ∈ T and
consequently (Rc)e is a congruence on T containing R. Now, consider
a congruence ρ on T containing R. Then, Rc ⊆ ρc. On the other
hand, ρc = ρ since ρ is a congruence. Thus, ρ is an equivalence on
T containing Rc. Therefore, (Rc)e ⊆ ρ and consequently (Rc)e is the
smallest congruence on T containing R. �

Corollary 2.24. Let R be a relation on a ternary semigroup T and
a, b ∈ T . Then, (a, b) ∈ R# if and only if either a = b or for some
n ∈ N, there is a sequence a = c1, c2, . . . , cn−1, cn = b of elements of
T such that, for each i ∈ {1, 2, . . . , n − 1}, either (ci, ci+1) ∈ Rc or
(ci+1, ci) ∈ Rc.

Proposition 2.25. Let T be a ternary semigroup and let E be an
equivalence on T . Then,

E♭ = {(a, b) ∈ T × T | (xay, xby) ∈ E for all x, y ∈ T 1}

is the largest congruence on T contained in E.

Proof. It is clear that E♭ ⊆ E (let x = y = 1 in E♭) and since E is an
equivalent relation on T , so E♭ is an equivalent relation on T . Now,
suppose that (a, b) ∈ E♭ and s, t ∈ T are arbitrary elements. Then, for
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every x, y ∈ T 1, we have

((xst)ay, (xst)by), (xa(sty), xb(sty)), ((1xs)a(ty1), (1xs)b(ty1)) ∈ E.

Hence, for every x, y ∈ T 1, we have

(x(sta)y, x(stb)y), (x(ast)y), x(bst)y), (x(sat)y, x(sbt)y) ∈ E.

Therefore, (sta, stb), (ast, bst), (sat, sbt) ∈ E♭ and consequently E♭ is a
congruence on T . Finally, Let ρ be a congruence on T contained in E
and (a, b) ∈ ρ. Since ρ is a congruence on T , then (xay, xby) ∈ ρ ⊆ E
for every x, y ∈ T 1 and consequently (a, b) ∈ E♭. Thus ρ ⊆ E♭. �
Example 2.26. Let T be a ternary semigroup and A be a subset of
T . Also let πA be an equivalence on T whose classes are A and T rA.
Then, π♭

A = {(a, b) ∈ T × T | xay ∈ A⇔ xby ∈ A for all x, y ∈ T 1}.

3. The lattice of congruences on a ternary semigroup

In this section, we study the lattice of congruences on a ternary
semigroup and we prove that this lattice is a complete lattice but it is
not necessarily modular and not even semimodular.

Let T be a ternary semigroup. Then we denote the set of all congru-
ences on T by C(T ).

Theorem 3.1. Let T be a ternary semigroup. Then C(T ) is a complete
lattice.

Proof. It is clear that C(T ) is a partially ordered set by inclusion. Since
∩i∈Iρi and (∪i∈Iρi)

# are congruences on T for every non-empty family
{ρi}i∈I of congruences on T , so it is enough to take ∧i∈Iρi = ∩i∈Iρi
and ∨i∈Iρi = (∪i∈Iρi)

#. �
Proposition 3.2. Let T be a ternary semigroup. Then for every ρ, σ ∈
C(T ), we have (ρ ∪ σ)# = (ρ ∪ σ)e.

Proof. By the Theorem 2.23 and Lemma 2.22, we get that (ρ ∪ σ)# =
((ρ ∪ σ)c)e = (ρc ∪ σc)e. But ρc = ρ and σc = σ, since ρ and σ are
congruences on T . Therefore, (ρ ∪ σ)# = (ρ ∪ σ)e. �

Let T be a ternary semigroup and ρ, σ ∈ C(T ). Then we denote
(ρ ∪ σ)# = (ρ ∪ σ)e by ρ ∨ σ.

Proposition 3.3. Let T be a ternary semigroup. Then for every ρ, σ ∈
C(T ), we have ρ ∨ σ = (ρoσ)∞.

