
Journal of Algebraic Systems
Vol. 6, No. 2, (2019), pp 117-130

ON STRONGLY ASSOCIATIVE HYPERRINGS

F. ARABPUR AND M. JAFARPOUR∗

Abstract. This paper generalizes the idea of strongly associative
hyperoperation introduced in [7] to the class of hyperrings. We in-
troduce and investigate hyperrings of type 1, type 2 and SDIS.
Moreover, we study some examples of these hyperrings and give a
new kind of hyperrings called totally hyperrings. Totally hyper-
rings give us a characterization of Krasner hyperrings. Also, we
investigate these strongly hyperoperations in hyperring of series.

1. Introduction

The theory of hyperstructures was introduced in 1934 by Marty [12]
at the 8th Congress of Scandinavian Mathematicians. This theory has
been subsequently developed by Corsini, Leoreanu, Mittas, Stratigopou-
los, Vougiouklis, Davvaz [1, 2, 5, 17, 22, 25] and by various authors [6,
3, 18, 21, 24]. Basic definitions and propositions about the hyperstruc-
tures are found in [1, 2, 5, 23]. Krasner [11] studied the notions of
hyperfield, hyperring and then some other researchers did, for example
see [3, 4, 9, 18, 19]. Hyperrings are basically rings with approximately
modified axioms. There are different types of hyperrings. If the addi-
tion + is a hyperoperation and the multiplication is a binary operation,
then the hyperring is called additive hyperring. A special case of this
type is the Krasner hyperring [11]. Rota [20] introduced a multiplica-
tive hyperring, where + is a binary operation and the multiplication is a
hyperoperation. De Salvo [8] studied hyperrings in which the additions
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and the multiplications were hyperoperations. Surveys of hyperrings
theory and its applications can be found in the book of Davvaz and
Leoreanu-Fotea [5]. In particular, the relationships between the fuzzy
sets, soft sets and hyperrings have been considered by many researchers
for example see [4, 13, 14, 15]. In this paper, we first generalize the
idea of strongly associative hyperoperation (SASS) introduced in [7]
to the class of hyperrings. Next, using SASS and SDIS notions we
introduce some types of hyperrings which are called type1, type2 and
totally, respectively. Finally, a characterization of Krasner hyperrings
by strongly distributive hyperrings are investigated. In the following,
we give the preliminaries which will be used throughout this article.

Definition 1.1. Let H be a non-empty set and ◦ : H ×H −→ P∗(H)
be a hyperoperation. Then, the couple (H, ◦) is called a hypergroupoid.
For non-empty subsets A and B of H and x ∈ H, we define:

A ◦B =
⋃

a∈A,b∈B

a ◦ b , A ◦ x = A ◦ {x}.

Definition 1.2. A hypergroupoid (H, ◦) is called hypergroup if for all
a, b, c in H, it satisfies the following conditions:

(1) (a ◦ b) ◦ c = a ◦ (b ◦ c),
(2) a ◦H = H = H ◦ a.

A semihypergroup H is complete if it satisfies one of the following
equivalent conditions:

(1) ∀(x, y) ∈ H2, ∀a ∈ x ◦ y, C(a) = x ◦ y, where C(a) denotes the
complete closure of a,

(2) ∀(x, y) ∈ H2, C(x ◦ y) = x ◦ y,
(3) ∀(n,m) ∈ N2, m,n ≥ 2, ∀(x1, ..., xn) ∈ Hn,∀(y1, ..., ym) ∈ Hm,

the following implication is valid:

Πn
i=1xi ∩ Πm

j=1yj 6= ∅ ⇒ Πn
i=1xi = Πm

j=1yj.

Theorem 1.3. ([1]) A semihypergroup (H, ◦) is complete if it can be
written as a union H = ∪s∈SAs of its subsets, where S and As satisfy
the conditions:

(1) (S, ·) is a semigroup,
(2) for all (s, t) ∈ S2, where s 6= t, we have As ∩ At = ∅,
(3) if (a, b) ∈ As × At, then a ◦ b = As·t.

