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f-DERIVATIONS AND (f,9)-DERIVATIONS OF MV-ALGEBRAS
L. KAMALI ARDEKANI AND B. DAVVAZ*

ABSTRACT. In this paper, we extend the notion of derivation of MV -algebras and give
some illustrative examples. Moreover, as a generalization of derivation of MV -algebras
we introduce the notion of f-derivations and (f, g)-derivations of MV-algebras. Also,

we investigate some properties of them.

1. INTRODUCTION

In [7], Chang invented the notion of MV-algebra in order to provide an algebraic
proof of the completeness theorem of infinite valued Lukasiewicz propositional calculus.
Recently, the algebraic theory of MV -algebras is intensively studied, for example see
[17, 18, 19]. The notion of derivation, introduced from the analytic theory, is helpful to

the research of structure and property in algebraic systems. Several authors [3, 9, 10]

studied derivations in rings and near-rings. Jun and Xin [!1] applied the notion of
derivation to BCT-algebras. In [20], Szdsz introduced the concept of derivation for
lattices and investigated some of its properties. Also, in [21], Xin et al. improved

derivation for a lattice and discussed some related properties. They gave some equiva-
lent conditions under which a derivation is isotone for lattices with a greatest modular
lattices and distributive lattices, also see [15]. After these studies the f-derivation and
symmetric bi derivation of lattices were defined and studied in [, 6]. Ozbal and Firat in

[14] introduced the notion of symmetric f-bi-derivation of a lattice. They characterized
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the distributive lattice by symmetric f-bi-derivation. In [11], Jun and Xin introduced
the notion of derivation in BC'I-algebras, which is defined in a way similar to the notion
in ring theory, and investigated some properties related to this concept. In [22], Zhan
and Liu introduced the notion of f-derivation in BCI-algebras. In [4], Ceran and Asci
defined the symmetric bi-(o, 7) derivations on prime and semiprime Gamma rings. In
[2], Alshehri applied the notion of derivation to MV -algebras and investigated some of
its properties.

Now, in this paper, we extend the notion of derivation of MV -algebras. Moreover, as
a generalization of derivation of MV -algebras we introduce the notion of f—derivations

and (f, g)-derivations of MV -algebras.

2. PRELIMINARIES

In this section, we recall the notion of an MV-algebra and then we review some

definitions and properties which we will need in the next section.

Definition 2.1. An MV -algebra is a structure (M, @, *,0) where M is a non-empty
set, @ is a binary operation, * is a unary operation, and 0 is a constant such that the

following axioms are satisfied for any a,b € M
(MV1) (M, e, 0) is a commutative monoid;

(MV2) (a)" =
(MV3) 0* @ a=0%
(MV4) (a*®b)* b= (b*Da)* Da.
We define the constant 1 = 0* and the auxiliary operations ®, S,V and A by
a®b=(a"®b)", ab=a®b", aVb=a® (bOa"), aNb=a® (bda").

Example 2.2. Any boolean algebra is an MV -algebra.

Example 2.3. The real unit interval [0, 1] with operations & and * defined by
r@y=min{l,z+y}andz*=1—-2x
is an MV-algebra

Theorem 2.4. [7] Let (M, ®,*,0) be an MV -algebra. The following properties hold
forallz e M
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1) z@l=1;
(2) zda* =1,
(3) 200=0 and z ® z* = 0.

Moreover, (M, ®,1) is a commutative monoid [7].

Theorem 2.5. [7] Let (M, ®,*,0) be an MV -algebra. The following properties hold
forallz e M

(1) Ift®@y=0, thenx =y =0;

(2) Ifroy=1, thenx =y =1;

B) zdy=yifand only ift Oy = x;

4) (zVy)®dz=(x®2)V(yP2).

Let (M, ®, *,0) be an MV-algebra. The partial ordering < on M is defined by
r<y<=xAy=uxzforall z,y e M.

x ANy = x is equivalent to x Vy = y. The structure (M, V,A,0,1) is a bounded
distributive lattice. If the order relation <, defined over M, is total, then we say that

M is linearly ordered.

Theorem 2.6. [7] Let (M,®,*,0) be an MV -algebra. The following properties hold
forallx e M

(1) Ife <y, thenzVz<yVzandx ANz <yAz;

2) Ife <y, thenz®z<y@®zandr®z<yoOz;

(3) z <y if and only if y* < x*.

Theorem 2.7. [7] For all x,y € M, the following conditions are equivalent:
(1) z<y;
(2 yda*=1;
(3) zoy*=0.

Theorem 2.8. [7] Let M be a linearly ordered MV -algebra. Then, x @y =z @ z and
x @z # 1 implies that y = z.

