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COMPUTING THE EIGENVALUES OF CAYLEY
GRAPHS OF ORDER jp?g

M. GHORBANI*, A. SEYED-HADI AND F. NOWROOZI-LARKI

ABSTRACT. A graph is called symmetric if its full automorphism
group acts transitively on the set of arcs. The Cayley graph
I' = Cay(G,S) on group G is said to be normal symmetric if
NA(R(G)) = R(G) x Aut(G, S) and Na(R(G)) acts transitively
on the set of arcs of I'. In this paper, we determine the spectra of
all connected minimal normal symmetric Cayley graphs of order
p%q, where p, ¢ are prime numbers.

1. INTRODUCTION

Throughout this paper all groups are assumed to be finite. An impor-
tant development of graph spectra is the interaction between algebraic
graph theory and finite group theory. The concepts and methods of
algebraic spectral methods bring useful tools to study the spectrum of
Cayley graphs.

The aim of this paper is to investigate the spectrum of Cayley graphs
of order p?q via their character table, where p,q > 2 are distinct prime
numbers. The most important works on the problem of computing the
eigenvalues of Cayley graphs was done by Babai in 1979, see [1]. He
used the methods based on the results of algebraic graph theory to
obtain a relation between powers of eigenvalues and then by solving a
system linear equation, the spectrum of the graph can be determined.
In [10] the authors proposed a formula for computing the spectrum of
Cayley graph I' = Cay(G, S) in terms of character table of G, where
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S is a symmetric normal subset of G, see also [5, 6, 7]. The main re-
sults of this paper are related to this formula. In Section 2, we give
the necessary definitions and some preliminary results. In Section 3,
we introduce all groups of order p?q, where p, ¢ are primes and finally
in Section 4, the Cayley graphs spectra of order p?q in terms of their
character tables were given. Here, our notation is standard and mainly
taken from the standard books of algebraic graph theory and represen-
tation theory of finite groups such as [2, 3, 9].

2. DEFINITIONS AND PRELIMINARIES

Let ¢ be a power of a prime number p. A representation of degree n
of group G is a homomorphism « : G — GL(n, q), where a(g) = [g]s
for some basis f. The homomorphism a : G — C* with a(g) = 1,
for all ¢ € G, is called a trivial representation. The character x, :
G — C afforded by representation ¢ is defined as x,(g) = tr([g]z). An
irreducible character is the character of an irreducible representation
and the character x is linear, if x(1) = 1. We denote the set of all
irreducible characters of G by Irr(G).

A character table is a matrix whose rows and columns are corre-
sponding to the irreducible characters and the conjugacy classes of G,
respectively.

Let GG be a group, for every element g € G, we denote the conjugacy
class of g by ¢g“. Assume that N is a normal subgroup of G and ¥ is a
character of G/N, then the character y of G which is given by

x(g) = X(Ng), Vg € G,

is called the lift of ¥ to G.

Let G and H be two finite groups, then the direct product group
G x H is a group whose elements are the cartesian product of sets
G, H and for (g1, h1), (g2, h2) € G x H the related binary operation is
defined as (g1, h1)(g2, h2) = (9192, hihs).

Theorem 2.1. [9] Let G and H be two finite groups with Irr(G) =
{o1,...yor} and Irr(H) = {m,...,ns}. Let M(G) and M(H) be the
character tables of G and H, respectively. Then the direct product
G x H has exactly rs irreducible characters p;n;, where 1 <1 <r and
1 < j <s. In particular, the character table of G X H 1is

M(G x H) = M(G) ® M(H),

where ® denotes the Kronecker product.
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Let p be a prime number and G a group of order p*.m, where p { m.
Every subgroup of order p® is called a Sylow subgroup of GG and the
set of all Sylow subgroups of G is denoted by Syl,(G).

