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f-DERIVATIONS AND (f, g)-DERIVATIONS OF MV -ALGEBRAS

L. KAMALI ARDEKANI AND B. DAVVAZ∗

Abstract. In this paper, we extend the notion of derivation ofMV -algebras and give

some illustrative examples. Moreover, as a generalization of derivation ofMV -algebras

we introduce the notion of f -derivations and (f, g)-derivations of MV -algebras. Also,

we investigate some properties of them.

1. Introduction

In [7], Chang invented the notion of MV -algebra in order to provide an algebraic

proof of the completeness theorem of infinite valued Lukasiewicz propositional calculus.

Recently, the algebraic theory of MV -algebras is intensively studied, for example see

[17, 18, 19]. The notion of derivation, introduced from the analytic theory, is helpful to

the research of structure and property in algebraic systems. Several authors [3, 9, 16]

studied derivations in rings and near-rings. Jun and Xin [11] applied the notion of

derivation to BCI-algebras. In [20], Szász introduced the concept of derivation for

lattices and investigated some of its properties. Also, in [21], Xin et al. improved

derivation for a lattice and discussed some related properties. They gave some equiva-

lent conditions under which a derivation is isotone for lattices with a greatest modular

lattices and distributive lattices, also see [15]. After these studies the f -derivation and

symmetric bi derivation of lattices were defined and studied in [5, 6]. Ozbal and Firat in

[14] introduced the notion of symmetric f -bi-derivation of a lattice. They characterized
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the distributive lattice by symmetric f -bi-derivation. In [11], Jun and Xin introduced

the notion of derivation in BCI-algebras, which is defined in a way similar to the notion

in ring theory, and investigated some properties related to this concept. In [22], Zhan

and Liu introduced the notion of f -derivation in BCI-algebras. In [4], Ceran and Aşci

defined the symmetric bi-(σ, τ) derivations on prime and semiprime Gamma rings. In

[2], Alshehri applied the notion of derivation to MV -algebras and investigated some of

its properties.

Now, in this paper, we extend the notion of derivation of MV -algebras. Moreover, as

a generalization of derivation of MV -algebras we introduce the notion of f−derivations

and (f, g)-derivations of MV -algebras.

2. Preliminaries

In this section, we recall the notion of an MV -algebra and then we review some

definitions and properties which we will need in the next section.

Definition 2.1. An MV -algebra is a structure (M,⊕, ∗, 0) where M is a non-empty

set, ⊕ is a binary operation, ∗ is a unary operation, and 0 is a constant such that the

following axioms are satisfied for any a, b ∈ M

(MV 1) (M,⊕, 0) is a commutative monoid;

(MV 2) (a∗)∗ = a;

(MV 3) 0∗ ⊕ a = 0∗;

(MV 4) (a∗ ⊕ b)∗ ⊕ b = (b∗ ⊕ a)∗ ⊕ a.

We define the constant 1 = 0∗ and the auxiliary operations ⊙,⊖,∨ and ∧ by

a⊙ b = (a∗ ⊕ b∗)∗, a⊖ b = a⊙ b∗, a ∨ b = a⊕ (b⊙ a∗), a ∧ b = a⊙ (b⊕ a∗).

Example 2.2. Any boolean algebra is an MV -algebra.

Example 2.3. The real unit interval [0, 1] with operations ⊕ and ∗ defined by

x⊕ y = min{1, x+ y} and x∗ = 1− x

is an MV-algebra

Theorem 2.4. [7] Let (M,⊕, ∗, 0) be an MV -algebra. The following properties hold

for all x ∈ M
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(1) x⊕ 1 = 1;

(2) x⊕ x∗ = 1;

(3) x⊙ 0 = 0 and x⊙ x∗ = 0.

Moreover, (M,⊙, 1) is a commutative monoid [7].

Theorem 2.5. [7] Let (M,⊕, ∗, 0) be an MV -algebra. The following properties hold

for all x ∈ M

(1) If x⊕ y = 0, then x = y = 0;

(2) If x⊙ y = 1, then x = y = 1;

(3) x⊕ y = y if and only if x⊙ y = x;

(4) (x ∨ y)⊕ z = (x⊕ z) ∨ (y ⊕ z).

Let (M,⊕, ∗, 0) be an MV -algebra. The partial ordering ≤ on M is defined by

x ≤ y ⇐⇒ x ∧ y = x, for all x, y ∈ M.

x ∧ y = x is equivalent to x ∨ y = y. The structure (M,∨,∧, 0, 1) is a bounded

distributive lattice. If the order relation ≤, defined over M , is total, then we say that

M is linearly ordered.

Theorem 2.6. [7] Let (M,⊕, ∗, 0) be an MV -algebra. The following properties hold

for all x ∈ M

(1) If x ≤ y, then x ∨ z ≤ y ∨ z and x ∧ z ≤ y ∧ z;

(2) If x ≤ y, then x⊕ z ≤ y ⊕ z and x⊙ z ≤ y ⊙ z;

(3) x ≤ y if and only if y∗ ≤ x∗.

Theorem 2.7. [7] For all x, y ∈ M , the following conditions are equivalent:

(1) x ≤ y;

(2) y ⊕ x∗ = 1;

(3) x⊙ y∗ = 0.

Theorem 2.8. [7] Let M be a linearly ordered MV -algebra. Then, x⊕ y = x⊕ z and

x⊕ z ̸= 1 implies that y = z.

