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COMPUTING THE EIGENVALUES OF CAYLEY
GRAPHS OF ORDER p2q

M. GHORBANI∗, A. SEYED-HADI AND F. NOWROOZI-LARKI

Abstract. A graph is called symmetric if its full automorphism
group acts transitively on the set of arcs. The Cayley graph
Γ = Cay(G,S) on group G is said to be normal symmetric if
NA(R(G)) = R(G) ⋊ Aut(G,S) and NA(R(G)) acts transitively
on the set of arcs of Γ. In this paper, we determine the spectra of
all connected minimal normal symmetric Cayley graphs of order
p2q, where p, q are prime numbers.

1. Introduction

Throughout this paper all groups are assumed to be finite. An impor-
tant development of graph spectra is the interaction between algebraic
graph theory and finite group theory. The concepts and methods of
algebraic spectral methods bring useful tools to study the spectrum of
Cayley graphs.

The aim of this paper is to investigate the spectrum of Cayley graphs
of order p2q via their character table, where p, q > 2 are distinct prime
numbers. The most important works on the problem of computing the
eigenvalues of Cayley graphs was done by Babai in 1979, see [1]. He
used the methods based on the results of algebraic graph theory to
obtain a relation between powers of eigenvalues and then by solving a
system linear equation, the spectrum of the graph can be determined.
In [10] the authors proposed a formula for computing the spectrum of
Cayley graph Γ = Cay(G,S) in terms of character table of G, where
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S is a symmetric normal subset of G, see also [5, 6, 7]. The main re-
sults of this paper are related to this formula. In Section 2, we give
the necessary definitions and some preliminary results. In Section 3,
we introduce all groups of order p2q, where p, q are primes and finally
in Section 4, the Cayley graphs spectra of order p2q in terms of their
character tables were given. Here, our notation is standard and mainly
taken from the standard books of algebraic graph theory and represen-
tation theory of finite groups such as [2, 3, 9].

2. Definitions and Preliminaries

Let q be a power of a prime number p. A representation of degree n
of group G is a homomorphism α : G → GL(n, q), where α(g) = [g]β
for some basis β. The homomorphism α : G → C∗ with α(g) = 1,
for all g ∈ G, is called a trivial representation. The character χφ :
G → C afforded by representation φ is defined as χφ(g) = tr([g]β). An
irreducible character is the character of an irreducible representation
and the character χ is linear, if χ(1) = 1. We denote the set of all
irreducible characters of G by Irr(G).

A character table is a matrix whose rows and columns are corre-
sponding to the irreducible characters and the conjugacy classes of G,
respectively.

Let G be a group, for every element g ∈ G, we denote the conjugacy
class of g by gG. Assume that N is a normal subgroup of G and χ̃ is a
character of G/N , then the character χ of G which is given by

χ(g) = χ̃(Ng), ∀g ∈ G,

is called the lift of χ̃ to G.
Let G and H be two finite groups, then the direct product group

G × H is a group whose elements are the cartesian product of sets
G,H and for (g1, h1), (g2, h2) ∈ G×H the related binary operation is
defined as (g1, h1)(g2, h2) = (g1g2, h1h2).

Theorem 2.1. [9] Let G and H be two finite groups with Irr(G) =
{φ1, . . . , φr} and Irr(H) = {η1, . . . , ηs}. Let M(G) and M(H) be the
character tables of G and H, respectively. Then the direct product
G×H has exactly rs irreducible characters φiηj, where 1 ≤ i ≤ r and
1 ≤ j ≤ s. In particular, the character table of G×H is

M(G×H) = M(G)⊗M(H),

where ⊗ denotes the Kronecker product.
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Let p be a prime number and G a group of order pα.m, where p ∤ m.
Every subgroup of order pα is called a Sylow subgroup of G and the
set of all Sylow subgroups of G is denoted by Sylp(G).