3. MAIN RESULTS

Let p > ¢ be prime numbers where ¢|p — 1. A Frobenius group of
order pq has the following presentation:

F,,={a,b: a® =b"=1,b""ab = a"), (3.1)
where v is an element of order ¢ in the multiplicative group Z;.
According to [4, 8] the structures of groups of order p?q, where p < ¢
are as follows:
L4 G1 = Zp2q,

o Gy =7y X Ly X Ly,

o Gy =17, x Fyp (plg — 1),

o Gy=Fyp (p’lg— 1),

o Gs=(a,b:a” =bl=e,a ba=0b" u=1(modq)) (p?lg—1)

The structures of groups of order p?q, where p > ¢ are as follows:

Hy = Zyg,

Hy = 7y, X Ly X Ly,

Hy =7y x Fpq (alp — 1),

Hy={(a,b:a? =" =1,a""ba = b*, o = 1 (mod p*)) (¢p —

1),

e Hy = (a,b,c|a? =W =c =1,a"ba = c,a 'ca = b~ c* be =
ch, (o ++va2 —1)7 =1 (mod p) ), where q|p+ 1 and a® — 1 is
not a perfect square, namely an integer that is not the square
of an integer. _

o Hyy = (a,byc|a? =W =c”=1,a"tba =b°,a" ca =, bc =
cb, 1 =1 (mod p)), where B = {1,2,3,...,%14— 1},i e B
and ¢lp — 1.

The aim of this section is to investigate the character table of groups
of order p?q. The character table of cyclic and Frobenius groups can be
found in [9]. On the other hand, the character table of product groups
can be computed directly by using Theorem 2.1. Hence, it remains to
compute the character table of group G, where G € {G5, Hy, Hs, H5;}.
It is not difficult to prove that G5 = (b) and Z(G5) = (a?), where Z(G5)
denotes the center of Gj.
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Lemma 3.1. || The conjugacy classes of G = G5 are

{1} {a"}, ... eV},

") ={" JuelU}, 1<i<(¢—1)/p,

(@) ={a"" |1<i<q-1}, 1<n<p’—1pfn,

(a™b) = {a"p" | u e U}, 1<i<(qg—1)/p,1 <k <p-—1,
gei;izgn:ﬁ(;g ch gsglbnggup of order p in Z; and v;’s are distinct coset

Theorem 3.2. | ] Let P:q (p < q) be distinct prime numbers, 0 <
27”

T=cer (md v = = Then all irreducible characters of G5 are as
reported in Table 3.

g | a* bvi a” akPhve
Xm 6kpm 1 emn 6kpm
ViV U ViV U
oi | P Y A0y
uelU uelU
4] .
771“,15 p,]_rk § ,yvltz O TrkE ,yvzut
Jj=0 uclU

Table 3. The character table of group Gj.
Lemma 3.3. The conjugacy classes of G = Hy are
{1},
(@M% ={(@)" | 1<m<p’}, 1<n<gq,
B ={0)"]j=1,2,3,--- ¢}, 1 <i < (p* = 1)/q,

where v;;’s are distinct coset representatiive of {1, a,a?, ..., a7 '} in
Z*Q.

P
Proof. Suppose G = H,, since p > q a d |G| = p?q, it is clear that
(b) <G and so (b)Y C (b), |(b)C] = ’;— g. In other words,

() = {0 =1,2,3,...,q} = {b', b, b . b )
Suppose v;’s are distinct coset representative of {1, a, a?, ... ,oﬂ_l} in
Z,. Tt is clear that (b') ’s can be displayed by (b*)“ ’s. On the other
hand, according to the presentation of H; and by counting members
of Hy, it turns out that the Seylow p-subgroup is of order p? and thus
|(a™)¢] = p?. Hence, (a™)% = {(a")*" | 1 <m < p?} for 1 <n < g and
the proof is complete. O
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Theorem 3.4. Let p,q (p > q, q | p—1) be distinct prime numbers,

27

1§m,n§q—1,1§i,k§(p2—1)/q,1§j§q, where vy = e« and

2mi
T =er*. Then all irreducible characters of Hy are as reported in Table

/.

g [1 a" bU
xo |1 1 1
Xm | 1o™ 1

q
Pua [ 0 Y T
j=1

Table 4. The character table of group Hjy.