Let M and N be two MV -algebras. The function f : M −→ N is called a homomor-

phism if it satisfies the following conditions:

(1) f(0M) = 0N ;
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(2) f(x⊕M y) = f(x)⊕N f(y);

(3) f(x∗) = f(x)∗;

for all x, y ∈ M . If f is a homomorphism, then f(1M) = 1N and f(x ⊙M y) =

f(x)⊙N f(y). A homomorphism f is called an isomorphism if it is one to one and onto.

Let M be an MV -algebra and I be a non-empty subset of M . Then, we say that I

is an ideal if the following conditions are satisfied:

(1) 0 ∈ I;

(2) x, y ∈ I imply x⊕ y ∈ I;

(3) x ∈ I and y ≤ x imply y ∈ I.

Lemma 2.9. Let I be an ideal of MV -algebra M and f : M −→ M be an isomorphism.

Then, f(I) is an ideal, too.

Proof. It is obvious. □

Let B(M) = {x ∈ M | x⊕ x = x} = {x ∈ M | x⊙ x = x}. Then, (B(M),⊕, ∗, 0) is
both a largest subalgebra of M and a Boolean algebra.

Definition 2.10. A BCI-algebra X is an abstract algebra (X, ∗, 0) of type (2, 0),

satisfying the following conditions, for all x, y, z ∈ X,

(BCI1) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0;

(BCI2) (x ∗ (x ∗ y)) ∗ y = 0;

(BCI3) x ∗ x = 0;

(BCI4) x ∗ y = 0 and y ∗ x = 0 imply that x = y.

A non-empty subset S of a BCI-algebra X is called a subalgebra of X if x ∗ y ∈ S,

for all x, y ∈ S. In any BCI-algebra X, one can define a partial order “ ≤ ” by putting

x ≤ y if and only if x ∗ y = 0. A BCI-algebra X satisfying 0 ≤ x, for all x ∈ X, is

called a BCK-algebra.

Let (M,⊕, ∗, 0) be an MV -algebra. Then, the structure (M,⊖, 0) is a bounded

BCI \BCK-algebra.

3. Derivations of MV -Algebras

Definition 3.1. Let (M,⊕, ∗, 0) be an MV -algebra. Then, the map D : M −→ M is

called
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(1) a derivation of type 1, if D(x⊙ y) = (D(x)⊙ y)⊕ (x⊙D(y)), for all x, y ∈ M

[2];

(2) a derivation of type 2, if D(x ∧ y) = (D(x) ∧ y) ∨ (x ∧D(y)), for all x, y ∈ M ;

(3) a derivation of type 3, if D(x⊖ y) = (D(x)⊖ y) ∧ (x⊖D(y)), for all x, y ∈ M .

If MV -algebra M is a Boolean algebra, then for all x, y ∈ M , x ⊕ y = x ∨ y and

x ⊙ y = x ∧ y. So, in this case, every derivation of type 1 on M is coincide with

derivation of type 2 on M .

Let (M,⊕, ∗, 0) be an MV -algebra. Then, the definition of derivation of type 2 on

(M,⊕, ∗, 0) is coincide with the definition of derivation on lattice (M,∧,∨, 0, 1). Also,
the definition of derivation of type 3 on (M,⊕, ∗, 0) is coincide with the definition of

derivation on bounded BCI \BCK-algebra (M,⊖, 0).

Let M be an MV -algebra and D : M −→ M be a derivation of type 1 (2 and 3,

respectively). Then, for convenience, we denote D by D1 (D2 and D3, respectively).

Theorem 3.2. Let (M,⊕, ∗, 0) be an MV -algebra and Di be a derivation of type i on

M , 1 ≤ i ≤ 3. Then, for all 1 ≤ i ≤ 3, we have

(1) Di(0) = 0;

(2) Di(x) ≤ x, for all x ∈ M .

Proof. (1) It is proved in [2] that D1(0) = 0. We have D2(0) = D2(0 ∧ 0) = (D2(0) ∧
0) ∨ (0 ∧D2(0)) = 0 and D3(0) = D3(x ⊖ 1) = (D3(x) ⊖ 1) ∧ (x ⊖D3(1)) = 0, for all

x ∈ M .

(2) It is proved in [2] that D1(x) ≤ x. We have D2(x) = D2(x ∧ x) = (D2(x) ∧ x) ∨
(x ∧D2(x)) = D2(x) ∧ x. So, D2(x) ≤ x.

Also, we have D3(x) = D3(x ⊖ 0) = (D3(x) ⊖ 0) ∧ (x ⊖ D3(0)) = D3(x) ∧ x. So,

D3(x) ≤ x. □

Let M be an MV -algebra. The function D : M −→ M , defined by D(x) = 0, for all

x ∈ M , is a derivation of type 1, 2 and 3 on M . We denote it by D = 0.

Also, the function D : M −→ M , defined by D(x) = x, for all x ∈ M , is a derivation

of type 2 and 3 on M . We denote it by D = I.

Example 3.3. Let M = {0, 1}. Consider the following tables:
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⊕ 0 1

0 0 1

1 1 1

∗ 0 1

1 0

Then, (M,⊕, ∗, 0) is an MV -algebra. It is only MV -algebra of order 2. The functions

D1 = 0 and D2 = I are only derivations of type 1. Also, they are only derivations of

type 2 and 3.

Example 3.4. Let M = {0, x1, 1}. Consider the following tables:

⊕ 0 x1 1

0 0 x1 1

x1 x1 1 1

1 1 1 1

∗ 0 x1 1

1 x1 0

Then, (M,⊕, ∗, 0) is an MV -algebra. It is only MV -algebra of order 3. By calculation,

we obtain Figure 1.