Proof. Let ρ, σ ∈ C(T ). Then,

(ρ∨σ) = (ρ∪σ)e = ((ρ∪σ)∪(ρ∪σ)−1∪1T )∞ = (ρ∪σ∪ρ−1∪σ−1∪1T )∞.
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Therefore, (ρ ∨ σ) = (ρ ∪ σ)∞, since ρ and σ are equivalence relations.
It is enough to show that (ρ ∪ σ)∞ = (ρoσ)∞. Since ρ, σ ⊆ ρ ∪ σ, so
(ρoσ)n ⊆ (ρ ∪ σ)2n for every n ≥ 1. Consequently, (ρoσ)∞ ⊆ (ρ ∪ σ)∞.
On the other hand, ρ and σ are reflexive. So, ρ ⊆ ρoσ and σ ⊆ ρoσ.
Hence, ρ ∪ σ ⊆ ρoσ and consequently (ρ ∪ σ)∞ ⊆ (ρoσ)∞. �

Corollary 3.4. Let T be a ternary semigroup and ρ, σ ∈ C(T ). Then
(a, b) ∈ ρ∨σ if and only if for some n ∈ N, there exist x1, x2, . . . , x2n−1

in T such that, (a, x1) ∈ ρ, (x1, x2) ∈ σ, . . . , (x2n−2, x2n−1) ∈ ρ, (x2n−1, b)
∈ σ.

Corollary 3.5. Let T be a ternary semigroup and ρ, σ ∈ C(T ) such
that ρoσ = σoρ. Then, ρ ∨ σ = ρoσ.

Proof. Since ρoσ = σoρ, then (ρoσ)n = ρnoσn = ρoσ for every n ≥ 1.
Hence, (ρoσ)∞ = ρoσ and the result follows from Proposition 3.3. �

Corollary 3.6. Let T be a ternary semigroup whose elements are in-
vertible. Then, ρ ∨ σ = ρoσ for every ρ, σ ∈ C(T ).

Corollary 3.7. Let T be a ternary group. Then ρ∨ σ = ρoσ for every
ρ, σ ∈ C(T ).

Every sublattice of a modular lattice is a modular lattice but a
sublattice of a semimodular lattice may not be a semimodular lattice.
For example for any ternary semigroup T , C(T ) is a sublattice of semi-
modular lattice E(T ), while C(T ) may not be a modular lattice. It is
not generally even a semimodular lattice.

Example 3.8. Let T = {e, f, a, b}. Define a ternary operation [ ] on
T as [abc] = a ·b ·c, where · is the binary operation defined as following:

· e f a b
e e f a b
f f f b b
a a b e f
b b b f f

Then, (T, [ ]) is a ternary semigroup. Consider the relations
α = {(e, e), (f, f), (a, a), (b, b), (e, f), (f, e), (a, b), (b, a)},
β = {(e, e), (f, f), (a, a), (b, b), (a, e), (e, a), (f, b), (b, f)}
and γ = {(e, e), (f, f), (a, a), (b, b), (f, b), (b, f)} on T . Then α, β, γ ∈
C(T ). Furthermore, α ∩ γ = 1T and α ∨ γ = T × T . It is clear that
α ≻ α ∧ γ and γ ≻ α ∧ γ but α ∨ γ ≻ β ≻ γ. Therefore, C(T ) is not
semimodular lattice and consequently C(T ) is not a modular lattice.
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We showed that C(T ) is not generally semimodular, while it is
modular lattice when T satisfies in the condition of the following propo-
sition.

Proposition 3.9. Let T be a ternary semigroup and let K be a sublat-
tice of the lattice (C(T ),⊆,∩,∨) such that ρoσ = σoρ for all ρ, σ ∈ K.
Then, K is a modular lattice.

Proof. Let α, β, γ ∈ K such that α ⊆ γ and let (x, y) ∈ (α ∨ β) ∩ γ.
Then, (x, y) ∈ αoβ by Corollary 3.5. Therefore, there exists z ∈ T such
that (x, z) ∈ α and (z, y) ∈ β. Since α ⊆ γ and γ is an equivalence
relation, we deduce that (z, y) ∈ γ and consequently (x, y) ∈ αo(β ∩
γ) = α ∨ (β ∩ γ). We have shown that (α ∨ β) ∩ γ ⊆ α ∨ (β ∩ γ), and
so K is modular. �
Corollary 3.10. Let T be a ternary semigroup whose elements are
invertible. Then C(T ) is a modular lattice.

Corollary 3.11. Let T be a ternary group. Then C(T ) is a modular
lattice.
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