Proof. Tt follows from Lemma 3.1 that G = Hy has ¢+ (p* — 1) /q irre-
ducible characters. Among them ¢ characters are linear, since |G /G| =
q (G = Zy2). On the other hand, G /G is a cyclic group of order ¢
and thus all its irreducible characters are of the form Y, : G/G" — C*
with ¥m((@)"G") = 4™, where v = e’i and 1 < n,m < ¢. By lifting
these characters, we get ¢ linear characters y,,(1 < m < ¢) such that

Xm(@") = Xm(a"G)=7"", 1<n<qand
p*—1

q

Xm(B) = Xm(0G) = Xm(G) =1, 1 <i <

Let H = Z,» = (b), it is not difficult to see that H has p? linear
characters such that

or(b) = T 1<k <ph
For given k € {1,2,3,...,p* —1/q}, the degree of induced character
Pogy = @'Ukl TGis

o (1) = o, 1 G(1) = %(%)(1) Lo,

On the other hand, we have
CeV)] = |Cu(¥)| = p*, 1<i,j<p,
(@NH=¢, 1<n<q—1,
()" UH = ((b)")% 1<i<(* ~1)/q.
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Hence

(lbvkl T G(1> = q’
P TG((aM) = 0,1<n<qg-—1

q
Bo TGO = Y By, (0)
j=1

q
_ ZTvmvij, 1<ik<(p*—1)/q.

J=1

So, we get (p* — 1)/q characters of G with degree ¢. It remains to
show these are all distinct irreducible characters of G. Thus

Y W) =IGl=pqand > x}1) =G =" -1
Xi€lrr(G) X €Irr(G),x: (1)#1

Now by regarding to (p>—1)/q non-linear irreduicible characters of G,
it is not difficult to see that x;(1) = ¢, for all x; € Irr(G) and x;(1) #
1. Hence, ¢,,, is an irreduicible character or a linear combination of
linear irreduicible characters. The second one is impossible, because
otherwise, we must have G' = Z,» C K ery,, » a contradiction. It

follows that ¢,,, is irreducible. It is not difficult to verify that all
¥uy,; s are distinct and the proof is complete. O

Remark. Suppose that the group H is matrix representation of
GF*(p*) in GL(2,p) and

k= ) (32)

is a subgroup of order g of H. In the following, suppose {Ki}i: Log. o1
YTy q
are distinct cosets of K in H and v;; = ( fij ) , (1=1,2,3,...,q) 1s

ij
the first column of matrices in Kj.

Lemma 3.5. The conjugacy classes of G = Hs are
{1},
(an)G:{<an)bmck | 1§m§p’1§]{;§p}’ 1<n<gq,
(b)) = {(be)" = (b =] j = 1,2.3.++ .q)
1<i<(p® - 1)/q.

Proof. Since q | p+1 and q t p—1, we have |Syl,(G)| = p?. On the other

hand, all Sylow g-subgroups of G are conjugate, hence o((a™)%) = p?
and (a")% = {(@)""" |1 <m < p,1 < k < p}, where 1 < n <
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q. We know that the unique Sylow p-subgroup G is normal, hence
(b,c¢) = Z, x Z,, is the union of conjugacy classes of G and o((b'c¢’)%) =
‘Gl/pQ = pQQ/pQ =4q ((27]) # (070)) Hencea <b7 C> - {1} contains
0 —1 .

1 2o | 8 the
matrix presentation of ¢ € Aut(Z, x Z,) = GL(2,p) in semi-direct
product (Z, x Z,) X, Z,. Hence

(p* — 1)/q conjugacy classes of order ¢. Finally,

{(B)E = {(H)™ = a~h (i )ak = () | k=1,2,3,...,q}.
This completes the proof. O

Theorem 3.6. Let p,q be distinct prime numbers, where p > q and

q| (p+1). Suppose 1 <m,n<qg—1,1<4<(p*—-1)/q,1 < k1<
27 27

p,1<j3<qvy=ea andT=-er . Then all irreducible characters of

Hy are as reported in Table 5.

g 1 a" pei1 cﬁﬂ
w1 1 1
m |1 ™1

q
o la 03Tt
Jj=1

Table 5. The character table of group Hs.