3. Main Results

Let p > q be prime numbers where q|p − 1. A Frobenius group of
order pq has the following presentation:

Fp,q = ⟨a, b : ap = bq = 1, b−1ab = au⟩, (3.1)

where u is an element of order q in the multiplicative group Z∗
p.

According to [4, 8] the structures of groups of order p2q, where p < q
are as follows:

• G1 = Zp2q,
• G2 = Zp × Zp × Zq,
• G3 = Zp × Fq,p (p|q − 1),
• G4 = Fq,p2 (p2|q − 1),
• G5 = ⟨a, b : ap2 = bq = e, a−1ba = bu, up ≡ 1 (mod q)⟩ (p2|q−1)

.
The structures of groups of order p2q, where p > q are as follows:

• H1 = Zp2q,
• H2 = Zp × Zp × Zq,
• H3 = Zp × Fp,q (q|p− 1),
• H4 = ⟨a, b : aq = bp

2
= 1, a−1ba = bα, αq ≡ 1 (mod p2)⟩ (q|p −

1),
• H5 = ⟨a, b, c | aq = bp = cp = 1, a−1ba = c, a−1ca = b−1c2α, bc =
cb, (α +

√
α2 − 1)q = 1 (mod p) ⟩, where q|p+ 1 and α2 − 1 is

not a perfect square, namely an integer that is not the square
of an integer.

• H5+i = ⟨a, b, c | aq = bp = cp = 1, a−1ba = bβ, a−1ca = cβ
i
, bc =

cb, βq ≡ 1 (mod p)⟩, where B = {1, 2, 3, . . . , q−1
2
, q − 1}, i ∈ B

and q|p− 1.
The aim of this section is to investigate the character table of groups
of order p2q. The character table of cyclic and Frobenius groups can be
found in [9]. On the other hand, the character table of product groups
can be computed directly by using Theorem 2.1. Hence, it remains to
compute the character table of group G, where G ∈ {G5, H4, H5, H5+i}.
It is not difficult to prove that G′

5 = ⟨b⟩ and Z(G5) = ⟨ap⟩, where Z(G5)
denotes the center of G5.
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Lemma 3.1. [4] The conjugacy classes of G = G5 are
{1}, {ap}, . . . , {ap(p−1)},
(bvi)G = {bviu | u ∈ U}, 1 ≤ i ≤ (q − 1)/p,

(an)G = {anbi | 1 ≤ i ≤ q − 1}, 1 ≤ n ≤ p2 − 1, p ∤ n,
(akpbvi)G = {akpbviu | u ∈ U}, 1 ≤ i ≤ (q − 1)/p, 1 ≤ k ≤ p− 1,

where U = ⟨z⟩ is a subgroup of order p in Z∗
q and vi’s are distinct coset

representative of U in Z∗
q.

Theorem 3.2. [5] Let p, q(p < q) be distinct prime numbers, 0 ≤
m,n ≤ p2− 1, p ∤ n, 1 ≤ i, j ≤ (q− 1)/p, 1 ≤ r, k ≤ p− 1, 1 ≤ t ≤ q− 1,
τ = e

2πi
p and γ = e

2πi
q . Then all irreducible characters of G5 are as

reported in Table 3.
g akp bvi an akpbvi

χm ϵkpm 1 ϵmn ϵkpm

φj p
∑
u∈U

γvivju 0
∑
u∈U

γvivju

ηr,t pτ rk
p−1∑
j=0

γvitz
j 0 τ rk

∑
u∈U

γviut

Table 3. The character table of group G5.
Lemma 3.3. The conjugacy classes of G = H4 are

{1},
(an)G = {(an)bm | 1 ≤ m ≤ p2}, 1 ≤ n < q,

(bvi1)G = {(b)vij | j = 1, 2, 3, · · · , q}, 1 ≤ i ≤ (p2 − 1)/q,

where vij’s are distinct coset representatiive of {1, α, α2, . . . , αq−1} in
Z∗

p2.