D(0) D(x1) D(1)

0

0 0

0x1

0

0

x1

0

x1

1

D(1)D(x1)D(0)

0

0

0

x1

D(0) D(x1)

x1

1

0

D(1)

Derivations of type 1 Derivations of type 2 Derivations of type 3

Figure 1. Derivations of type 1, 2 and 3 for Example 3.4.

Thus, we have only two derivations of type 1 on M . They are as follows:

D1
1 = 0 and D1

2(x) =

{
0 if x = 0, 1

x1 if x = x1.

We have only four derivations of type 2 on M . They are as follows:

D2
1 = 0, D2

2 = I, D2
3(x) =

{
0 if x = 0, 1

x1 if x = x1

and

D2
4(x) =

{
0 if x = 0

x1 if x = x1, 1.
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We have only three derivations of type 3 on M . They are as

D3
1 = 0, D3

2 = I and D3
3(x) =

{
0 if x = 0, x1

x1 if x = 1.

It is clear that D1
2 is not a derivation of type 3, because x1 = D1

2(x1) = D1
2(1⊖x1) ̸=

(D1
2(1) ⊖ x1) ∧ (1 ⊖ D1

2(x1)) = 0. Also, D3
3 is not a derivation of type 1, because

x1 = D3
3(1 ⊙ 1) ̸= (D3

3(1) ⊙ 1) ⊕ (1 ⊙ D3
3(1)) = 1. So, derivation of type 1 and 3 are

independent.

It is clear that D2
3 is not a derivation of type 3, because x1 = D2

3(1⊖ x1) ̸= (D2
3(1)⊖

x1)∧ (1⊖D2
3(x1)) = 0. Also, D3

3 is not a derivation of type 2, because 0 = D3
3(x1∧1) ̸=

(D3
3(x1) ∧ 1) ∨ (x1 ∧D3

3(1)) = x1. So, derivation of type 2 and 3 are independent.

We have only two MV -algebras of order 4. They are considered in the next two

examples.

Example 3.5. Let M = {0, x1, x2, 1}. Consider the following tables:

⊕ 0 x1 x2 1

0 0 x1 x2 1

x1 x1 x2 1 1

x2 x2 1 1 1

1 1 1 1 1

∗ 0 x1 x2 1

1 x2 x1 0

Then, (M,⊕, ∗, 0) is an MV -algebra. By calculation, we get Figure 2.

0 0

0 0

0x1

0

0

x1

0
0

0

0

x1

0

x1

x2

1

x1

x2

0 0

0
x1

x2

1
x1 x2

x1

0

0

Derivations of type 1 Derivations of type 2 Derivations of type 3

D(0) D(x1) D(x2) D(1) D(0) D(x1) D(x2) D(1) D(0) D(x1) D(x2) D(1)

Figure 2. Derivations of type 1, 2 and 3 for Example 3.5.
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Thus, we have only two derivations of type 1 on M . They are as follows:

D1
1 = 0 and D1

2(x) =

{
0 if x = 0, x1, 1

x1 if x = x2.

We have only eight derivations of type 2 on M . They are as follows:

D2
1 = 0, D2

2 = I,

D2
3(x) =

{
0 if x = 0, x2, 1

x1 if x = x1,
D2

4(x) =

{
0 if x = 0, 1

x1 if x = x1, x2,

D2
5(x) =

{
0 if x = 0

x1 if x = x1, x2, 1,
D2

6(x) =


0 if x = 0, 1

x1 if x = x1

x2 if x = x2,

D2
7(x) =


0 if x = 0

x1 if x = x1, 1

x2 if x = x2,

D2
8(x) =


0 if x = 0

x1 if x = x1

x2 if x = x2, 1.

We have only four derivations of type 3 on M . They are as follows:

D3
1 = 0, D3

2 = I, D3
3(x) =

{
0 if x = 0, x1, x2

x1 if x = 1
and

D3
4(x) =


0 if x = 0, x1

x1 if x = x2

x2 if x = 1.

It is clear that D1
2 is not a derivation of type 2, because 0 = D1

2(x1) = D1
2(x1 ∧ x2) ̸=

(D1
2(x1) ∧ x2) ∨ (x1 ∧ D1

2(x2)) = x1. Also, D2
5 is not a derivation of type 1, because

x1 = D2
5(1) = D2

5(1⊙ 1) ̸= (D2
5(1)⊙ 1)⊕ (1⊙D2

5(1)) = x1 ⊕ x1 = x2. So, derivation of

type 1 and 2 are independent.

Example 3.6. Let M = {0, x1, x2, 1}. Consider the following tables:

⊕ 0 x1 x2 1

0 0 x1 x2 1

x1 x1 x1 1 1

x2 x2 1 x2 1

1 1 1 1 1

∗ 0 x1 x2 1

1 x2 x1 0



f -DERIVATIONS AND (f, g)-DERIVATIONS OF MV -ALGEBRAS 19

Then, (M,⊕, ∗, 0) is a Boolean MV -algebra. So, derivation of type 1 is coincide with

derivation of type 2. By calculation, we get Figure 3.

0

0

x1

0

x2

0

x2

0

0

x2

0

x1

0

x1

x2

1

D(0) D(x1) D(x2) D(1)

0

0

x1

0

x2

0

x2

0

x2

x1

1

D(0) D(x1) D(x2) D(1)

Derivations of type 1 and 2 Derivations of type 3

Figure 3. Derivations of type 1, 2 and 3 for Example 3.6.