Proof. Tt follows from Lemma 3.1 that G = Hj has ¢ + (p* — 1)/q
irreducible characters and among them ¢ characters are linear, since
|G/G'| = q (G' =Z, x Z,). On the other hand, G/G is a cyclic group
of order ¢ and then all its irreducible characters are of the form x, :
G/G" — C with X,n((a)"G") = 4™, where v = e'i and 1 < n,m < q.
By lifting these characters, we get ¢ linear characters y,,(1 < m < q)
such that

Xm(a”) = Ym(a"G)=~"",1<n<q,
Ym(BF) = Tm(BIC) = 3m(G) =1, 1 <i,j < p.

Let H = Z, x Z, = (b, c), it is not difficult to see that H has p? linear
characters such that

Gr(bid) = TR <kl <p.
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For given elements (k,l) € Z, x Z, — {(p,p)}, the degree of induced
character @y == @i 1 G is

Gl
[{b; )|

(Gu)(1) = 20— g,

or(l) = o T G(1) = 7

On the other hand, we have
Ca(b'd)| = |Cub'd)] = p*, 1<i,j<p,
(@CNH=¢, 1<n<q-1,
((be)™ ) UH = ((be)™*), 1 <i < (p* —1)/q.

Hence
@szG(l) = g,
Pt G((@)%) = 0, (1<n<qg-1)
o T G(((be)"™)%) = Z(s@u((bc)””d=Z(s0m)((b%cﬁ”)
= Dt 1 <i< (' - 1)/g,

where 1 < k,j < p and (k,l) # (p,p). This means that we have p? — 1
characters of ¢. It remains to show these are all irreducible characters
of G. We have

S oW =I6=re Y. W) =16=@ -
xi€lrr(G) xi €Irr(G),xi (1)#1

We can prove that x;(1) = ¢ for all x; € Irr(G), xi(1) # 1. Hence, pi
is an irreduicible character. This completes the proof. OJ

Lemma 3.7. The conjugacy classes of G = Hs,; are
{1},
()¢ ={(@)" [1<m<p1<k<p}, 1<n<g,
(bec) = [ | = 1,23, g 1< < (5 — Do,
(

c

where (v, uy)’s are distinct coset representatives of H = {(8%, p*)| k =

1,2,3,...,q} with multiplicity H(n,m) = {(nB8%, mB*)| k=1,2,...,q},
where {(n,m)| 0 < n,m < p—1,(n,m) # (0,0)} andt =1,2,3,..., (p*—
1)/q.

Proof. The proof follows by using Lemma 3.5. 0J
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Theorem 3.8. Letp,q (p > q) be distinct prime numbers, where q|p—1,

1<mn<qg—1,1<ts< (p2—1)/q,7:e% and T =er . Then
all irreducible characters of Hs.; are as reported in Table 6.

g |1 a” bttt
Yo |1 1 1
o |1 ™ 1
q
Goou. | ¢ O Z FUsvt ) tusue
j=1
Table 6. The character table of Hs,;.
Proof. The proof is similar to the proof of Lemma 3.3. O

A symmetric subset of group G is a subset S C G, where 1 ¢ S
and S = S7!. Let G be a finite group with symmetric subset S. We
recall that S is a normal subset if and only if g7'Sg = S, for all g € G.
The Cayley graph I' = Cay(G, S) with respect to S is a graph whose
vertex set is V(I') = G and the vertex x is adjacent with y if and only
if yz=! € S. Tt is a well-known fact that Cay(G, S) is connected if and
only if S generates the group G, see [2].

Let I" be a simple graph with the adjacency matrix A(I'). The char-
acteristic polynomial y,(I") of A(T") is defined as [3]:

Xa(l) = |A = A
and the roots of this polynomial are called the spectrum of T'.
The study of the spectrum of Cayley graphs is closely related to the

irreducible characters of the group under consideration. If GG is abelian,
then the spectrum of I' = Cay(G, S) can be determined as follows.

Theorem 3.9. [2] Let S be a symmetric subset of abelian group G.
Then the eigenvalues of the adjacency matriz of Cay(G,S) are given

by
Ao = (s),

seSs

where ¢ € Irr(G).
The following theorem is implicitly contained in [10, 11].