Definition 1.4. Let (H, ◦) be a hypergroupoid. Then,

(1) An element e ∈ H is called an identity if x ∈ e ◦ x ∩ x ◦ e, for
every x ∈ H.



ON STRONGLY ASSOCIATIVE HYPERRINGS 119

(2) Let e be an identity element in H. Then, the element x′ ∈ H
is called an inverse of x ∈ H if e ∈ x ◦ x′ ∩ x′ ◦ x.

Definition 1.5. A semihypergroup (H, ◦) is regular if it has at least
one identity and each element has at least one inverse.

Definition 1.6. A canonical hypergroup (H,+) is a non-empty set H
equipped with a hyperoperation + with the following properties:

(1) x+ y = y + z, ∀x, y ∈ H,
(2) (x+ y) + z = x+ (y + z), ∀x, y, z ∈ H,
(3) ∃!0H ∈ H such that 0H + x = x = x+ 0H , ∀x ∈ H,
(4) ∀x ∈ H ∃!y ∈ H such that 0H ∈ x+ y. We denote y = −x,
(5) x ∈ y + z ⇐⇒ z ∈ x− y, ∀x, y, z ∈ H.

Definition 1.7. ([7]) Let H be a non-empty set and ◦ : H × H −→
P∗(H) be a hyperoperation. Then,

(1) ◦ is called left strongly associative if for all x, y, z ∈ H and for
all t ∈ y ◦ z, there exists s ∈ x ◦ y such that x ◦ t = s ◦ z,

(2) ◦ is called right strongly associative if for all x, y, z ∈ H and for
all t ∈ x ◦ y, there exists s ∈ y ◦ z such that t ◦ z = x ◦ s,

(3) ◦ is strongly associative or for simplicity SASS if it is left and
right strongly associative.

Definition 1.8. ([7]) A hypergroupoid (H, ◦) is called left(right) strongly
associative if the hyperoperation ◦ is left(right) strongly associative.
(H, ◦) is called strongly associative if ◦ is strongly associative.

Remark 1.9. The group operation is strongly associative.

2. Strongly hyperoperations in hyperrings

Definition 2.1. A general hyperring (R,+, ∗) is a non-empty set R
such that (R,+) is a hypergroup, (R, ∗) is an associative hyperopera-
tion and hyperoperation + is distributive with respect to the hyperop-
eration ∗, i.e., x ∗ (y + z) = (x ∗ y) + (x ∗ z) which means that:

⋃

t∈y+z

x ∗ t =
⋃

u∈x∗y,v∈x∗z
u+ v

and (y + z) ∗ x = (y ∗ x) + (z ∗ x).

The above Definition was given by Vougiouklis [24] and then used
by Spartalis [21].

Definition 2.2. A subhyperring of a hyperring (R,+, ∗) is a non-
empty subset S of R that preserves the structure of the hyperring R,
i.e. a hyperring (S,+, ∗) with S ⊆ R.
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In the following, we present a definition to obtain a new class of
hyperrings.

Definition 2.3. Let R be a non-empty set and ◦, ∗ : R×R −→ P∗(R)
be two hyperoperations. Then,

(1) ∗ is called left strongly distributive with respect to ◦ if for all
x, y, z ∈ R and for all t ∈ y ◦ z, there exists u ∈ x ∗ y and
v ∈ x ∗ z such that x ∗ t = u ◦ v, also for all s ∈ x ∗ y and
t ∈ x ∗ z, there exists w ∈ y ◦ z such that x ∗ w = s ◦ t,

(2) ∗ is called right strongly distributive with respect to ◦ if for all
x, y, z ∈ R and for all t ∈ y ◦ z, there exists u ∈ y ∗ x and
v ∈ z ∗ x such that t ∗ x = u ◦ v, also for all s ∈ y ∗ x and
t ∈ z ∗ x, there exists w ∈ y ◦ z such that w ∗ x = s ◦ t,

(3) ∗ is strongly distributive with respect to ◦ if it is left and right
strongly distributive.