Hence, we have only nine derivations of type 1 on M . They are as follows:

D1
1 = 0, D1

2 = I, D1
3(x) =

{
0 if x = 0, x1, 1

x2 if x = x2,

D1
4(x) =

{
0 if x = 0, x1

x2 if x = x2, 1,
D1

5(x) =

{
0 if x = 0, x2, 1

x1 if x = x1,

D1
6(x) =

{
0 if x = 0, x2

x1 if x = x1, 1,
D1

7(x) =


0 if x = 0, 1

x1 if x = x1

x2 if x = x2

D1
8(x) =


0 if x = 0

x1 if x = x1, 1

x2 if x = x2,

D1
9(x) =


0 if x = 0

x1 if x = x1

x2 if x = x2, 1.

We have only four derivations of type 3 on M . They are as D3
1 = 0, D3

2 = I ,

D3
3(x) =

{
0 if x = 0, x1

x2 if x = x2, 1
and D3

4(x) =

{
0 if x = 0, x2

x1 if x = x1, 1
.

We have one MV -algebra of order 5. It is considered in the next example.
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Example 3.7. Let M = {0, x1, x2, x3, 1}. Consider the following tables:

⊕ 0 x1 x2 x3 1

0 0 x1 x2 x3 1

x1 x1 x2 x3 1 1

x2 x2 x3 1 1 1

x3 x3 1 1 1 1

1 1 1 1 1 1

∗ 0 x1 x2 x3 1

1 x3 x2 x1 0

Then, (M,⊕, ∗, 0) is an MV -algebra. By calculation, we get Figure 4.

0

0

x1

0

x2

0

x1

x2

0

0

0

0 0 0
0

0

0

0

x1

0

0

x1

0

x1

x2

0

x1

0

x2

x3

1

x3

x2

x1

0

x1

0

00

x1

x2

x1

0

0

0

0

0

x1

x2

x3

1

x1

x2

x3x2x1

x1

D(0) D(x1) D(x2) D(x3) D(1) D(0) D(x1) D(x2) D(x3) D(1)

Derivations of type 1

Derivations of type 3

of type 2

Derivations

D(0) D(x1) D(x2) D(x3) D(1)

Figure 4. Derivations of type 1, 2 and 3 for Example 3.7.

Thus, we have only three derivations of type 1 on M . They are as follows:

D1
1 = 0, D1

2(x) =

{
0 if x = 0, x1, x2, 1

x1 if x = x3

and
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D1
3(x) =


0 if x = 0, 1

x1 if x = x1

x2 if x = x2, x3.

We have only sixteen derivations of type 2 on M . They are as follows:

D2
1 = 0, D2

2 = I,

D2
3(x) =

{
0 if x = 0, x2, x3, 1

x1 if x = x1,
D2

4(x) =

{
0 if x = 0, x3, 1

x1 if x = x1, x2,

D2
5(x) =

{
0 if x = 0, 1

x1 if x = x1, x2, x3,
D2

6(x) =

{
0 if x = 0

x1 if x = x1, x2, x3, 1,

D2
7(x) =


0 if x = 0, x3, 1

x1 if x = x1

x2 if x = x2,

D2
8(x) =


0 if x = 0, 1

x1 if x = x1, x3

x2 if x = x2,

D2
9(x) =


0 if x = 0

x1 if x = x1, x3, 1

x2 if x = x2,

D2
10(x) =


0 if x = 0, 1

x1 if x = x1

x2 if x = x2, x3,

D2
11(x) =


0 if x = 0

x1 if x = x1, 1

x2 if x = x2, x3,

D2
12(x) =


0 if x = 0

x1 if x = x1

x2 if x = x2, x3, 1,

D2
13(x) =


0 if x = 0, 1

x1 if x = x1

x2 if x = x2

x3 if x = x3,

D2
14(x) =


0 if x = 0

x1 if x = x1, 1

x2 if x = x2

x3 if x = x3,

D2
15(x) =


0 if x = 0

x1 if x = x1

x2 if x = x2, 1

x3 if x = x3,

D2
16(x) =


0 if x = 0

x1 if x = x1

x2 if x = x2

x3 if x = x3, 1.
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We have only five derivations of type 3 on M . They are as follows:

D3
1 = 0, D3

2 = I, D3
3(x) =

{
0 if x = 0, x1, x2, x3

x1 if x = 1,

D3
4(x) =


0 if x = 0, x1, x2

x1 if x = x3

x2 if x = 1

and D3
5(x) =


0 if x = 0, x1

x1 if x = x2

x2 if x = x3

x3 if x = 1

Let M1 and M2 be two MV -algebras. Then M1 ×M2 is an MV -algebra. Also, let

D1 and D2 be derivations of type 1 (2 and 3, respectively) on M1 and M2, respectively.

Then, D = D1 × D2 : M1 ×M2 −→ M1 ×M2 defined by D((x, y)) = (D1(x), D2(y)),

for all x ∈ M1, y ∈ M2, is a derivation of type 1 (2 and 3, respectively). But, all of

derivations of type 1 (2 and 3, respectively) on M1×M2 are not as form D1×D2, where

D1 and D2 are derivations of type 1 (2 and 3, respectively) on M1 and M2, respectively.

The following example shows this matter.