Theorem 3.10. Let G be a finite group with a normal symmetric subset
S. Let A be the adjacency matriz of the graph I' = Cay(G,S). Then
the eigenvalues of A are given by

MO x € Irr(@),
where A\, = ﬁ Y ses X(5).
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By a circulant matrix, we mean a square n X n matrix whose rows are
a cyclic permutation of the first row. A circulant matrix with the first
row [co, €1, - . ., Cn_1] is denoted by [[co, ¢1, ¢, .. ., cn_1]]. By a circulant
graph, we mean a graph whose adjacency matrix is circulant. We recall
[3] that for w = e, the n—th root of unity, all eigenvalues of circulant
matrix [[co, ¢1,Coy - - ., Cn_1]] are given by

Aj =co+ Cno1w? 4 w4 o 4wV < j<n-—1. (3.3)
Let A, B be two arbitrary sets. In what follows we assume that

1ACB

5A(B)_{ OAZB :

Let C, = g9 U (¢7")“. Tt is clear that every normal subset of G is the
union of some conjugacy classes. In other words, if S is a symmetric

normal subset of G, then S C U C, and all eigenvalues of Cayley
geG
graph Cay(G, S) are as follows:

Ay = ZZécg )Cylx(s) + x(s7H)],

QGG s€Cy

where x € Irr(G).

Example 3.11. Consider the cyclic group Z, as following cases:
Case 1. n is odd, thus C; = {z', 27} (1 < i < ") are normal
symmetric subsets of Z,, and so

Sc U C;.
i=1

For 0 < j < n—1, x;(2') = w¥ are all irreducible characters of Z,, = (x)
and w = e . Hence

n—1
5
Ay, = Z(Sci(S)(Wij +w™Y).
i=1
Case 2. n is even, hence all normal symmetric subsets are
i - . _ N n
C;={a"x }(1§z§§—1)(md6’%:{x /1.

Therefore,

e
=1
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Similar to the last case, we have

o

My = I 06,(S) (W +w ™) + (=1)# e, (5).

The cartesian product I'yXI'y of two graphs I'; and I's is a graph with
vertex set V(I'1) x V/(I'y) and two vertices (u, v), (x,y) € V(I'1KI'y) are
adjacent if and only if either u = x and (v,y) € E(I'y) or (u,x) € E(I'y)
and v = y.

Theorem 3.12. [3] Let Ai,..., A\, and p, ..., 1y be eigenvalues of
graphs I'y and T'y, respectively. Then, for 1 <1 <n and1 < j < m,
all eigenvalues of I'y M T'y are \; + p;.

Consider the presentation of Frobenius group introduced in the be-

gining of this section. Let S be a minimal normal symmetric subset of
F,pand I' = Cay(F,,,S).

Theorem 3.13. [5] By above notation, we have
(2 qw+w) 0 :
Spec(I', S) = ( 1 1 rp? (1<ji<p-1),

where S = (b U (b1 and w is a pq-th root of unity.

4. SPECTRUM OF CAYLEY GRAPHS OF ORDER p%q

In this section, we compute the spectra of Cayley graphs on groups
of order p?q. To do this, we compute the normal symmetric subsets of
G and then by applying Theorem 3.10, we compute the spectrum of
Cay(G, S) in terms of minimal normal symmetric generating subset S.

Theorem 4.1. If 'y = Cay(G,S1) and 'y = Cay(H,Ss), then I' =
Cay(Gx H,S) is Cayley graph if and only if S = {(s1, 1c), (1u, $2); 1 €
81,82 < SQ)}

Proof. See [7]. O

By using Example 3.11 and Theorem 3.12, one can compute the
spectrum of Cayley graph I'; = Cay(G}, S;), where 1 < i < 4. Hence,
to compute the spectrum of Cayley graphs of order p?q, it is suf-
ficient to determine the spectrum of I' = Cay(G,S), where G €

{Gs, Hy, Hs, Hsy;}. First, suppose G = Gs, I} = 250 [, = &1

2p
I3 = p22_ Land [ =1y + Iy + l3. Then the non-trivial symmetric subsets
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of G5 are
Ci = (@")%U(a™) (1<i<h),
Cl1+j = (bvj)GU (b v\ G (]_ < j < lg),
Chsipin = (@)°U@™C (1<n<ly),
Crpe = (a™b")“ U ((a"b7) (1 <k <),

