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Generalized groups are an interesting extension of groups. This no-
tion was first introduced by Molaei in [3].
non-empty set G admitting an operation called multiplication, which
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ABSTRACT. A topological group H is called w-narrow if for every
neighbourhood V of it’s identity element there exists a countable
set A such that VA = H = AV. A semigroup G is called a general-
ized group if for any x € G there exists a unique element e(x) € G
such that xze(z) = e(z)x = x and for every x € G, there exists
r71 € G such that 7' = 2~ ! = e(x). Also, let G be a topologi-
cal space and the operation and inversion mapping are continuous,
then G is called a topological generalized group. If {e(z) | € G}
is countable and for any a € G, {z € Gle(x) = e(a)} is an w-narrow
topological group, then G is called an w-narrow topological gener-
alized group. In this paper, w-narrow and resolvable topological
generalized groups are introduced and studied.

1. INTRODUCTION AND PRELIMINARIES

satisfies the following conditions:

1.
2.

(xy)z = x(yz) for all z,y,z € G.

For each x € G there exists a unique element z € G such that

zx = xz = = (we denote z by e(x)).

For each x € G there exists an element y € G called inverse of

x such that zy = yr = e(x).
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A generalized group is a
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It is well known that each x in G has a unique inverse in G, and the
inverse of x is denoted by z~! [3]. Moreover, for a given z € G, we

have e(e(z)) = e(z), (z71) " =z and e(z™?) = e(x).

Definition 1.1. [7] If G and H are two generalized groups, then a
map f: G — H is called a homomorphism if f(ab) = f(a)f(b) for all
a,beq.

Theorem 1.2. [7] Let f : G — H be a homomorphism where G and
H are two generalized groups. Then

L f(ela)) = e(f(a))
2. fla™h) = (fa)"",
foralla € G.

Recall that a non-empty subset H of a generalized group G is called
a generalized subgroup if H is a generalized group under the multipli-
cation on G [7].

Theorem 1.3. [7] Let H be a non-empty subset of a generalized group
G. Then, H is a generalized subgroup of G if and only if ab € H and
ate H foralla,bec H.

We recall that a paratopological generalized group is a generalized
group G endowed with a Hausdorff topology such that the multiplica-
tive mapping m : G x G — G defined by (z,y) — z.y is continuous
[12]. A paratopological generalized group with continuous inversion
I : G — G defined by z + 27! is called a topological generalized
group [9]. Moreover, if a € G then G.n) = {9 € G | e(g) = e(a)}
is closed in G [12, Theorem 3|, G, is a topological group with the
operation on G, and G is the disjoint union of such topological groups,
ie., G = JuecGe(a) [1V]. The first infinite ordinal is denoted by w.

Theorem 1.4. [2] Let G be a paratopological generalized group such
that the family F = {Ge(a)tacc s locally finite. Then every Geq) is
closed and open in G.

Proposition 1.5. [2] Let H be a dense generalized subgroup of a topo-
logical generalized group G such that the family F = {Ge)}ace 5
locally finite. Then H.y is dense in G for every a € G.

2. Main results
We start our main results with the following proposition.

Proposition 2.1. Let G be a compact paratopological generalized group
with the locally finite family F = {Ge(a) Yaca. Then the inverse function
I from G to G is continuous, and so G is a topological generalized group.
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Proof. Let a € G. Then G, is compact, since Ge(q) is closed. Thus,
the restriction of I to G (q) is continuous by [3, Proposition 2.3.3]. Since
the family F is locally finite, the inverse function [ is continuous on
G = Uueq Geta) [11], and so G is a topological generalized group. [

Proposition 2.2. Suppose that G is a paratopological generalized group
with locally finite family F = {Ge(o) tace. Then for each compact subset
F of G, the set F~' is closed in G.

Proof. If a € G, then F,,) = FNG(q) is closed and so F,(,) is compact.
Now by [3, Lemma 2.3.5], Fe_(;) is closed in Ge(q), and so it is closed in

G. Since the family F is locally finite, F~' = (U, Fe’(;) is closed in
G. O

Recall that a semitopological group G is said to be w-narrow if for
every open neighbourhood V' of the neutral element in GG there exists a
countable set A C G such that VA = G = AV and if A is a finite set,
then the semitopological group G is called precompact. A topological
generalized group G is called precompact [1] if G, is a precompact topo-
logical group for all a € e(G) and card(e(G)) < oo. If we substitute
G in Example 2.13 of this section with the closed unit interval [0, 1]
of R, then we observe that a compact topological generalized group
need not be precompact. Also, we note that every compact topological
generalized group G in which the family {Gew)}ace is locally finite is
precompact.

Proposition 2.3. Fvery precompact topological generalized group G
which is locally compact is compact.

Proof. Since G is precompact, e(G) is finite and G, is a precompact
topological group for all a € e(G). On the other hand, since every
G, is closed, it is locally compact too. By using [3, Theorem 3.7.22],
we observe that every topological group G, is compact and so G is
compact. ]

Recall that a topological space X is called extremally disconnected
[5], if X is Hausdorff and for every open subset U the closure U is open
in X.

Proposition 2.4. Suppose that G is an extremally disconnected topo-

logical generalized group, such that the family F = {Ge() tace s locally
finite. Then, every precompact subset of G is finite.