Example 3.8. Consider the MV -algebra M , defined in Example 3.6. Then M ∼= S1×
S1, where S1 is the MV -algebra defined in Example 3.3. By Example 3.6, M ∼= S1×S1

has nine derivations of type 1. But, only four derivations of them are as form D1 ×D2,

where D1 and D2 are derivations of type 1 on S1, since S1 has two derivations of type

1. They are D1
1, D

1
2, D

1
4 and D1

6.

Definition 3.9. Let M be an MV -algebra. Then, a function f : M −→ M is called

additive, if f(x⊕ y) = f(x)⊕ f(y), for all x, y ∈ M .

Example 3.10. The functions D = 0 and D = I are always additive. In Examples

3.3, 3.4, 3.5 and 3.7, among derivations of type i, 1 ≤ i ≤ 3, only D = 0 and D = I are

additive. In Example 3.6, among derivations of type i, 1 ≤ i ≤ 3, only D1
1 = D3

1 = 0,

D1
2 = D3

2 = I, D1
4 = D3

3 and D1
6 = D3

4 are additive.

Definition 3.11. Let M be an MV -algebra. Then, a function f : M −→ M is called

isoton, if x ≤ y implies that f(x) ≤ f(y), for all x, y ∈ M .

Example 3.12. The functions D = 0 and D = I are always isoton. In Example 3.4,

among derivations of type i, 1 ≤ i ≤ 3, only D1
1 = D2

1 = D3
1 = 0, D2

2 = D3
2 = I,

D2
4 and D3

3 are isoton. In Example 3.5, among derivations of type i, 1 ≤ i ≤ 3, only
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D1
1 = D2

1 = D3
1 = 0, D2

2 = D3
2 = I, D2

5, D
2
8, D

3
3 and D3

4 are isoton. In Example 3.6,

among derivations of type i, 1 ≤ i ≤ 3, only D1
1 = D3

1 = 0, D1
2 = D3

2 = I, D1
4 = D3

3

and D1
6 = D3

4 are isoton. In Example 3.7, among derivations of type i, 1 ≤ i ≤ 3, only

D1
1 = D2

1 = D3
1 = 0, D2

2 = D3
2 = I, D2

6, D
2
12, D

2
16, D

3
3, D

3
4 and D3

5 are isoton.

Example 3.13. Let Sn = {0, 1
n
, 2
n
, · · · , n−1

n
, 1}, n ∈ N . Then, (Sn,⊕, ∗, 0, 1) is an

MV -algebra with n + 1 elements, where operations ⊕ and ∗ are defined as Example

2.3. Note that auxiliary operations ⊙, ⊖, ∨ and ∧ are as follows:

a⊙ b = max{0, a+ b− 1},
a⊖ b = max{0, a− b},
a ∨ b = max{a, b},
a ∧ b = min{a, b}

and the relation ≤ is simply the natural ordering of real numbers. The MV -algebras

defined in Examples 3.3, 3.4, 3.5 and 3.7 are S1, S2, S3 and S4, respectively. Let n > 1

be a fix positive integer. Define D1 : Sn −→ Sn by

D1(x) =

{
1
n

if x = n−1
n

0 otherwise.

It is easily to check that D1 is a derivation of type 1. D1 is not additive because

D1(1 ⊕ n−1
n
) = D1(1) = 0 but D1(1) ⊕D1(n−1

n
) = 0 ⊕ 1

n
= 1

n
. Also, D1 is not isoton,

because n−1
n

⩽ 1 but 1
n
= D1(n−1

n
) ≰ D1(1) = 0.

Define D2 : Sn −→ Sn by

D2(x) =

{
0 if x = 0, 1
1
n

otherwise.

It is easily to check that D2 is a derivation of type 2. D2 is not additive because

D2(1⊕ 1
n
) = D2(1) = 0 but D2(1)⊕D2( 1

n
) = 0⊕ 1

n
= 1

n
. Also, D2 is not isoton, because

1
n
⩽ 1 but 1

n
= D2( 1

n
) ≰ D2(1) = 0.

Define D3 : Sn −→ Sn by

D3(x) =

{
1
n

if x = 1

0 otherwise.

It is easily to check that D3 is a derivation of type 3. D3 is not additive because

D3(1⊕ 1) = D3(1) = 1
n
but D3(1)⊕D3(1) = 2

n
. Note that D3 is isoton.
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4. f-Derivations and (f, g)-Derivations of MV -Algebras

In this section, we introduce the notion of f -derivations and (f, g)-derivations of type

i, 1 ≤ i ≤ 3, of MV -algebras.

Definition 4.1. Let M be an MV -algebra and f, g : M −→ M be homomorphisms.

A function D : M −→ M is called

(1) an (f, g)-derivation of type 1, if D(x⊙ y) = (D(x)⊙ f(y))⊕ (g(x)⊙D(y)), for

all x, y ∈ M ;

(2) an (f, g)-derivation of type 2, if D(x ∧ y) = (D(x) ∧ f(y)) ∨ (g(x) ∧D(y)), for

all x, y ∈ M ;

(3) an (f, g)-derivation of type 3, if D(x⊖ y) = (D(x)⊖ f(y)) ∧ (g(x)⊖D(y)), for

all x, y ∈ M .

In the above definition, if the function g is equal to the function f , then an (f, g)-

derivation of type 1 (2 and 3, respectively) is called an f -derivation of type 1 (2 and 3,

respectively). It is obvious that if we choose the functions f and g as the identity func-

tions, then the (f, g)-derivation of type 1 (2 and 3, respectively) is ordinary derivation

of type 1 (2 and 3, respectively).