Remark 2.4. It is clear that if ∗ is a commutative hyperoperation, then
left and right strongly distributive coincide.

Lemma 2.5. If ∗ is strongly distributive with respect to ◦, then ∗ is
distributive with respect to ◦.
Proof. Let ∗ be strongly distributive with respect to ◦ and (x, y, z) ∈
R3. Then, we have {x ∗ t|t ∈ y ◦ z} = {u ◦ v|u ∈ x ∗ y, v ∈ x ∗ z}. Hence
x ∗ (y ◦ z) = (x ∗ y) ◦ (x ∗ z). Similarly (y ◦ z) ∗ x = (y ∗ x) ◦ (z ∗ x). �
Definition 2.6. Let R = (R,+, ∗) be a hyperring. Then,

(1) R is called of type 1 if the hyperoperation + is strongly asso-
ciative,

(2) R is called of type 2 if the hyperoperation ∗ is strongly asso-
ciative,

(3) R is called SDIS if the hyperoperation ∗ is strongly distributive
with respect to +.

Definition 2.7. A hyperring (R,+, ∗) is called totally hyperring if it
is of type 1, 2 and SDIS.

Remark 2.8. Every ring is a totally hyperring.

Remark 2.9. If S is a subhyperring of R and R is totally, then S is a
totally hyperring.

Example 2.10. Let (R = {e, a},+, ∗), where

+ e a
e e a
a a {e, a}

∗ e a
e e {e, a}
a {e, a} {e, a}
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be a hyperring. Then, R is a general hyperring that is neither type
1 nor type 2 and it is not SDIS, too.

There exist hyperrings of type 1 and 2, which are not SDIS. The
next example is such a hyperring.

Example 2.11. Let (R = {e, a, b, c},+, ∗), where

+ e a b c
e {e, a} {a, b} {b, c} {e, c}
a {a, b} {b, c} {e, c} {e, a}
b {b, c} {e, c} {e, a} {a, b}
c {e, c} {e, a} {a, b} {b, c}

∗ e a b c
e {e, a} {b, c} {e, a} {b, c}
a {b, c} {e, a} {b, c} {e, a}
b {e, a} {b, c} {e, a} {b, c}
c {b, c} {e, a} {b, c} {e, a}

R is a hyperring of type 1 and 2 but it is not SDIS, since

e∗(e+e) = {e∗t | t ∈ e+e} 6= {u+v | u ∈ e∗e, v ∈ e∗e} = (e∗e)+(e∗e).
Also, there exists SDIS hyperring which is not of type 1 and type 2.

The next example is such a hyperring.

Example 2.12. Let R = ({a, b},+, ∗), where

+ a b
a a {a, b}
b {a, b} {a, b}

∗ a b
a a {a, b}
b a {a, b}

be a hyperring. Then, R is neither of type 1 nor type 2 but it is
SDIS.

Example 2.13. Let (R = {e, a, b},+, ∗), where

+ e a b
e {e, a} H H
a H {e, a} {e, a}
b H {e, a} {e, a}

∗ e a b
e {e, a} H {e, a}
a H {e, a} H
b {e, a} H {e, a}

R is a hyperring of type 1, 2 and SDIS. Then, R is a totally hyperring.

Proposition 2.14. Let (F,+, ·) be a field and | F |≥ 3. Then,
(F,⊕,�) is a hyperring of type 1, where x⊕ y = F − {x+ y} and

x� y =

{
F − {x · y} if x 6= e and y 6= e

F if x = e or y = e

for all x, y ∈ F and ”e” is the identity element of (F,+).
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Proof. (F,⊕) is a strongly associative hypergroup (see [7]). Moreover,
(F,�) is a semihypergroup. It would be sufficient to check the distribu-
tivity. Let {x, y, z} ⊆ F. If x = e, then x�(y⊕z) = (x�y)⊕(x�z) = F.
Let x 6= e, y 6= e and z = e. Then, y + z 6= e and x · y 6= e, so we have

x� (y ⊕ z) = x� (F − (y + z)) ⊇ x� e = F.