Let M and N be two MV-algebras. The function f: M — N is called a homomor-

phism if it satisfies the following conditions:

(1) f(Oar) = On;
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(2) flzony) = f(z) ®dn f(y);

(3) f(z*) = f(x)";
for all z,y € M. If f is a homomorphism, then f(1y) = 1y and f(x Op y) =
f(z)®n f(y). A homomorphism f is called an isomorphism if it is one to one and onto.

Let M be an MV-algebra and I be a non-empty subset of M. Then, we say that [

is an ¢deal if the following conditions are satisfied:

(1) 0 € I;

(2) z,y € I imply z®y € I,

(3) z €l and y <z imply y € I.

Lemma 2.9. Let I be an ideal of MV -algebra M and f : M — M be an isomorphism.
Then, f(I) is an ideal, too.

Proof. 1t is obvious. O

Let BIM)={zeM |zdr=a}={re M |xex=ux}. Then, (B(M),®,x*,0) is
both a largest subalgebra of M and a Boolean algebra.

Definition 2.10. A BC1I-algebra X is an abstract algebra (X, *,0) of type (2,0),
satisfying the following conditions, for all x,y, 2z € X,

(BCI1) ((xxy)x(x*2))*(zxy) = 0;

(BCI2) (xx (x*y))*xy =0;

(BCI3) zxx = 0;

(BCI4) x+y =0 and y x x = 0 imply that x = y.

A non-empty subset S of a BC'I-algebra X is called a subalgebra of X if x xy € S,
for all z,y € S. In any BCI-algebra X, one can define a partial order “ <” by putting
x <y if and only if z xy = 0. A BCI-algebra X satisfying 0 < z, for all z € X, is
called a BC'K -algebra.

Let (M,®,*,0) be an MV-algebra. Then, the structure (M,©,0) is a bounded
BCT\ BCK-algebra.

3. DERIVATIONS OF MV-ALGEBRAS

Definition 3.1. Let (M, ®, *,0) be an MV-algebra. Then, the map D : M — M is
called
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(1) a derwation of type 1, if D(z ®y) = (D(z) ®@y) ® (x © D(y)), for all x,y € M
Rk

(2) a derivation of type 2, if D(x Ay) = (D(z) Ay) V (z A D(y)), for all z,y € M;

(3) a derivation of type 3, if D(z & y) = (D(z) ©y) A (x © D(y)), for all z,y € M.

If MV-algebra M is a Boolean algebra, then for all x,y € M, x ®y = x V y and
r®y = x Ay. So, in this case, every derivation of type 1 on M is coincide with
derivation of type 2 on M.

Let (M, @®,*,0) be an MV-algebra. Then, the definition of derivation of type 2 on
(M, ®, ,0) is coincide with the definition of derivation on lattice (M, A,V,0,1). Also,
the definition of derivation of type 3 on (M, ®,*,0) is coincide with the definition of
derivation on bounded BCI \ BC K-algebra (M, ©,0).

Let M be an MV-algebra and D : M — M be a derivation of type 1 (2 and 3,

respectively). Then, for convenience, we denote D by D' (D? and D3, respectively).

Theorem 3.2. Let (M, ®, x,0) be an MV -algebra and D' be a derivation of type i on
M, 1<1i<3. Then, for all 1 <i < 3, we have

(1) D'(0) =0;
(2) D(z) <z, for allx € M.

Proof. (1) Tt is proved in [2] that D'(0) = 0. We have D?(0) = D?*(0 A 0) = (D?*(0) A
0)V (0AD?*0)) =0and D*0) =D}z o1) = (D*(z)e1)A(xe D*(1)) =0, for all
x e M.
(2) Tt is proved in [2] that D!(z)
(x A D*(x)) = D*(x) A x. So, D?*(x)
Also, we have D3*(z) = D3(z ©0) = (D3*(z) ©0) A (x © D3(0)) = D3(x) A x. So,
D3(z) < . O

x. We have D?(z) = D*(z A z) = (D*(z) Az) V

<
<z

Let M be an MV-algebra. The function D : M — M, defined by D(z) = 0, for all
x € M, is a derivation of type 1, 2 and 3 on M. We denote it by D = 0.

Also, the function D : M — M, defined by D(z) = z, for all x € M, is a derivation
of type 2 and 3 on M. We denote it by D = I.

Example 3.3. Let M = {0,1}. Consider the following tables:
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@0 1

*x|0 1
010 1

10
111 1

Then, (M, @®,*,0) is an MV-algebra. It is only MV -algebra of order 2. The functions
D; =0 and Dy = I are only derivations of type 1. Also, they are only derivations of
type 2 and 3.