Theorem 4.2. Let M be an MV -algebra and f , g be homomorphisms on M . Also, let

D be an (f, g)-derivation of type 1 and 3 on M . Then, for all x, y ∈ M

((D(x)⊖ f(y)) ∧ (g(x)⊖D(y))) ≤ ((D(x)⊙ f(y∗))⊕ (g(x)⊙D(y∗))) .

Proof. We have

((D(x)⊖ f(y)) ∧ (g(x)⊖D(y)))∗ ⊕ ((D(x)⊙ f(y)∗)⊕ (g(x)⊙D(y∗)))

= ((D(x)⊖ f(y))∗ ∨ (g(x)⊖D(y))∗)

⊕ ((D(x)⊖ f(y))⊕ (g(x)⊖D(y∗)∗))

= ((D(x)⊖ f(y))∗ ⊕ (D(x)⊖ f(y))⊕ (g(x)⊖D(y∗)∗))

∨((g(x)⊖D(y))∗ ⊕ (D(x)⊖ f(y))⊕ (g(x)⊖D(y∗)∗)) = 1.

So, the statement is valid. □

Let M be an MV -algebra and f, g : M −→ M be homomorphisms. A function

D : M −→ M is an (f, g)-derivation of type 1 (2, respectively) if and only if it is an

(g, f)-derivation of type 1 (2, respectively).
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Example 4.3. Let M be an MV -algebra and f, g : M −→ M be homomorphisms on

M . The function D : M −→ M defined by D = 0 is an (f, g)-derivation of type 1, 2

and 3.

Example 4.4. For every MV -algebra, if we set D = f = I and g = 0, then f , g are

homomorphisms and D is (f, g)-derivation of type 1 and 2.

Example 4.5. LetM be as in Example 3.6. Then, every (f, g)-derivation (f -derivation,

respectively) of type 1 on M is coincide with (f, g)-derivation (f -derivation, respec-

tively) of type 2 on M . Define maps f, g : M −→ M by

f(x) =


0 if x = 0

x2 if x = x1

x1 if x = x2

1 if x = 1

and g(x) =

{
0 if x = 0, x1

1 if x = x2, 1.

Then, f and g are homomorphisms. Now, we define D1, D2 : M −→ M by

D1(x) =

{
0 if x = 0, x1, 1

x1 if x = x2

and D2(x) =

{
0 if x = 0, x1

x1 if x = x2, 1.

It is easily to check that D1 is an f -derivation and an (f, g)-derivation of type 1 of M .

But, it is not an f -derivation of type 3, because x1 = D1(1⊖ x1) ̸= (D1(1)⊖ f(x1)) ∧
(g(1)⊖D1(x1)) = 0. Similarly, one can show that D1 is not an (f, g)-derivation of type

3. Note that D1 is not additive. Also, it is not isotone. D2 is additive, isotone and an

f -derivation of type 1 and 3. Also, it is an (f, g)-derivation of type 1 and 3.

Example 4.6. Let M = {0, x1, x2, x3, x4, 1}. Consider the following tables:

⊕ 0 x1 x2 x3 x4 1

0 0 x1 x2 x3 x4 1

x1 x1 x3 x4 x3 1 1

x2 x2 x4 x2 1 x4 1

x3 x3 x3 1 x3 1 1

x4 x4 1 x4 1 1 1

1 1 1 1 1 1 1

∗ 0 x1 x2 x3 x4 1

1 x4 x3 x2 x1 0

Then, (M,⊕, ∗, 0) is an MV -algebra. Define maps f, g : M −→ M by

f(x) =

{
0 if x = 0, x1, x3

1 if x = x2, x4, 1
and g = I.
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Then, f , g are homomorphisms on M . Now, we define

D1(x) =

{
0 if x = 0, x1, x3, x4, 1

x2 if x = x2,

D2(x) =

{
0 if x = 0, x1, x3, 1

x2 if x = x2, x4

D3(x) =

{
0 if x = 0, x1, x3

x2 if x = x2, x4, 1.

D1 is an f -derivation and an (f, g)-derivation of type 2. But, it is not an f -derivation

of type 1, since x2 = D1(x2) = D1(x4 ⊙ x4) ̸= (D1(x4)⊙ f(x4))⊕ (f(x4)⊙D1(x4)) = 0.

Also, it is not an (f, g)-derivation of type 1, since x2 = D1(x2) = D1(x4 ⊙ x4) ̸=
(D1(x4)⊙f(x4))⊕ (g(x4)⊙D1(x4)) = 0. D1 is not an f -derivation of type 3, since x2 =

D1(1⊖x3) ̸= (D1(1)⊖f(x3))∧ (f(1)⊖D1(x3)) = 0. Also, D1 is not an (f, g)-derivation

of type 3, since x2 = D1(x2) = D1(x4 ⊖ x1) ̸= (D1(x4)⊖ f(x1))∧ (g(x4)⊖D1(x1)) = 0.

D2 is an f -derivation of type 1 and 2. Also, it is an (f, g)-derivation of type 1

and 2. But, it is not f -derivation of type 3, since x2 = D2(1 ⊖ x1) ̸= (D2(1) ⊖
f(x1)) ∧ (f(1) ⊖ D2(x1)) = 0. Also, D2 is not an (f, g)-derivation of type 3, since

x2 = D2(1⊖ x1) ̸= (D2(1)⊖ f(x1)) ∧ (g(1)⊖D2(x1)) = 0.

D3 is an f -derivation and an (f, g)-derivation of type 1, 2 and 3.