In this case, (x � y) ⊕ (x � z) = (F − {x · y}) ⊕ F ⊇ e ⊕ t1 ∪ e ⊕ t2,
where t1, t2 ∈ F and t1 6= t2. Since (F,+) is a group, e⊕ t1∪e⊕ t2 = F.
Hence (x� y)⊕ (x� z) = F. Now let x 6= e, y 6= e, z 6= e. If y + z 6= e,
then

x� (y ⊕ z) =
⋃

t∈F−{y+z}
x� t ⊇ x� e = F.

If y + z = e, then x � (y ⊕ z) =
⋃

t∈F−{e} x � t ⊇ x � t1 ∪ x � t2,

where t1, t2 ∈ F and e 6= t1 6= t2 6= e. Since (F − {e}, ·) is a group,
x � t1 ∪ x � t2 = F. Hence x � (y ⊕ z) = F. Moreover, we have
(x � y) ⊕ (x � z) = F. Hence x � (y ⊕ z) = (x � y) ⊕ (x � z) = F.
Therefore (F,⊕,�) is a hyperring of type 1. �

Now, we present a way to obtain a class of hyperrings that is of type
2. Let (H, ◦, ∗) be a hyperring and {Ai}i∈R be a family of non-empty
sets such that

(1) (R,+, ·) is a ring,
(2) A0R

= H,
(3) ∀i, j ∈ R,Ai ∩ Aj = ∅.

Let K =
⋃

i∈RAi and define the following hyperoperations on K

(1) ∀x, y ∈ H, x⊕ y = x ◦ y, x� y = H,
(2) ∀x ∈ Ai, ∀y ∈ Aj, such that Ai × Aj 6= H ×H, x ⊕ y = Ai+j,

x� y = Ai·j.

The structure (K,⊕,�) is a hyperring which is called (H,R)−hyperring.
Theorem 2.15. K =

⋃
i∈RAi is a hyperring of type 2. We shall say

that K is an (H,R)− hyperring of type 2.

Proof. We show that � is a left strongly associative hyperoperation.
Let {x, y, z} ⊆ K. If x, y, z ∈ H then it is clear that x � (y � z) =
{H} = (x � y) � z. If x, y ∈ H = A0, z ∈ Ak such that k 6= 0,
then for all t ∈ y � z = A0·k = H, we have x ∈ H = x � y, and
x� t = H = x� z. If x ∈ Am, y ∈ An, z ∈ H = A0 such that m,n 6= 0,
then for all t ∈ y � z = A0 = H and for all s ∈ x� y = Am·n we have

x� t = H = s� z.



ON STRONGLY ASSOCIATIVE HYPERRINGS 123

Now let x ∈ Ai, y ∈ Aj, z ∈ Ak, such that Ai ×Aj ×Ak 6= H ×H ×H
and let t ∈ y � z = Am, such that j · k = m. If s ∈ x � y = An, such
that i · j = n, then we have

x� t = Ai·m = Ai·(j·k) = A(i·j)·k = An·k = s� z.
Thus (K,�) is a left strongly associative hyperoperation. Similarly �
is a right strongly associative hyperoperation. Consequently K is a
hyperring of type 2.

�
Remark 2.16. In structure (K,⊕,�) although H is totally hyperring,
K is not totally. The next example is such a hyperring.
Example 2.17. Consider H = ({e, a, b}, ◦, ∗) and R = (Z2,+, ·) be
as follow:

◦ e a b
e {e, a} H H
a H {e, a} {e, a}
b H {e, a} {e, a}

∗ e a b
e {e, a} H {e, a}
a H {e, a} H
b {e, a} H {e, a}

+ 0 1
0 0 1
1 1 0

· 0 1
0 0 0
1 0 1

Set A0 = {e, a, b}, A1 = {c}. Then we have the following hyperopera-
tions:

⊕ e a b c
e {e, a} H H c
a H {e, a} {e, a} c
b H {e, a} {e, a} c
c c c c H

� e a b c
e H H H H
a H H H H
b H H H H
c H H H c

(K,⊕) is not a strongly associative hypergroup and (K,⊕,�) is not
also SDIS. Indeed, c⊕(c⊕e) 6= (c⊕c)⊕e and c�(a⊕b) 6= (c�a)⊕(c�b).
So (K,⊕,�) is not a totally hyperring, but H is totally.