Proof. Suppose G = H4, since p > q and |G| = p2q, it is clear that
⟨b⟩◁G and so (bi)G ⊂ ⟨b⟩, |(bi)G| = p2q

p2
= q. In other words,

(bi)G = {(bi)aj |j = 1, 2, 3, . . . , q} = {bi, biα, biα2

, . . . , biα
q−1}.

Suppose vi’s are distinct coset representative of {1, α, α2, . . . , αq−1} in
Z∗

p2 . It is clear that (bi)G ’s can be displayed by (bvi)G ’s. On the other
hand, according to the presentation of H4 and by counting members
of H4, it turns out that the Seylow p-subgroup is of order p2 and thus
|(an)G| = p2. Hence, (an)G = {(an)bm | 1 ≤ m ≤ p2} for 1 ≤ n < q and
the proof is complete. □
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Theorem 3.4. Let p, q (p > q, q | p − 1) be distinct prime numbers,
1 ≤ m,n ≤ q − 1, 1 ≤ i, k ≤ (p2 − 1)/q, 1 ≤ j ≤ q, where γ = e

2πi
q and

τ = e
2πi
p2 . Then all irreducible characters of H4 are as reported in Table

4.

g 1 an bvi1

χ0 1 1 1
χm 1 γmn 1

φvk1 q 0

q∑
j=1

τ vk1vij

Table 4. The character table of group H4.

Proof. It follows from Lemma 3.1 that G = H4 has q+ (p2 − 1)/q irre-
ducible characters. Among them q characters are linear, since |G/G

′ | =
q (G

′
= Zp2). On the other hand, G/G

′ is a cyclic group of order q

and thus all its irreducible characters are of the form χ̃m : G/G
′ → C∗

with χ̃m((a)
nG

′
) = γmn, where γ = e

2πi
q and 1 ≤ n,m ≤ q. By lifting

these characters, we get q linear characters χm(1 ≤ m ≤ q) such that

χm(a
n) = χ̃m(a

nG
′
) = γnm, 1 ≤ n ≤ q and

χm(b
vi1) = χ̃m(b

vi1G
′
) = χ̃m(G

′
) = 1, 1 ≤ i ≤ p2 − 1

q
.

Let H = Zp2 = ⟨b⟩, it is not difficult to see that H has p2 linear
characters such that

φ̃k(b
i) = τ ki, 1 ≤ k ≤ p2.

For given k ∈ {1, 2, 3, . . . , p2 − 1/q}, the degree of induced character
φvk1 := φ̃vk1 ↑ G is

φvk1(1) = φ̃vk1 ↑ G(1) =
|G|
|⟨b⟩|

(φ̃vk1)(1) =
p2q

p2
= q.

On the other hand, we have

|CG(b
i)| = |CH(b

i)| = p2, 1 ≤ i, j ≤ p,

(an)G ∩H = ϕ, 1 ≤ n ≤ q − 1,

((b)vi1)G ∪H = ((b)vi1)G, 1 ≤ i ≤ (p2 − 1)/q.
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Hence
φ̃vk1 ↑ G(1) = q,

φ̃vk1 ↑ G((an)G) = 0, 1 ≤ n ≤ q − 1

φ̃vk1 ↑ G((bvi1)G) =

q∑
j=1

φ̃vk1(b
vij)

=

q∑
j=1

τ vk1vij , 1 ≤ i, k ≤ (p2 − 1)/q.

So, we get (p2 − 1)/q characters of G with degree q. It remains to
show these are all distinct irreducible characters of G. Thus∑
χi∈Irr(G)

χ2
i (1) = |G| = p2q and

∑
χi∈Irr(G),χi(1)̸=1

χ2
i (1) = |G| = (p2 − 1)q.