Example 3.4. Let M = {0, x,1}. Consider the following tables:

o0 = 1
0|0 =z 1 x| 0 a7 1
xy|x 1 1 1 21 0
171 1 1

Then, (M, ®, *,0) is an MV-algebra. It is only MV-algebra of order 3. By calculation,

we obtain Figure 1.

D(0) D(z1) D) D)  D(xy) D(1) D)  D(z) D)
0 0 0
0 0 0 1
T 0 T1 0
" 1 Ty 1
Derivations of type 1 Derivations of type 2 Derivations of type 3

FIGURE 1. Derivations of type 1, 2 and 3 for Example 3.4.

Thus, we have only two derivations of type 1 on M. They are as follows:

0 ifz=01
D{ =0 and D%(LE):{ n

r, i x=ux.
We have only four derivations of type 2 on M. They are as follows:

0 ifz=0,1
D=0, D;=1, Dg(a:):{ and

z fz=mx

r, if x =z, 1

0 ifz=0
D%ﬂz{
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We have only three derivations of type 3 on M. They are as

0 ifxr=01

D?=0, Di=1 and Di(z)=

It is clear that DJ is not a derivation of type 3, because z; = Di(x) = Di(16z,) #
(Di(1) & x1) A (1 & Dy(x1)) = 0. Also, D3 is not a derivation of type 1, because
r1=D3101)# (Di(1)®1)® (1® Di(1)) = 1. So, derivation of type 1 and 3 are
independent.

It is clear that D? is not a derivation of type 3, because z; = D2(1 & z) # (D3(1) &
1) A (16 D2(z1)) = 0. Also, D3 is not a derivation of type 2, because 0 = D3(x; A1) #
(D3(x1) A1)V (1 A D3(1)) = x1. So, derivation of type 2 and 3 are independent.

We have only two MV -algebras of order 4. They are considered in the next two

examples.

Example 3.5. Let M = {0, x, 25, 1}. Consider the following tables:
S0 71 x

010 x1 x
b *‘01’13321

1 z9 21 O
Q?QiCQll ‘21

1
1
r1|x1 29 1 1
1
1

171 1 1
Then, (M, ®,*,0) is an MV -algebra. By calculation, we get Figure 2.

D(0) D(z1) D(x2) D(1) D(0) D(x1) D(z2) D(1)  D(0) D(z1) D(z2) D(1)

0
0 0 0 T
0 0 0 o
T 0 0 T .
T T2
Derivations of type 1 Derivations of type 2 Derivations of type 3

FIGURE 2. Derivations of type 1, 2 and 3 for Example 3.5.
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Thus, we have only two derivations of type 1 on M. They are as follows:

0 ifz=021
Di =0 and Di(z)= !
r, if = xs.
We have only eight derivations of type 2 on M. They are as follows:
D? =0, D=1

0 ifz=011 0 ifz=0,1
oo o |

r1 if x = 2y, r, if x = 21, 29,

0 if 0 0 ifxz=0,1
if x =

Di(z) = . Di(x) =1 z ifx=ua

xy if x =2y, 29,1, .
| 22 if 2 =1y,

0 ifz=0 (0 ifz=0

D%(.Z’) = 1 if = Xy, 1 Dg(x) = T if r = T
To if x = @9, Ty if x = x9, 1.

\
We have only four derivations of type 3 on M. They are as follows:

D}:Qlﬁ:[,D%@:{o fo=0m,2 4
r, fz=1
0 ifz=0,2,
Dix) =% x; if 2=
Ty if x =1
It is clear that D) is not a derivation of type 2, because 0 = D}(z;) = Di(z1 A zq) #
(Di(x1) A x2) V (z1 A Di(z2)) = 1. Also, D? is not a derivation of type 1, because
r1=D2(1)=D2(101) # (D{1)©1)® (1 DE(1)) = 21 ® 21 = z2. So, derivation of
type 1 and 2 are independent.

Example 3.6. Let M = {0, x, 25, 1}. Consider the following tables:

SP) 0 1 T2 1
010 =z 220 1
! 2 * ‘ 0 Ty T2 1
1 | 1 Iq 1 1 ‘ 1 0
xz xz
To | T2 1 T 1 2 !
171 1 1 1
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Then, (M, ®, *,0) is a Boolean MV-algebra. So, derivation of type 1 is coincide with

derivation of type 2. By calculation, we get Figure 3.

D) D) D) D)  DO) D) D) D)

X2

Derivations of type 1 and 2 Derivations of type 3

FIGURE 3. Derivations of type 1, 2 and 3 for Example 3.6.