Now, we construct a totally hyperring. Let (R,+, ·) be a ring and
{A(g)}g∈R be a family of non-empty sets such that

(1) ∀g, g′ ∈ R, g 6= g
′ ⇒ A(g) ∩ A(g

′
) = ∅,

(2) g /∈ R ·R⇒| A(g) |= 1.

Set HR =
⋃

g∈RA(g) and define the following hyperoperations ⊕ and

� on HR: ∀a, b ∈ HR, ∃g, g′ ∈ R such that a ∈ A(g), b ∈ A(g′), set
a⊕ b = A(g+ g

′
), a� b = A(g · g′). For all g, g

′ ∈ R, and u ∈ A(g), v ∈
A(g

′
), we have:

(1) u⊕ v = A(g + g
′
) = A(g)⊕ A(g

′
),
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(2) u� v = A(g · g′) = A(g)� A(g
′
).

Theorem 2.18. HR is a totally hyperring.

Proof. According to the results of [7], the hyperoperations of HR are
strongly associative and so HR is a hyperring of type 1 and type 2. We
show that HR is a SDIS hyperring. Let {x, y, z} ⊆ HR. Then, there
exists {g, g′ , g′′} ⊆ R such that x ∈ A(g), y ∈ A(g

′
), z ∈ A(g

′′
). Let

t ∈ y ⊕ z = A(g
′
+ g

′′
), u ∈ A(g · g′) and v ∈ A(g · g′′), so u ∈ x � y

and v ∈ x� z. Then, we have:

x� t = A(g · (g′ +g
′′
)) = A(g ·g′ +g ·g′′) = A(g ·g′)⊕A(g ·g′′) = u⊕v.

Moreover, let s ∈ x � y = A(g · g′), t ∈ x � z = A(g · g′′) and w ∈
A(g

′
+ g

′′
), so w ∈ y ⊕ z. Then we have

x�w = A(g · (g′+g
′′
)) = A(g ·g′+g ·g′′) = A(g ·g′)⊕A(g ·g′′) = s⊕ t.

Hence HR is left strongly distributive. Similarly it is right strongly
distributive. Therefore HR is SDIS and so it is a totally hyperring. �

Definition 2.19. Let (R,⊕, ∗) be a hyperring. If (R,⊕) is complete,
then we say that R is ⊕− complete. If (R, ∗) is complete, then we say
that R is ∗− complete and if both (R,⊕), (R, ∗) are complete, then we
say that R is complete.

In hypergroups every complete semihypergroup is strongly associative
(see [7]), but complete hyperrings are not totally. The next example is
such a hyperring.

Example 2.20. Let R = ({a, b},+, ∗), where

+ a b
a a b
b b a

∗ a b
a {a, b} {a, b}
b {a, b} {a, b}

be a hyperring. Then, R is a complete hyperring that is not a totally
hyperring.

Proposition 2.21. Every complete hyperring is a hyperring of type 1
and type 2.

Proof. Using ( [7], Corollary 2.13). �

Remark 2.22. Every SDIS complete hyperring is totally hyperring.

Remark 2.23. According to the Theorem 2.18 and ( [5], 5.2.21), HR is
a totally complete hyperring.
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Let (R1,+1, ∗1) and (R2,+2, ∗2) be two hyperrings. On R1×R2, we
can define hyperproducts as follow:
(x1, x2)⊕ (y1, y2) = {(x, y)|x ∈ x1 +1 y1, y ∈ x2 +2 y2},
(x1, x2)� (y1, y2) = {(x, y)|x ∈ x1 ∗1 y1, y ∈ x2 ∗2 y2}.
The structure (R1 × R2,⊕,�) is called the direct product of R1 and
R2.