Now by regarding to (p2−1)/q non-linear irreduicible characters of G,
it is not difficult to see that χi(1) = q, for all χi ∈ Irr(G) and χi(1) ̸=
1. Hence, φvk1 is an irreduicible character or a linear combination of
linear irreduicible characters. The second one is impossible, because
otherwise, we must have G′ = Zp2 ⊂ Kerφvk1

, a contradiction. It
follows that φvk1 is irreducible. It is not difficult to verify that all
φvkj ’s are distinct and the proof is complete. □

Remark. Suppose that the group H is matrix representation of
GF ∗(p2) in GL(2, p) and

K = ⟨
(

0 −1
1 2α

)
⟩, (3.2)

is a subgroup of order q of H. In the following, suppose {Ki}i=1,2,3,..., p
2−1
q

are distinct cosets of K in H and vij =

(
βij

λij

)
, (j = 1, 2, 3, . . . , q) is

the first column of matrices in Ki.

Lemma 3.5. The conjugacy classes of G = H5 are
{1},
(an)G = {(an)bmck | 1 ≤ m ≤ p, 1 ≤ k ≤ p}, 1 ≤ n < q,

((bc)vi1)G = {(bc)vij = (bc)vij = bβijcλij | j = 1, 2, 3, · · · , q}
1 ≤ i ≤ (p2 − 1)/q.

Proof. Since q | p+1 and q ∤ p−1, we have |Sylq(G)| = p2. On the other
hand, all Sylow q-subgroups of G are conjugate, hence o((an)G) = p2

and (an)G = {(an)bmck | 1 ≤ m ≤ p, 1 ≤ k ≤ p}, where 1 ≤ n <
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q. We know that the unique Sylow p-subgroup G is normal, hence
⟨b, c⟩ = Zp×Zp is the union of conjugacy classes of G and o((bicj)G) =
|G|/p2 = p2q/p2 = q ((i, j) ̸= (0, 0)). Hence, ⟨b, c⟩ − {1} contains

(p2 − 1)/q conjugacy classes of order q. Finally,
(

0 −1
1 2α

)
is the

matrix presentation of φ ∈ Aut(Zp × Zp) ∼= GL(2, p) in semi-direct
product (Zp × Zp)⋊φ Zq. Hence

{(bicj)G = {(bicj)ak = a−k(bicj)ak = φk(bicj) | k = 1, 2, 3, . . . , q}.

This completes the proof. □

Theorem 3.6. Let p, q be distinct prime numbers, where p > q and
q | (p + 1). Suppose 1 ≤ m,n ≤ q − 1, 1 ≤ i,≤ (p2 − 1)/q, 1 ≤ k, l ≤
p, 1 ≤ j ≤ q, γ = e

2πi
q and τ = e

2πi
p . Then all irreducible characters of

H5 are as reported in Table 5.

g 1 an bαi1cβi1

χ0 1 1 1
χm 1 γmn 1

φk,l q 0

q∑
j=1

τ kαij+lβij

Table 5. The character table of group H5.

Proof. It follows from Lemma 3.1 that G = H5 has q + (p2 − 1)/q
irreducible characters and among them q characters are linear, since
|G/G

′ | = q (G
′
= Zp ×Zp). On the other hand, G/G

′ is a cyclic group
of order q and then all its irreducible characters are of the form χ̃m :

G/G
′ → C with χ̃m((a)

nG
′
) = γmn, where γ = e

2πi
q and 1 ≤ n,m ≤ q.

By lifting these characters, we get q linear characters χm(1 ≤ m ≤ q)
such that

χm(a
n) = χ̃m(a

nG
′
) = γnm, 1 ≤ n ≤ q,

χm(b
icj) = χ̃m(b

icjG
′
) = χ̃m(G

′
) = 1, 1 ≤ i, j ≤ p.

Let H = Zp × Zp = ⟨b, c⟩, it is not difficult to see that H has p2 linear
characters such that

φ̃kl(b
icj) = τ ki+lj, 1 ≤ k, l ≤ p.
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For given elements (k, l) ∈ Zp × Zp − {(p, p)}, the degree of induced
character φkl := φ̃kl ↑ G is

φkl(1) = φ̃kl ↑ G(1) =
|G|

|⟨b, c⟩|
(φ̃kl)(1) =

p2q

p2
= q.