I+

Hence, S C U C; and so we have

A1

G

A

Xm

m

Nr,t

i=1

- ‘SL
l2

= Y 06, (S)(EM + eI 4 2p > " bey L, (S)

j=1

+ (@ =1) Y 8y, (S)(E™ ™)

+ P O, (S) (M 4 e,

ll l2 ll
= 2 60,(5) + Y ben,, (NA+ A+ be,, (S)(B+
j=1 j=1 k=1

5t
_ p(z 5o, (S) (777 + 77)

l2 Iy
T Z Ocy, s (S)(C + C) + Z5Cz+k(5)(D + D)),

k=1

B),

2i2i 2mi 2mi E ViV U E ViU
WhereeZGP,T:ij”y:eq’A: '}/ZJ,B: ,-ng’C:

uelU uelU
p—1
itzd v;ut
Y andD:Z'y’ :
7=0 uelU
Theorem 4.2. [5] The minimal normal symmetric generating subset

of groups Gs is S = (a*"b¥)% U ((akPbri)~1)C.

Corollary 4.3. [0] Let I'; = Cay(G,, S;), where Gy, .. .,

G5 are groups

introduced in Section 1 and S; be a minimal normal symmetric gener-
ating subset of G;. Then
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(1) All eigenvalues of T'y are
[w” +w ),

27
where w = er’a" and 0 < j < p?q — 1.
(2) All eigenvalues of I's are
[0 + a7+ ¢+ T
whereoz:e%, Qze%, 0<j<p—-1,0<:<pg—1.
(3) All eigenvalues of I's are

[+ 24", [€ + a(o? + 7)) [€"

where t = p(g —1),a=ct,E=er,1<j<p-1,0<i<

p— 1.
(4) All eigenvalues of I'y are

[24]", la(e? + ™))", (O],

s

where t = p*(q—1),a=e»?, 1< j<p?—1.
(5) All eigenvalues of T's are

V)

Pl [A+ AP [B + BIPUD, [D + Db,
where A, B and D are those given before Theorem J.2.

Theorem 4.4. The minimal normal symmetric generating subset of
Hyis S = (a)“U((a™))% 1<i<q—1.

Proof. The proof is similar to that of Theorem 4.2. OJ

Corollary 4.5. The spectrum of Cayley graph I' = Cay(Hy, S), where
S is a minimal normal symmetric subset of Hy is

22 2 ij+ —ij 0 o

2mi

where S = {(a")9 U (a™)%), y=¢"a .

Theorem 4.6. The minimal normal symmetric generating subset of
group G = Hs is S = (a)¢ U ((a™"))%, where 1 <i < q—1.

Proof. Tt is easy to see that (a')! = a' € (S) and a € (S). On the
other hand, the number of ¢-Sylow subgroups is p?>. Hence b,c € (S)
and so (S) = G. On the other hand (b'c*)¢ C (b, ¢) implies that S is a
minimal normal symmetric generating subset of Hs. O



202 GHORBANI, SEYED-HADI AND NOWROOZI-LARKI

Corollary 4.7. The spectrum of Cayley graph I' = Cay(Hs, S), where
S is a minimal normal symmetric generating subset of Hy is

272 2 ij+ —ij 0 o
Spec(F,S)—( ]1) p(’yq_l’}/ ) <p2_1)/q)<1§2a]§q_1)7

27

where S = {(a")% U (a=")%) and y = e .

Theorem 4.8. The minimal normal symmetric generating subset of
group G = Hsy; is S = (a))9 U ((a7))%, 1 <i<q—1.

Proof. The proof is similar to the proof of Theorem 4.2. OJ

Corollary 4.9. The spectrum of Cayley graph I' = Cay(Hsyi, S),
where S is a minimal normal symmetric generating subset of Hsy;
18

22 2 ij+ —ij 0 o

where S = {(a’)¢ U (a™")%), y=¢"a .
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