Theorem 2.24. Let (R1,+1, ∗1) and (R2,+2, ∗2) be two hyperrings.
Then,

(1) If R1 and R2 are two hyperrings of type 1, then (R1×R2,⊕,�)
is a hyperring of type 1.

(2) If R1 and R2 are two hyperrings of type 2, then (R1×R2,⊕,�)
is a hyperring of type 2.

(3) If R1 and R2 are two SDIS hyperrings, then (R1 ×R2,⊕,�) is
a SDIS hyperring.

Proof. By ( [7], Theorem 2.14) we have both (1) and (2).
(3) Let {(x1, x2), (y1, y2), (z1, z2)} ⊆ R1 × R2. If (t1, t2) ∈ (y1, y2) �
(z1, z2), then t1 ∈ y1 ∗1 z1, t2 ∈ y2 ∗2 z2. Since R1 and R2 are SDIS
hyperrings, there exist u1 ∈ x1 +1y1 and v1 ∈ x1 +1 z1 also u2 ∈ x2 +2y2

and v2 ∈ x2+2z2 such that x1∗1t1 = u1+1v1 and x2∗2t2 = u2+2v2. Thus
(t1, t2) ∈ (y1, y2) � (z1, z2) and (x1, x2) � (t1, t2) = (u1, u2) ⊕ (v1, v2).
Now let (s1, s2) ∈ (x1, x2) � (y1, y2) and (t1, t2) ∈ (x1, x2) � (z1, z2).
Therefore s1 ∈ x1 ∗1 y1, t1 ∈ x1 ∗1 z1, s2 ∈ x2 ∗2 y2, t2 ∈ x2 ∗2 z2.
Since R1 and R2 are SDIS hyperrings, there exist w1 ∈ y1 +1 z1 and
w2 ∈ y2 +2 z2 such that x1 ∗1 w1 = s1 +1 t1 and x2 ∗2 w2 = s2 +2 t2.
Thus (x1, x2)� (w1, w2) = (s1, s2)⊕ (t1, t2). Therefore R1×R2 is a left
strongly distributive. Similarly, it can be checked that R1 × R2 is a
right strongly distributive and this completes the proof. �

Corollary 2.25. If R1 and R2 are two totally hyperrings, then (R1 ×
R2,⊕,�) is a totally hyperring.

Example 2.26. (Z2×R,⊕,�) is a totally hyperring, where Z2 and R
are hyperrings in the following tables, respectively:

+1 x y
x x y
y y x

∗1 x y
x x x
y x y

+2 e a b
e {e, a} H H
a H {e, a} {e, a}
b H {e, a} {e, a}

∗2 e a b
e {e, a} H {e, a}
a H {e, a} H
b {e, a} H {e, a}
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⊕ 1 = (x, e) 2 = (x, a) 3 = (x, b) 4 = (y, e) 5 = (y, a) 6 = (y, b)
1 = (x, e) {1, 2} {1, 2, 3} {1, 2, 3} {4, 5} {4, 5, 6} {4, 5, 6}
2 = (x, a) {1, 2, 3} {1, 2} {1, 2} {4, 5, 6} {4, 5} {4, 5}
3 = (x, b) {1, 2, 3} {1, 2} {1, 2} {4, 5, 6} {4, 5} {4, 5}
4 = (y, e) {4, 5} {4, 5, 6} {4, 5, 6} {1, 2} {1, 2, 3} {1, 2, 3}
5 = (y, a) {4, 5, 6} {4, 5} {4, 5} {1, 2, 3} {1, 2} {1, 2}
6 = (y, b) {4, 5, 6} {4, 5} {4, 5} {1, 2, 3} {1, 2} {1, 2}
� 1 = (x, e) 2 = (x, a) 3 = (x, b) 4 = (y, e) 5 = (y, a) 6 = (y, b)