On the other hand, we have
|CG(b

icj)| = |CH(b
icj)| = p2, 1 ≤ i, j ≤ p,

(an)G ∩H = ϕ, 1 ≤ n ≤ q − 1,

((bc)vi1)G ∪H = ((bc)vi1)G, 1 ≤ i ≤ (p2 − 1)/q.

Hence
φ̃kl ↑ G(1) = q,

φ̃kl ↑ G((an)G) = 0, (1 ≤ n ≤ q − 1)

φ̃kl ↑ G(((bc)vi1)G) =

q∑
j=1

(φkl((bc)
vij) =

q∑
j=1

(φkl)((b
αijcβij)

=

q∑
j=1

τ kαij+lβij , 1 ≤ i ≤ (p2 − 1)/q,

where 1 ≤ k, j ≤ p and (k, l) ̸= (p, p). This means that we have p2 − 1
characters of q. It remains to show these are all irreducible characters
of G. We have∑
χi∈Irr(G)

χ2
i (1) = |G| = p2q,

∑
χi∈Irr(G),χi(1)̸=1

χ2
i (1) = |G| = (p2 − 1)q.

We can prove that χi(1) = q for all χi ∈ Irr(G), χi(1) ̸= 1. Hence, φkl

is an irreduicible character. This completes the proof. □
Lemma 3.7. The conjugacy classes of G = H5+i are

{1},
(an)G = {(an)bmck | 1 ≤ m ≤ p, 1 ≤ k ≤ p}, 1 ≤ n < q,

(bvtcut)G = {bvtβj

cutβij | j = 1, 2, 3, . . . , q}, 1 ≤ t ≤ (p2 − 1)/q,

where (vt, ut)’s are distinct coset representatives of H = {(βk, βik)| k =
1, 2, 3, . . . , q} with multiplicity H(n,m) = {(nβk,mβik)| k = 1, 2, . . . , q},
where {(n,m)| 0 ≤ n,m ≤ p−1, (n,m) ̸= (0, 0)} and t = 1, 2, 3, . . . , (p2−
1)/q.

Proof. The proof follows by using Lemma 3.5. □
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Theorem 3.8. Let p, q (p > q) be distinct prime numbers, where q|p−1,
1 ≤ m,n ≤ q − 1, 1 ≤ t, s ≤ (p2 − 1)/q, γ = e

2πi
q and τ = e

2πi
p . Then

all irreducible characters of H5+i are as reported in Table 6.
g 1 an bvtcut

χ0 1 1 1
χm 1 γmn 1

φvsus q 0

q∑
j=1

τ vsvtβ
j+usutβij

Table 6. The character table of H5+i.
Proof. The proof is similar to the proof of Lemma 3.3. □

A symmetric subset of group G is a subset S ⊆ G, where 1 ̸∈ S
and S = S−1. Let G be a finite group with symmetric subset S. We
recall that S is a normal subset if and only if g−1Sg = S, for all g ∈ G.
The Cayley graph Γ = Cay(G,S) with respect to S is a graph whose
vertex set is V (Γ) = G and the vertex x is adjacent with y if and only
if yx−1 ∈ S. It is a well-known fact that Cay(G,S) is connected if and
only if S generates the group G, see [2].

Let Γ be a simple graph with the adjacency matrix A(Γ). The char-
acteristic polynomial χλ(Γ) of A(Γ) is defined as [3]:

χλ(Γ) = |λI − A|
and the roots of this polynomial are called the spectrum of Γ.

The study of the spectrum of Cayley graphs is closely related to the
irreducible characters of the group under consideration. If G is abelian,
then the spectrum of Γ = Cay(G,S) can be determined as follows.
Theorem 3.9. [2] Let S be a symmetric subset of abelian group G.
Then the eigenvalues of the adjacency matrix of Cay(G,S) are given
by

λφ =
∑
s∈S

φ(s),

where φ ∈ Irr(G).
The following theorem is implicitly contained in [10, 11].