Hence, we have only nine derivations of type 1 on M. They are as follows:

0 ife=0ua,1
D'=0, Dy =1, D%@:{ sE=nm

To if x = 1o,

0 ifxr=02 0 ifxr=0,291
Dj(x) :{ Dj () :{

Ty if x = 29,1, ry if x = x4,

’

0 if 0 0 iftx=0,1
if 2 =0,z
Di(x) = | P Diw)=Q @ o=
r if x =2, 1, ‘
[ 22 if £ =ux9
0 ifz=0 (0 ifz=0
Di(z)=X =z, ifx=x1,1 Dix)=< z ifzx=n
Ty if x = @9, [ 22 if x = o, 1.

We have only four derivations of type 3 on M. They are as D? = 0, D3 = I ,

) 0 ifzx=0, 0 ifx=0,
Di(z) = n "1 and D3(z) = n 2
Ty if x = 29,1 r, ifx=ux,1

We have one MV -algebra of order 5. It is considered in the next example.
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Example 3.7. Let M = {0, x, x5, x3,1}. Consider the following tables:

D 0 Tr1 T2 I3

0 0 Tr1 T2 I3

T1 | X1 T2 I3 *‘0 Tr1 X9 ZE31

To | Ty x3 1
r3|lxzs 1 1
11 1 1
Then, (M, ®,*,0) is an MV -algebra. By calculation, we get Figure 4.

1
1
1
1 ‘1x3x2x10
1
1

—_ = =

D(0) D(xz1) D(x2) D(x3) D(1) D(0) D(xy) D(xz2) D(xs)
. 0 0 0
0 0 3 0 0
0
0 0 0
x1 x2 x2 T
T
Derivations of type 1
1 0
x1
x
Derivations ? 2
of type 2
4o T2 I3
I3

Derivations of type 3

FIGURE 4. Derivations of type 1, 2 and 3 for Example 3.7.

Thus, we have only three derivations of type 1 on M. They are as follows:

0 fz=02,291
Di =0, D%(x):{ ne ot and

vy if © =23
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0 ifzx=0,1
Dé(:z:) =4 71 ifz=mx

Ty if x = x9, x3.

We have only sixteen derivations of type 2 on M. They are as follows:

D? =0, D=1,
0 ifx=0,29,231 0 ifxr=0,231
D3(x) = T D) = ’
rp if x = x4, r1 if x = 21, 29,
0 ifz=0,1 0 ifz=0
Di(z) = D(x) =
ry if x = 21, 29, 23, ry if x =21, 29,23, 1,
(0 ifz=0241 0 ifz=0,1
Diz)=X z; ifx=um Diz)=1% =z, if v =z, 25
| 22 if x = o, Ty if x = 2o,
(0 ifz=0 (0 ifz=0,1
Di(x) = a1 if @ = 21,23, 1 D) =9 o fz=u2
| 22 if x = o, | 22 if x = 29,23,
( (
0 ifz=0 0 ifz=0
DY(r) =4 a1 if z=m,1 Dy(r) =4 21 ifz =1
(| 22 1 @ = 19, 13, | 22 i v = 1,25, 1,
(0 ifz=01 (0 ifz=
z, fz=mx ry ifx=ux1
D3 (z) = ' Di(z) = .
To if T = x4 To if T =29
L T3 if v = T3, | T3 if v = xrs,
(0 ifz=0 (0 ifte=0
v, i x=ux v, fz=m
D2 (z) = , Dis(z) = 4 .
Ty if x =x9,1 To if v = x4
| 3 if x = x3, | 23 if x=x3,1.
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We have only five derivations of type 3 on M. They are as follows:

0 if :07 ) )
D=0, Di=1, Di(z)= SRR
T lfl’zl,
)
0 ifx=0z
0 ifz=0,21,29 !

Di(z) =} x; if 2 =ua3 and D3(z) =

r, if z=x9

Ty if © =23

[ 73 if r=1

Let M; and M5 be two MV-algebras. Then M; x M, is an MV -algebra. Also, let
D, and D, be derivations of type 1 (2 and 3, respectively) on M; and Ma, respectively.
Then, D = Dy X Dy : My X My — M; x My defined by D((x,y)) = (D1(z), D2(y)),
for all x € My, y € M, is a derivation of type 1 (2 and 3, respectively). But, all of
derivations of type 1 (2 and 3, respectively) on M; x My are not as form D; x Dy, where
Dy and D, are derivations of type 1 (2 and 3, respectively) on M; and My, respectively.

The following example shows this matter.

Example 3.8. Consider the MV-algebra M, defined in Example 3.6. Then M = S; x
S1, where S} is the MV-algebra defined in Example 3.3. By Example 3.6, M = 51 x 5y
has nine derivations of type 1. But, only four derivations of them are as form D; x D,
where D; and Dy are derivations of type 1 on S, since S has two derivations of type
1. They are D}, D}, D} and D}.