The properties of f -derivation and (f, g)-derivation of type 2 (3, respectively) on

MV -algebras is similar to the properties of f -derivation and (f, g)-derivation on lattices

(BCI \BCK-algebras, respectively). For more details, we refer reader to [1, 5] ([10, 12,

13, 22], respectively). So, we study the properties of f -derivation and (f, g)-derivation

of type 1 on MV -algebras. We prove next theorems only for (f, g)-derivations of type

1. Putting the function g equal to the function f , then the results are satisfied for

f -derivations of type 1.

In sequence, by an (f, g)-derivation we mean an (f, g)-derivation of type 1.

Theorem 4.7. Let M be an MV -algebra and D be an (f, g)-derivation on M . Then,

the following conditions hold:

(1) D(0) = 0;

(2) D(x)⊙ f(x∗) = f(x)⊙D(x∗) = D(x)⊙ g(x∗) = g(x)⊙D(x∗) = 0;
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(3) D(x) ≤ f(x), g(x);

(4) D(x) = D(x)⊕ (g(x)⊙D(1));

for all x, y ∈ M .

Proof. (1) If x ∈ M , then

D(0) = D(x⊙ 0) = (D(x)⊙ f(0))⊕ (g(x)⊙D(0)) = g(x)⊙D(0).

Putting x = 0, we obtain D(0) = g(0)⊙D(0) = 0⊙D(0) = 0.

(2) If x ∈ M , then by Theorem 4.6 (3), we obtain 0 = D(0) = D(x ⊙ x∗) =

(D(x)⊙ f(x∗))⊕ (g(x)⊙D(x∗)). By Theorem 2.5 (1), we obtain D(x)⊙ f(x∗) = 0 and

g(x)⊙D(x∗) = 0. Similarly, we can prove f(x)⊙D(x∗) = 0 and D(x)⊙ g(x∗) = 0.

(3) Since f and g are homomorphisms, by using (2), we have D(x)⊙ f(x)∗ = D(x)⊙
g(x)∗ = 0. Now, Theorem 2.6 implies that D(x) ≤ f(x), g(x).

(4) D(x) = D(x⊙ 1) = (D(x)⊙ f(1))⊕ (f(x)⊙D(1)) = D(x)⊕ (f(x)⊙D(1)). □

Lemma 4.8. Let M be an MV -algebra, D be an (f, g)-derivation on M such that f, g

be isomorphisms and I be an ideal of M . Then, D(I) ⊆ f(I) ∩ g(I).

Proof. If y ∈ D(I), then there is x ∈ I such that y = D(x). Now, by Theorem 4.7

(3), we obtain y = D(x) ≤ f(x) ∈ f(I) and y = D(x) ≤ g(x) ∈ g(I). Since I is an

ideal, by Lemma 2.9, f(I) and g(I) are ideals, too. Thus, y ∈ f(I) ∩ g(I). Therefore,

D(I) ⊆ f(I) ∩ g(I). □

Theorem 4.9. Let D be an (f, g)-derivation of an MV -algebra M and x, y ∈ M . If

x ≤ y, then the following hold:

(1) D(x⊙ y∗) = 0;

(2) D(x) ≤ f(y), g(y) and D(y∗) ≤ f(x)∗, g(x)∗;

(3) D(x)⊙D(y∗) = 0.

Proof. (1) Suppose that x ≤ y. Then, by Theorem 2.7, we have x ⊙ y∗ = 0. Now, by

Theorem 4.7 (1), we obtain D(x⊙ y∗) = D(0) = 0.

(2) According to (1), we have 0 = D(x⊙y∗) = (D(x)⊙f(y∗))⊕ (g(x)⊙D(y∗)). Now,

by Theorem 2.5, we haveD(x)⊙f(y∗) = 0 and g(x)⊙D(y∗) = 0. Then, by Theorem 2.7,

D(x) ≤ f(y), D(y∗) ≤ g(x)∗.Moreover, 0 = D(y∗⊙x) = (D(y∗)⊙f(x))⊕(g(y∗)⊙D(x)).

Hence, D(y∗) ⊙ f(x) = 0 and g(y∗) ⊙D(x) = 0. Therefore, by using Theorem 2.5, we
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get D(y∗) ≤ f(x)∗ and D(x) ≤ g(y).

(3) Since f is a homomorphism, x ≤ y implies that f(x) ≤ f(y). By Theorem 4.7 (3),

we have D(x) ≤ f(x) ≤ f(y). Then, D(x) ⊙D(y∗) ≤ f(y) ⊙D(y∗) ≤ f(y) ⊙ f(y∗) =

f(y)⊙ f(y)∗ = 0. Therefore, D(x)⊙D(y∗) = 0. □

Theorem 4.10. Let M be an MV -algebra and D be an (f, g)-derivation on M . Then,

the following hold:

(1) D(x)⊙D(x∗) = 0;

(2) D(x∗) = D(x)∗ if and only if D(x) = f(x) or D(x) = g(x).

Proof. (1) Since x ≤ x, by putting y = x in Theorem 4.9, we get (1).

(2) Let D = f . We have f(x∗) = f(x)∗, for all x ∈ M , since f is a homomorphism.

Hence, D(x∗) = D(x)∗.