Theorem 3.10. Let G be a finite group with a normal symmetric subset
S. Let A be the adjacency matrix of the graph Γ = Cay(G,S). Then
the eigenvalues of A are given by

[λχ]
χ(1)2 , χ ∈ Irr(G),

where λχ = 1
χ(1)

∑
s∈S χ(s).
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By a circulant matrix, we mean a square n×n matrix whose rows are
a cyclic permutation of the first row. A circulant matrix with the first
row [c0, c1, . . . , cn−1] is denoted by [[c0, c1, c2, . . . , cn−1]]. By a circulant
graph, we mean a graph whose adjacency matrix is circulant. We recall
[3] that for ω = e

2π
n
i, the n−th root of unity, all eigenvalues of circulant

matrix [[c0, c1, c2, . . . , cn−1]] are given by

λj = c0 + cn−1ω
j + cn−2ω

2j + · · ·+ c1ω
(n−1)j, 0 ≤ j ≤ n− 1. (3.3)

Let A,B be two arbitrary sets. In what follows we assume that

δA(B) =

{
1 A ⊆ B
0 A ̸⊆ B

.

Let Cg = gG ∪ (g−1)G. It is clear that every normal subset of G is the
union of some conjugacy classes. In other words, if S is a symmetric
normal subset of G, then S ⊆

∪
g∈G

Cg and all eigenvalues of Cayley

graph Cay(G,S) are as follows:

λχ =
1

2χ(1)

∑
g∈G

∑
s∈Cg

δCg(S)|Cg|[χ(s) + χ(s−1)],

where χ ∈ Irr(G).

Example 3.11. Consider the cyclic group Zn as following cases:
Case 1. n is odd, thus Ci = {xi, x−i} (1 ≤ i ≤ n−1

2
) are normal

symmetric subsets of Zn and so

S ⊆
n−1
2∪

i=1

Ci.

For 0 ≤ j ≤ n−1, χj(x
i) = ωij are all irreducible characters of Zn = ⟨x⟩

and ω = e
2π
n
i. Hence

λχj
=

n−1
2∑

i=1

δCi
(S)(ωij + ω−ij).

Case 2. n is even, hence all normal symmetric subsets are

Ci = {xi, x−i} (1 ≤ i ≤ n

2
− 1) and Cn

2
= {xn/2}.

Therefore,

S ⊆
n
2∪

i=1

Ci.
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Similar to the last case, we have

λχj
=

n
2
−1∑

i=1

δCi
(S)(ωij + ω−ij) + (−1)

n
2
jδCn

2
(S).

The cartesian product Γ1⊠Γ2 of two graphs Γ1 and Γ2 is a graph with
vertex set V (Γ1)×V (Γ2) and two vertices (u, v), (x, y) ∈ V (Γ1⊠Γ2) are
adjacent if and only if either u = x and (v, y) ∈ E(Γ2) or (u, x) ∈ E(Γ1)
and v = y.

Theorem 3.12. [3] Let λ1, . . . , λn and µ1, . . . , µm be eigenvalues of
graphs Γ1 and Γ2, respectively. Then, for 1 ≤ i ≤ n and 1 ≤ j ≤ m,
all eigenvalues of Γ1 ⊠ Γ2 are λi + µj.

Consider the presentation of Frobenius group introduced in the be-
gining of this section. Let S be a minimal normal symmetric subset of
Fq,p and Γ = Cay(Fq,p, S).

Theorem 3.13. [5] By above notation, we have

Spec(Γ, S) =

(
2q q(ωj + ω−j) 0
1 1 rp2

)
(1 ≤ j ≤ p− 1),

where S = ⟨bG ∪ (b−1)G⟩ and ω is a pq-th root of unity.