Definition 3.9. Let M be an MV-algebra. Then, a function f : M — M is called
additive, if f(x @ y) = f(x) @ f(y), for all x,y € M.

Example 3.10. The functions D = 0 and D = [ are always additive. In Examples
3.3, 3.4, 3.5 and 3.7, among derivations of type 7, 1 <i <3, only D =0and D = [ are
additive. In Example 3.6, among derivations of type i, 1 < i < 3, only D} = D} = 0,
D)= D3 =1, D} = D and D§ = D} are additive.

Definition 3.11. Let M be an MV-algebra. Then, a function f : M — M is called
isoton, if x <y implies that f(z) < f(y), for all z,y € M.

Example 3.12. The functions D = 0 and D = [ are always isoton. In Example 3.4,
among derivations of type i, 1 < i < 3, only D} = D? = D} =0, D2 = D3 = I,

D? and D3 are isoton. In Example 3.5, among derivations of type ¢, 1 < i < 3, only
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Dl = D? =D} =0, D3 = D3 =1, D3 D% D3 and D} are isoton. In Example 3.6,
among derivations of type i, 1 <1i < 3, only D} = D} =0, D} = D3 =1, D; = D3
and D} = D3 are isoton. In Example 3.7, among derivations of type i, 1 <4 < 3, only
Dl =Di=D3}=0,D3=D3=1, D, D%, D3, D3 Djand D? are isoton.

Example 3.13. Let S, = {0,+,2,--- ,2=1 1} n € N. Then, (S,,®,*, 0,1) is an
MYV -algebra with n 4+ 1 elements, where operations @& and * are defined as Example

2.3. Note that auxiliary operations ®, &, V and A are as follows:

a®b=max{0,a+b— 1},
a©b=max{0,a — b},

a Vb= max{a,b},

a Ab=min{a,b}

and the relation < is simply the natural ordering of real numbers. The MV -algebras
defined in Examples 3.3, 3.4, 3.5 and 3.7 are S1, Sy, S3 and Sy, respectively. Let n > 1
be a fix positive integer. Define D! : S, — S, by

1 gf p=n=L
Dl(x):{n 1 n

0 otherwise.

It is easily to check that D! is a derivation of type 1. D! is not additive because
D'(1@® 1) = DY(1) = 0 but DY(1) & DY(%=2) =04 £ = L. Also, D' is not isoton,
because =1 < 1 but = = D(%2) £ D*(1) = 0.

Define D? : S, — S,, by

% otherwise.

0 ifz=0,1
D?(:c):{ n

It is easily to check that D? is a derivation of type 2. D? is not additive because
D*(1¢ 1) = D*(1) =0 but D*(1)@ D?*(2) =06+ = 1. Also, D? is not isoton, because
L <1but 2 =D*L) £ D*1) =0.

Define D? : S, — S,, by

D3 (2) fax=1
€T o
0 otherwise.

It is easily to check that D? is a derivation of type 3. D? is not additive because
D¥(1@1) = D3(1) = £ but D*(1) @ D*(1) = 2. Note that D? is isoton.

T on

3=



24 KAMALI ARDEKANI AND DAVVAZ
4. f-DERIVATIONS AND (f,g)-DERIVATIONS OF MV -ALGEBRAS
In this section, we introduce the notion of f-derivations and ( f, g)-derivations of type
1, 1 <1< 3, of MV-algebras.
Definition 4.1. Let M be an MV-algebra and f,g : M — M be homomorphisms.
A function D : M — M is called
(1) an (f, g)-derivation of type 1, if D(z ©®y) = (D(x) ® f(y)) ® (g9(x) ® D(y)), for

all x,y € M,

(2) an (f, g)-deriwvation of type 2, if D(x ANy) = (D(x) A f(y)) V (9(z) A D(y)), for
all x,y € M,

(3) an (f, g)-derivation of type 3, if D(x ©y) = (D(z) © f(y)) A (9(z) © D(y)), for
all x,y € M.

In the above definition, if the function g is equal to the function f, then an (f, g)-
derivation of type 1 (2 and 3, respectively) is called an f-derivation of type 1 (2 and 3,
respectively). It is obvious that if we choose the functions f and g as the identity func-
tions, then the (f, g)-derivation of type 1 (2 and 3, respectively) is ordinary derivation
of type 1 (2 and 3, respectively).

Theorem 4.2. Let M be an MV -algebra and f, g be homomorphisms on M. Also, let
D be an (f, g)-derivation of type 1 and 3 on M. Then, for all x,y € M

((D(x)© f(y) A(g9(x) © D(y))) < ((D(x) © f(y")) ® (9(x) © D(y))) -
Proof. We have
(D(x)© f(y) A(g(x) © D(y)))" @ (D(x) © f(y)*) @ (9(x) © D(y*)))

= ((D(z) © f(y)" V (9(x) © D(y)))
& ((D(x) © f(y) @ (9(x) © D(y")"))
= ((D(z) o fy) @ (D(x) © fy) © (9(x) © D(y")"))
V((g(z) © D(y))* @ (D(x) © f(y)) @ (9(x) © D(y*)")) = 1.