Conversely, let D(x∗) = D(x)∗. By Theorem 4.7 (2), D(x) ⊙ D(x∗) = 0 which

implies that f(x) ⊙D(x)∗ = 0. Hence, f(x) ≤ D(x). On the other hand, by Theorem

4.7 (3), we have D(x) ≤ f(x). Therefore, D(x) = f(x). Similarly, we can prove that if

D(x∗) = D(x)∗, then D(x) = g(x). □

Proposition 4.11. Let M be an MV -algebra and D be an (f, g)-derivation of M . If

D(x∗) = D(x), for all x ∈ M , then the following conditions hold:

(1) D(1) = 0;

(2) D(x)⊙D(x) = 0;

(3) If D is isotone, then D = 0.

Proof. (1) By Theorem 4.7 (1), we have D(1) = D(0∗) = D(0) = 0.

(2) It follows from Theorem 4.10 (1).

(3) Since x ≤ 1, for all x ∈ M , and D is isotone, we have D(x) ≤ D(1) = 0, for all

x ∈ M . Therefore, D = 0. □

Proposition 4.12. Let M be an MV -algebra and D be a non-zero additive (f, g)-

derivation of M . Then, D(B(M)) ⊆ B(M).

Proof. Suppose that y ∈ D(B(M)). Then, there exists x ∈ B(M) such that y = D(x).

So, y ⊕ y = D(x)⊕D(x) = D(x⊕ x) = D(x) = y. Therefore, y ∈ B(M). □

Theorem 4.13. Let D be an additive (f, g)-derivation of a linearly ordered MV -algebra

M . Then, either D = 0 or D(1) = 1.
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Proof. Suppose that D is an additive (f, g)-derivation of a linearly ordered MV -algebra

M and D(1) ̸= 1. Then, for all x ∈ M , we have D(1) = D(x⊕x∗) = D(x)⊕D(x∗). On

the other hand D(1) = D(x ⊕ 1) = D(x) ⊕D(1). Therefore, D(1) = D(x) ⊕D(x∗) =

D(x) ⊕D(1). Hence, by the additive cancellative law of MV -algebras, D(x∗) = D(1),

since D(1) ̸= 1. By putting x = 1, we get 0 = D(0) = D(1). So, for all x ∈ M ,

0 = D(1) = D(x⊕ 1) = D(x)⊕D(1) = D(x). Therefore, D = 0. □

Theorem 4.14. Let M be a linearly ordered MV -algebra and g be an isomorphism.

Also, let D1, D2 be additive (f, g)-derivations of M . We define D1D2(x) = D1(D2(x)),

for all x ∈ M . If D1D2 = 0, then D1 = 0 or D2 = 0.

Proof. Suppose that D1D2 = 0 and D2 ̸= 0. Then, by Theorems 4.7 (4) and 4.13, for

all x ∈ M , we obtain

0 = D1D2(x) = D1(D2(x)) = D1(D2(x)⊕ (g(x)⊙D2(1)))

= D1D2(x)⊕D1(g(x)⊙D2(1)) = D1D2(x)⊕D1(g(x)) = D1(g(x)).

Thus, D1(g(x)) = 0, for all x ∈ M . Hence, D1(x) = 0, for all x ∈ M , since g is an

isomorphism. Therefore, D1 = 0. □

Theorem 4.15. Let M be a linearly ordered MV -algebra and D be a non-zero additive

(f, g)-derivation of M . Then, D(x⊙ x) = (D(x)⊙ f(x))⊕ g(x).

Proof. By Theorem 4.7 (4), we have D(x) = D(x) ⊕ (g(x) ⊙ D(1)), for all x ∈ M.

By Theorem 4.13, D(1) = 1, since D ̸= 0. Therefore D(x) = D(x) ⊕ g(x). Thus, by

Theorem 2.5 (3), we have D(x)⊙ g(x) = g(x). Then,

D(x⊙ x) = (D(x)⊙ f(x))⊕ (g(x)⊙D(x)) = (D(x)⊙ f(x))⊕ g(x),

and the proof completes. □

Theorem 4.16. Every non-zero additive (f, g)-derivation of a linearly ordered MV -

algebra M is isotone.

Proof. Let D be a non-zero additive (f, g)-derivation of a linearly ordered MV -algebra

M and x, y ∈ M be arbitrary. If x ≤ y, then x∗ ⊕ y = 1. Now, by Theorem 4.13,

D(1) = 1, since D ̸= 0. Therefore, 1 = D(1) = D(x∗⊕y) = D(x∗)⊕D(y) which implies

that (D(x∗))∗ ≤ D(y). On the other hand, by Theorem 4.7 (3), D(x∗) ≤ (f(x))∗ implies
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that f(x) ≤ (D(x∗))∗. So, f(x) ≤ (D(x∗))∗ ≤ D(y). Also, we have D(x) ≤ f(x), by

Theorem 4.7 (3). Therefore, D(x) ≤ f(x) ≤ D(y) which implies that D(x) ≤ D(y). □

Theorem 4.17. Let M be a linearly ordered MV -algebra and D be a non-zero additive

(f, g)-derivation. Then,

D−1(0) = {x ∈ M : D(x) = 0}

is an ideal of M .

Proof. By Theorem 4.7 (1), we have D(0) = 0. Then, 0 ∈ D−1(0). Now, suppose

that x, y ∈ D−1(0). Then, D(x ⊕ y) = D(x) ⊕ D(y) = 0 ⊕ 0 = 0 which implies that

x ⊕ y ∈ D−1(0). Now, suppose that x ∈ D−1(0) and y ≤ x. Then, D(x) = 0. Hence,

by Theorem 4.16, we have D(y) ≤ D(x) = 0 which implies that D(y) = 0. Therefore,

y ∈ D−1(0). □
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