4. Spectrum of Cayley graphs of order p2q

In this section, we compute the spectra of Cayley graphs on groups
of order p2q. To do this, we compute the normal symmetric subsets of
G and then by applying Theorem 3.10, we compute the spectrum of
Cay(G,S) in terms of minimal normal symmetric generating subset S.

Theorem 4.1. If Γ1 = Cay(G,S1) and Γ2 = Cay(H,S2), then Γ =
Cay(G×H,S) is Cayley graph if and only if S = {(s1, 1G), (1H , s2); s1 ∈
S1, s2 ∈ S2)}.

Proof. See [7]. □

By using Example 3.11 and Theorem 3.12, one can compute the
spectrum of Cayley graph Γi = Cay(Gi, Si), where 1 ≤ i ≤ 4. Hence,
to compute the spectrum of Cayley graphs of order p2q, it is suf-
ficient to determine the spectrum of Γ = Cay(G,S), where G ∈
{G5, H4, H5, H5+i}. First, suppose G = G5, l1 = p(p−1)

2
, l2 = q−1

2p
,

l3 =
p2−1
2

and l = l1 + l2 + l3. Then the non-trivial symmetric subsets
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of G5 are

Ci = (aip)G ∪ (a−ip)G (1 ≤ i ≤ l1),

Cl1+j = (bvj)G ∪ (b−vj)G (1 ≤ j ≤ l2),

Cl1+l2+n = (an)G ∪ (a−n)G (1 ≤ n ≤ l3),

Cl+k = (akpbvi)G ∪ ((akpbvi)−1)G(1 ≤ k ≤ l1).

Hence, S ⊆
l+l1∪
i=1

Ci and so we have

λ1G = |S|,

λχm =

l1∑
j=1

δCj
(S)(ϵjmp + ϵ−jmp) + 2p

l2∑
j=1

δCl1+j
(S)

+ (q − 1)

l3∑
n=1

δCl1+l2+n
(S)(ϵmn + ϵ−mn)

+ p

l1∑
k=1

δCl+k
(S)(ϵkmp + ϵ−kmp),

λφm = 2

l1∑
j=1

δCj
(S) +

l2∑
j=1

δCl1+j
(S)(A+ Ā) +

l1∑
k=1

δCl+k
(S)(B + B̄),

ληr,t = p(

l1∑
j=1

δCi
(S)(τ rj + τ−rj)

+

l2∑
j=1

δCl1+j
(S)(C + C̄) +

l1∑
k=1

δCl+k
(S)(D + D̄)),

where ϵ = e
2πi
p2 , τ = e

2πi
p , γ = e

2πi
q , A =

∑
u∈U

γvivju, B =
∑
u∈U

γvivju, C =

p−1∑
j=0

γvitz
j and D =

∑
u∈U

γviut.

Theorem 4.2. [5] The minimal normal symmetric generating subset
of groups G5 is S = (akpbvi)G ∪ ((akpbvi)−1)G.

Corollary 4.3. [5] Let Γi = Cay(Gi, Si), where G1, . . . , G5 are groups
introduced in Section 1 and Si be a minimal normal symmetric gener-
ating subset of Gi. Then
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(1) All eigenvalues of Γ1 are

[ωj + ω−j]1,

where ω = e
2π
p2q

i and 0 ≤ j ≤ p2q − 1.
(2) All eigenvalues of Γ2 are

[αj + α−j + ζ i + ζ−i]1,

where α = e
2πi
pq , ζ = e

2πi
p , 0 ≤ j ≤ p− 1, 0 ≤ i ≤ pq − 1.

(3) All eigenvalues of Γ3 are

[ξi + 2q]1, [ξi + q(αj + α−j)]1, [ξi]t,

where t = p(q − 1), α = e
2πi
q , ξ = e

2πi
p , 1 ≤ j ≤ p − 1, 0 ≤ i ≤

p− 1.
(4) All eigenvalues of Γ4 are

[2q]1, [q(αj + α−j)]1, [0]t,

where t = p2(q − 1), α = e
2πi
p2 , 1 ≤ j ≤ p2 − 1.