So, the statement is valid. O

Let M be an MV-algebra and f,g : M — M be homomorphisms. A function
D : M — M is an (f, g)-derivation of type 1 (2, respectively) if and only if it is an
(g, f)-derivation of type 1 (2, respectively).
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Example 4.3. Let M be an MV-algebra and f,g : M — M be homomorphisms on
M. The function D : M — M defined by D = 0 is an (f, g)-derivation of type 1, 2
and 3.

Example 4.4. For every MV -algebra, if we set D = f = I and ¢ = 0, then f, g are
homomorphisms and D is (f, g)-derivation of type 1 and 2.

Example 4.5. Let M be as in Example 3.6. Then, every (f, g)-derivation ( f-derivation,
respectively) of type 1 on M is coincide with (f, g)-derivation (f-derivation, respec-

tively) of type 2 on M. Define maps f,g: M — M by

;

0 ifz=0

Ty if z=uu4 0 ifx=0,2q
f(z) = , and g(z) = ,
ry if © =29 1 if x = 2o, 1.

1 ifz=1

\

Then, f and g are homomorphisms. Now, we define Dy, Dy : M — M by

Dl(x):{ 0 ifz=02,1 aHdDz(x):{ 0 ifz=0x

r1 if x = 29 xp if x = 29, 1.
It is easily to check that Dy is an f-derivation and an (f, g)-derivation of type 1 of M.
But, it is not an f-derivation of type 3, because x; = D1(1 S z1) # (D1(1) © f(x1)) A
(9(1)© Dy(x1)) = 0. Similarly, one can show that D; is not an (f, g)-derivation of type
3. Note that D, is not additive. Also, it is not isotone. D, is additive, isotone and an

f-derivation of type 1 and 3. Also, it is an (f, g)-derivation of type 1 and 3.

Example 4.6. Let M = {0, x1, x5, 3,24, 1}. Consider the following tables:

NP OZEl To X3 .Z‘41

0 0 Ty T2 T3 T4

T1 |1 X3 T4 I3 1
*‘0 Tr1 T2 T3 X4 1

To | To Ty Xo 1 T4
T3 |r3 3 1 x3 1
Talxa 1 24 1 1
11 1 1 1 1
Then, (M, ®, *,0) is an MV-algebra. Define maps f,g: M — M by

{ 0 if x=0,21,23

1 if =29, 24,1

1
1
1
. ‘1$4$3$2$10
1
1

f(x) = and g = 1.
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Then, f, g are homomorphisms on M. Now, we define

0 if x=0,21,23 14,1
Dl(x):{ 1, %3, T4

Ty if x = w9,

0 ifx=0,21,231
Dz(x):{ if x T1, T3

Ty if x = 19,24

0 ifx=0,2,23
Ds(z) = {

) if v = T2, T4, 1.

D is an f-derivation and an (f, g)-derivation of type 2. But, it is not an f-derivation
of type 1, since w3 = Dy(x3) = D1(24®xy4) # (D1(x4) ® f(24)) B (f(24) © D1(x4)) = 0.
Also, it is not an (f, g)-derivation of type 1, since x5 = Di(x9) = Di(z4 © x4) #
(D1(24) © f(24)) @ (g(x4) ©® D1(24)) = 0. Dy is not an f-derivation of type 3, since x5 =
Di(16x3) # (D1(1)© f(xs)) AN(f(1)© Dy(x3)) = 0. Also, Dy is not an (f, g)-derivation
of type 3, since x3 = D1(22) = D14 © 1) # (D1(24) © f(21)) A (g(24) © D1(21)) = 0,

D, is an f-derivation of type 1 and 2. Also, it is an (f, g)-derivation of type 1
and 2. But, it is not f-derivation of type 3, since xo = Dy(1 © x1) # (Dy(1) ©
f(z1)) A (f(1) © Da(x1)) = 0. Also, D, is not an (f, g)-derivation of type 3, since
v3 = Dy(1€ 1) # (Dy(1) & f(21)) A (9(1) © Da(1)) = 0.

Dj is an f-derivation and an (f, g)-derivation of type 1, 2 and 3.