1 = (x, e) {1, 2} {1, 2, 3} {1, 2} {1, 2} {1, 2, 3} {1, 2}
2 = (x, a) {1, 2, 3} {1, 2} {1, 2, 3} {1, 2, 3} {1, 2} {1, 2, 3}
3 = (x, b) {1, 2} {1, 2, 3} {1, 2} {1, 2} {1, 2, 3} {1, 2}
4 = (y, e) {1, 2} {1, 2, 3} {1, 2} {4, 5} {4, 5, 6} {4, 5}
5 = (y, a) {1, 2, 3} {1, 2} {1, 2, 3} {4, 5, 6} {4, 5} {4, 5, 6}
6 = (y, b) {1, 2} {1, 2, 3} {1, 2} {4, 5} {4, 5, 6} {4, 5}

3. On totally Krasner hyperrings

Definition 3.1. (See [11]). A Krasner hyperring (R,+, ·, 0, 1) is a non-
empty set R such that (R,+, 0) is a canonical hypergroup and (R, ·, 1)
is a commutative monoid which satisfies the following conditions:

(1) x · (y + z) = (x · y) + (x · z), (y + z) · x = (y · x) + (z · x), for all
x, y, z ∈ R,

(2) x · 0 = 0 = 0 · x, for all x ∈ R,
(3) 0 6= 1.

Remark 3.2. Every Krasner hyperring is a hyperring of type 2.

Example 3.3. (See [10], 2.7 ). Let R = (R,+, ·), the underlying set
is the set of real numbers and the multiplication is the usual multipli-
cation of real numbers. The (hyper)addition is given as follows:

x+ y =





{x} if | x |>| y |
{y} if | x |<| y |
{x} if x = y

[−|x|, |x|] if x = −y
Then, R is a Krasner hyperring.

Theorem 3.4. A Krasner hyperring R is a SDIS hyperring if and only
if it is a ring.

Proof. Suppose that (R,+, ·) is SDIS Krasner hyperring. We show that
for all 0 6= x ∈ R, (x + (−x)) = 0. Let a ∈ R. Since R is SDIS, for
every t ∈ x + (−x) there exist u = a · x and v = a · (−x) such that
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a · t = u + v = a · x + a · (−x). Set t = 0, a = 1. Then, we have
0 = 1 · 0 = (1 · x) + (1 · (−x)) = x + (−x), thus (x + (−x)) = 0. Now
let b, c ∈ R and α, β ∈ b+ c. We have

α ∈ b+ c

⇒c ∈ α− b
⇒β ∈ b+ c = c+ b ⊆ α− b+ b = α

⇒α = β.

Thus, for all (b, c) ∈ R2, |b + c| = 1 and hence (R,+) is a group.
Therefore (R,+, ·) is a ring. The converse is obvious. �
Corollary 3.5. Every Krasner hyperring is a ring if and only if it is
totally.

4. Strongly hyperoperations in hyperring of series

In this section we construct a hyperring of series over hyperrings.
Let (R,+, ·) be a commutative hyperring such that (R,+) is regular
hypergroup. A series with coefficients in R is an infinite sequence
(a0, a1, ..., an, ...) in which all ai belong to R. The set of all series
with coefficients in R will be denoted as usual by R[[x]]. Two series
(a0, a1, ..., an, ...) and (b0, b1, ..., bn, ...) are equal if and only if ai = bi,
for all i ∈ N ∪ {0}. For all (a0, a1, ..., an, ...), (b0, b1, ..., bn, ...) ∈ R[[x]]
we define:

(a0, a1, ..., an, ...)⊕ (b0, b1, ..., bn, ...) = {(c0, c1, ..., cn, ...) | ci ∈ ai + bi}
and

(a0, a1, ..., an, ...)�(b0, b1, ..., bn, ...) = {(c0, c1, ..., cn, ...) | ci ∈
∑

k+l=i

ak·bl}.

More about the hyperring of series can be found in the original article
of Jančić-Rašović [9].

Theorem 4.1. (See [5], 5.6.2). (R[[x]],⊕,�) is a general hyperring.

Theorem 4.2. If R is a hyperring of type 1, then R[[x]] is of type 1.