(5) All eigenvalues of Γ5 are

[p]1, [A+ Ā]p
2−1, [B + B̄]p(q−1), [D + D̄]p(p−1)(q−1),

where A,B and D are those given before Theorem 4.2.

Theorem 4.4. The minimal normal symmetric generating subset of
H4 is S = (ai)G ∪ ((a−i))G, 1 ≤ i ≤ q − 1.

Proof. The proof is similar to that of Theorem 4.2. □

Corollary 4.5. The spectrum of Cayley graph Γ = Cay(H4, S), where
S is a minimal normal symmetric subset of H4 is

Spec(Γ, S) =

(
2p2 p2(γij + γ−ij) 0
1 q − 1 (p2 − 1)/q

)
(1 ≤ i, j ≤ q − 1),

where S = ⟨(ai)G ∪ (a−i)G⟩, γ = e
2πi
q .

Theorem 4.6. The minimal normal symmetric generating subset of
group G = H5 is S = (ai)G ∪ ((a−i))G, where 1 ≤ i ≤ q − 1.

Proof. It is easy to see that (ai)1 = ai ∈ ⟨S⟩ and a ∈ ⟨S⟩. On the
other hand, the number of q-Sylow subgroups is p2. Hence b, c ∈ ⟨S⟩
and so ⟨S⟩ = G. On the other hand (bick)G ⊂ ⟨b, c⟩ implies that S is a
minimal normal symmetric generating subset of H5. □
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Corollary 4.7. The spectrum of Cayley graph Γ = Cay(H5, S), where
S is a minimal normal symmetric generating subset of H5 is

Spec(Γ, S) =

(
2p2 p2(γij + γ−ij) 0
1 q − 1 (p2 − 1)/q

)
(1 ≤ i, j ≤ q − 1),

where S = ⟨(ai)G ∪ (a−i)G⟩ and γ = e
2πi
q .

Theorem 4.8. The minimal normal symmetric generating subset of
group G = H5+i is S = (ai)G ∪ ((a−i))G, 1 ≤ i ≤ q − 1.
Proof. The proof is similar to the proof of Theorem 4.2. □
Corollary 4.9. The spectrum of Cayley graph Γ = Cay(H5+i, S),
where S is a minimal normal symmetric generating subset of H5+i

is

Spec(Γ, S) =

(
2p2 p2(γij + γ−ij) 0
1 q − 1 (p2 − 1)/q

)
(1 ≤ i, j ≤ q − 1),

where S = ⟨(ai)G ∪ (a−i)G⟩, γ = e
2πi
q .
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COMPUTING THE EIGENVALUES OF CAYLEY GRAPHS OF ORDER p2q,
WHERE p AND q ARE PRIMES

M. GHORBANI, A. SEYED-HADI AND F. NOWROOZI-LARKI

متمایز اول عدد سه حاصل ضرب مرتبه از کیلی گراف های ویژه مقادیر محاسبه

لرکی نوروزی فاطمه و سیدهادی عزیز قربانی، مجتبی
ایران تهران، رجایی، شهید دبیر تربیت دانشگاه پایه، علوم دانشکده ریاضی، گروه

کند. عمل انتقالی گراف کمان ها ی مجموعه روی آن خودریختی گروه هرگاه می نامیم متقارن را G گراف
گروه هرگاه می نامیم متقارن نرمال گراف یک را G گروه روی Γ = Cay(G,S) کیلی گراف همچنین
مقاله، این در کند. عمل انتقالی به طور Γ کمان های مجموعه روی NA(R(G)) = R(G)Aut(G,S)

اول اعداد q و p آن در که می شوند رده بندی pq مرتبه از و ۴ درجه از همبند متقارن نرمال گراف های همه
هستند. متمایز

کمان-انتقالی. گراف نرمال، گراف کیلی، گراف متقارن، گراف کلیدی: کلمات
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