The properties of f-derivation and (f, g)-derivation of type 2 (3, respectively) on
MYV -algebras is similar to the properties of f-derivation and (f, g)-derivation on lattices
(BCT\ BC K-algebras, respectively). For more details, we refer reader to [1, 5] ([10, 12,

, 22], respectively). So, we study the properties of f-derivation and (f, g)-derivation
of type 1 on MV-algebras. We prove next theorems only for (f, g)-derivations of type
1. Putting the function g equal to the function f, then the results are satisfied for
f-derivations of type 1.

In sequence, by an (f, g)-derivation we mean an (f, g)-derivation of type 1.

Theorem 4.7. Let M be an MV -algebra and D be an (f, g)-derivation on M. Then,
the following conditions hold:

(1) D(0) = 0;

(2) D(z) © f(z*) = f(x) © D(z") = D(x) © g(¢*) = g(x) © D(z") = 0;
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(3) D(z) < f(x), g(x);
(4) D(x) = D(x) @ (9(x) © D(1));
forall z,y € M.

Proof. (1) If x € M, then
D(0) = D(z ©0) = (D(z) © f(0)) & (9(z) © D(0)) = g(x) © D(0).

Putting = 0, we obtain D(0) = ¢(0) ® D(0) =0 D(0) = 0.

(2) If € M, then by Theorem 4.6 (3), we obtain 0 = D(0) = D(z ® z*)
(D(z)® f(x*)) ® (g9(x) © D(x*)). By Theorem 2.5 (1), we obtain D(z) ® f(z*) = 0 and
g(x) ® D(x*) = 0. Similarly, we can prove f(x) ® D(z*) =0 and D(z) ® g

(3) Since f and g are homomorphisms, by using (2), we have D(z) ® f(z
g(x)* = 0. Now, Theorem 2.6 implies that D(z) < f(z), g(z).
(4) D(x) = D(z ©1) = (D(z) © f(1)) & (f(z) © D(1)) = D(z) & (f(z) © D(1)). O

Lemma 4.8. Let M be an MV -algebra, D be an (f, g)-derivation on M such that f,g
be isomorphisms and I be an ideal of M. Then, D(I) C f(I) N g(I).

Proof. If y € D(I), then there is € I such that y = D(z). Now, by Theorem 4.7
(3), we obtain y = D(x) < f(z) € f(I) and y = D(x) < g(z) € g(I). Since I is an
ideal, by Lemma 2.9, f(I) and g(I) are ideals, too. Thus, y € f(I) N g(I). Therefore,
(1) € F(1) N gl1). a

Theorem 4.9. Let D be an (f, g)-derivation of an MV -algebra M and x,y € M. If
x <y, then the following hold:

(1) D(z ©y") =0;

(2) D(z) < f(y),9(y) and D(y*) < f(x)", 9(x)";

(3) D(z) ® D(y") = 0.

Proof. (1) Suppose that < y. Then, by Theorem 2.7, we have z ® y* = 0. Now, by
Theorem 4.7 (1), we obtain D(x ® y*) = D(0) = 0.

(2) According to (1), we have 0 = D(z @ y*) = (D(x) ® f(v*)) @ (g9(x) © D(y*)). Now,
by Theorem 2.5, we have D(x)® f(y*) = 0 and g(z)®D(y*) = 0. Then, by Theorem 2.7,
D(z) < f(y), D(y*) < g(x)*. Moreover, 0 = D(y*©x) = (D(y")© f(2))®(9(y") ©D(x)).
Hence, D(y*) ® f(z) = 0 and g(y*) ® D(x) = 0. Therefore, by using Theorem 2.5, we
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get D(y") < f(z)" and D(z) < g(y).

(3) Since f is a homomorphism, z < y implies that f(x) < f(y). By Theorem 4.7 (3),
we have D(z) < f(z) < f(y). Then, D(z) © D(y*) < f(y) © D(y*) < f(y) © f(y")
f(y) ® f(y)* = 0. Therefore, D(z) ® D(y*) = 0.

U

Theorem 4.10. Let M be an MV -algebra and D be an (f, g)-derivation on M. Then,
the following hold:

(1) D(z) © D(z*) = 0;

(2) D(x*) = D(x)* if and only if D(x) = f(x) or D(x) = g(x).

Proof. (1) Since x < z, by putting y = x in Theorem 4.9, we get (1).

(2) Let D = f. We have f(z*) = f(x)*, for all x € M, since f is a homomorphism.
Hence, D(z*) = D(z)*.

Conversely, let D(z*) = D(z)*. By Theorem 4.7 (2), D(z) ® D(z*) = 0 which
implies that f(z) ® D(z)* = 0. Hence, f(z) < D(x). On the other hand, by Theorem
4.7 (3), we have D(z) < f(x). Therefore, D(z) = f(z). Similarly, we can prove that if
D(z*) = D(x)*, then D(z) = g(x). O

Proposition 4.11. Let M be an MV -algebra and D be an (f, g)-derivation of M. If
D(z*) = D(x), for all x € M, then the following conditions hold:

(1) D(1) = 0;

(2) D(z) ® D(z) = 0;

(3) If D is isotone, then D = 0.