Proof. Let (a0, a1, ..., an, ...), (b0, b1, ..., bn, ...), (c0, c1, ..., cn, ...) ∈ R[[x]]
and

(t0, t1, ..., tn, ...) ∈ (a0, a1, ..., an, ...)⊕ (b0, b1, ..., bn, ...).

Since (R,+) is strongly associative, so for all ti ∈ ai + bi, there exist
si ∈ bi + ci such that ti + ci = ai + si. Thus

(t0, t1, ..., tn, ...)⊕(c0, c1, ..., cn, ...) = (a0, a1, ..., an, ...)⊕(s0, s1, ..., sn, ...)
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and

(s0, s1, ..., sn, ...) ∈ (b0, b1, ..., bn, ...)⊕ (c0, c1, ..., cn, ...).

Therefore R[[x]] is a right strongly associative hyperoperation. Simi-
larly it is a left strongly associative hyperoperation. So (R[[x]],⊕,�)
is a hyperring of type 1. �

In the following, by example we show that if (R, ·) be strongly asso-
ciative, then (R[[x]],�) is not strongly associative necessarily.

Example 4.3. Let (R = {0, 1},+, ·), where

+ 0 1
0 0 1
1 1 {0, 1}

· 0 1
0 0 0
1 0 1

Consider X = (0, 1, 1, ...), Y = (1, 1, 0, ...), Z = (1, 0, 0, ...) ∈ R[[x]]. We
have

T = (0, 1, 0, ...) ∈ X � Y = {(0, 1, {0, 1}, {0, 1}, ...)}
and T�Z = (0, 1, 0, ...). But there is not an element like S = (s0, s1, ...)
belongs to Y � Z = (1, 1, 1, 0, ...) such that T � Z = X � S.

Corollary 4.4. If R is a hyperring of type 2, then R[[x]] is not of type
2 necessarily.

Example 4.5. The following hyperring is a SDIS hyperring but R[[x]]
is not a SDIS hyperring.

+ 0 1
0 0 {0, 1}
1 {0, 1} {0, 1}

· 0 1
0 0 {0, 1}
1 0 {0, 1}

Now, let a = (1, 0, 0, 0, ...), b = (1, 1, 0, 0, 0, ...) and c = (0, 0, 1, 0, 0, 0, ...).
If x = (0, 0, 1, 0, 0, 0, 0, ...) ∈ a�(b⊕c), then a�u = {(0, i, j, ...)|i, j, ... ∈
{0, 1}}, for every u ∈ b⊕ c. Moreover, y = (1, 0, 0, 0, ...) ∈ a� b⊕a� c,
but y /∈ a� u.
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شرکت�پذیر قوی به�طور ابر�حلقه�های مطالعه

جعفرپور مرتضی عرب�پور، فاطمه
ریاضی گروه عصر(عج)، ولی دانشگاه رفسنجان، ایران،

ابرحلقه�ها رده�ی برای را شده معرفی [٧] مرجع در که شرکت�پذیر قوی به�طور ابر�عمل ایده�ی مقاله این
قرار بررسی مورد و معرفی را شرکت�پذیر قوی به�طور و ٢ نوع ، ١ نوع ابرحلقه�های ما می�دهد. تعمیم
ها ابرحلقه از جدید رده یک و می�کنیم مطالعه را ابرحلقه�ها نوع این از مثال�هایی این، بر علاوه می�دهیم.
نوع از ابرحلقه�های از رده�بندی یک کلی ابرحلقه�های می�دهیم. ارائه می�شوند، نامیده کلی ابرحلقه�های که
تحقیق مورد چندجمله�ای�ها ابرحلقه در را قوی بطور ابرعمل�های همچنین می�سازد. مشخص را کراسنر

می�دهیم. قرار

ابرحلقه کلی، ابرحلقه کراسنر، ابرحلقه اس، آی دی اس ابرحلقه قوی، بطور ابرعمل کلیدی: کلمات
چندجمله�ای�ها.

۴