Proof. (1) By Theorem 4.7 (1), we have D(1) = D(0*) = D(0) = 0.

(2) Tt follows from Theorem 4.10 (1).

(3) Since x < 1, for all x € M, and D is isotone, we have D(z) < D(1) = 0, for all
x € M. Therefore, D = 0. 0

Proposition 4.12. Let M be an MV -algebra and D be a non-zero additive (f,g)-
derivation of M. Then, D(B(M)) C B(M).

Proof. Suppose that y € D(B(M)). Then, there exists € B(M) such that y = D(z).
So,y®y=D(z)® D(z) = D(x®x) = D(x) =y. Therefore, y € B(M). O

Theorem 4.13. Let D be an additive (f, g)-derivation of a linearly ordered MV -algebra
M. Then, either D =0 or D(1) = 1.
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Proof. Suppose that D is an additive (f, g)-derivation of a linearly ordered MV -algebra
M and D(1) # 1. Then, for all x € M, we have D(1) = D(x @ 2*) = D(x) @ D(z*). On
the other hand D(1) = D(x & 1) = D(z) @ D(1). Therefore, D(1) = D(z) & D(z*) =
D(z) @ D(1). Hence, by the additive cancellative law of MV-algebras, D(z*) = D(1),
since D(1) # 1. By putting 2 = 1, we get 0 = D(0) = D(1). So, for all x € M,
0=D(1)=D(x®1)=D(z)® D(1) = D(z). Therefore, D = 0. O

Theorem 4.14. Let M be a linearly ordered MV -algebra and g be an isomorphism.
Also, let Dy, Dy be additive (f, g)-derivations of M. We define Dy Dsy(x) = Dy(Ds(x)),
forallz e M. If DyDy =0, then D; =0 or Dy = 0.

Proof. Suppose that DyDy = 0 and Dy # 0. Then, by Theorems 4.7 (4) and 4.13, for
all x € M, we obtain

0 = D1Dy(x) = Di(Da(z)) = Di(D2(x) & (9(x) © D2(1)))
= D1Dy(7) @ Di(g(z) © D(1)) = D1Dy(x) © Di(g()) = D1(g(x)).
Thus, Di(g(z)) = 0, for all # € M. Hence, Di(xz) = 0, for all x € M, since g is an

isomorphism. Therefore, D; = 0. 0

Theorem 4.15. Let M be a linearly ordered MV -algebra and D be a non-zero additive
(f,g)-derivation of M. Then, D(x ® z) = (D(x) ® f(z)) ® g(z).

Proof. By Theorem 4.7 (4), we have D(z) = D(z) @ (g9(z) ® D(1)), for all z € M.
By Theorem 4.13, D(1) = 1, since D # 0. Therefore D(x) = D(x) @ g(z). Thus, by
Theorem 2.5 (3), we have D(z) ® g(x) = g(x). Then,

D(z©x)=(D(z)© f(z)) & (9(x) © D(x)) = (D(z) © f(z)) & g(z),
and the proof completes. O

Theorem 4.16. Every non-zero additive (f,g)-derivation of a linearly ordered MV -

algebra M 1is isotone.

Proof. Let D be a non-zero additive (f, g)-derivation of a linearly ordered MV -algebra
M and x,y € M be arbitrary. If x < y, then 2* @ y = 1. Now, by Theorem 4.13,
D(1) =1, since D # 0. Therefore, 1 = D(1) = D(z*®y) = D(2*)® D(y) which implies
that (D(x*))* < D(y). On the other hand, by Theorem 4.7 (3), D(z*) < (f(x))* implies
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that f(z) < (D(z*))*. So, f(x) < (D(z*))* < D(y). Also, we have D(x) < f(z), by
Theorem 4.7 (3). Therefore, D(z) < f(z) < D(y) which implies that D(z) < D(y). O

Theorem 4.17. Let M be a linearly ordered MV -algebra and D be a non-zero additive
(f, g)-derivation. Then,

D7 Y0) ={x € M : D(x) = 0}
is an ideal of M.

Proof. By Theorem 4.7 (1), we have D(0) = 0. Then, 0 € D7*(0). Now, suppose
that z,y € D71(0). Then, D(z ®y) = D(z) ® D(y) = 0@ 0 = 0 which implies that
r@®y € D71(0). Now, suppose that z € D71(0) and y < z. Then, D(x) = 0. Hence,
by Theorem 4.16, we have D(y) < D(z) = 0 which implies that D(y) = 0. Therefore,
y € D7H0). O
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