Proof. Let B be a precompact subset of G and a € B. Then card(e(B)) <
oo and Bg(g) is precompact. Proposition 1.4 implies that G, is open
in G and so it is extremally disconnected. By [3, Theorem 3.7.28],
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By is finite in Gegy. Since card(e(B)) is finite, B = J,c5 Be(a) is
finite. 0

Corollary 2.5. Fvery precompact extremally disconnected topological
generalized group is finite.

In the following definition, we will extend the notion of w-narrowness
to topological generalized groups.

Definition 2.6. An w-narrow topological generalized group is a topo-
logical generalized group G such that e(G) is a countable set and for
any a € e(G), G, is an w-narrow topological group.

It is clear from the above definition that every precompact topolog-
ical generalized group is w-narrow.

Proposition 2.7. FEvery continuous homomorphic image H of an w-
narrow topological generalized group G is w-narrow.
Proof. Let f: G — H be a generalized group homomorphism which is
surjective. We claim that the following conditions hold.

(i) e(H) is a countable set.

(ii) Yh € e(H), Hy, is an w-narrow topological group.
H = f(G) = Uuee f(Gewy) and by Theorem 1.2, f(e(a)) = e(f(a)).
Thus, f(G.) C Hy), and so card(e(H)) < card(e(G)) since f is onto.
Therefore (i) holds.

To prove (ii), let U be an open neighbourhood of f(z) = h € e(H) in
Hy,. Since h € e(H), e(h) = hand so e(x) € f~1(h). Therefore, f~1(U)
is an open neighbourhood of e(z) in G and it follows that, f~1(U) N
G.(y) is an open neighbourhood of e(z) in the w-narrow topological
group Ge(;). So, there exists a countable set A.,;) C Ge(y) such that

Ac(a)(Ge@yNfHU)) = Ge(ay = (Ge@yNf T (U)) Ae(a)- Since z € f71(h)

is arbitrary, we have

U f = U f ﬁ Ge(m))Ae(x)>

zef~1(h) zef-t

- U (U N f( e(x) ))f(Ae(x))

zef=1(h)

¢ U WnH)f(Aw)

zef=1(h)

= U Ufhuw)

zef=1(h)

=U |J flAqw).

zef~1(h)
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Since f~!(h)Ne(G) is countable, Uses—1n) f(Ae)) is a countable subset
of Hy. Now, we define A = [J,c;-1(,) [ (Ae(z)) that is a countable set in
Hj,. Therefore, H, = UA and by asimilar argument we have H;, = AU.
Thus, Hj is an w-narrow topological group and this completes the
proof. O

Proposition 2.8. The topological product of a finite family of w-narrow
topological generalized groups is an w-narrow topological generalized

group.

Proof. Let FF be a finite set and {Gi‘}iey be a family of w-narrow topo-
logical generalized groups. Since G* = Uaee(ci) G for every ¢ € F, we

have
a=Tlier= U cil= | qJé.
i ace(GY) ace(GY) 1t
Every [],cr G;Z_ is an w-narrow topological group by [3, Proposition

3.4.3], and so G is the disjoint union of w-narrow topological groups.
Moreover, since e(G") is countable for all i € F, e(G) = [],.pe(G") is
countable and this completes the proof. 0

Proposition 2.9. Fvery generalized subgroup H of an w-narrow topo-
logical generalized group G is w-narrow.

Proof. Since card(e(H)) < card(e(G)), our hypothesis implies that
card(e(H)) is countable. Let h € e(H), then G}, is an w-narrow group
and Hj, is it’s subgroup. Thus, Hj, is an w-narrow topological group by
[3, Theorem 3.4.4]. Therefore, H is an w-narrow topological generalized
group. 0]

Proposition 2.10. Let G be an w-narrow topological generalized group.
Then G 1is first-countable if and only if G is second-countable.

Proof. Let G be a first-countable w-narrow topological generalized group.
So, for every a in the countable set ¢(G), G, is a first-countable w-
narrow topological group. From [3, Proposition 3.4.5] it follows that
G, has a countable base. From G = UaEe(G)Ga we infer that G has
a countable base. Thus, G is second-countable. The converse is obvi-
ous. U

Since every second countable space is separable and Lindelof, we
have the following result.

Corollary 2.11. FEwvery first-countable w-narrow topological generalized
group is separable and Lindeldf.
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Proposition 2.12. Let G be a Lindeldf topological generalized group,
such that the family F = {Gq}acee) is locally finite. Then G is w-
narrow.

Proof. Let b be an arbitrary element of e(G), then by Theorem 1.4 G,
is open and closed in G and so Gy is Lindelof. Thus, Gy is an w-narrow
topological group by [3, Proposition 3.4.6]. Since G = UaEe(G)Ga and
every (3, is open, e(G) must be countable. Thus, G is w-narrow. [

Being locally finite is necessary in Proposition 2.12 as it is illustrated
in the following example.

Example 2.13. Let G = R\ {0} be a subspace of the real line. Then
G with the multiplication x.y = x is a Lindelof topological generalized
group such that for every a € G, e(a) = a™' = a. Since G,(,) = {a} for
every a € G, {Ge(q) }ace is not locally finite. Moreover, Since e(G) =
G = R\ {0}, the set ¢(G) is not countable set, and so G is not w-narrow.

The smallest cardinal number ¢ such that every family of pairwise
disjoint non-empty open subsets of X has cardinility less than or equal
to ¢, is called Souslin number [5], or cellularity of the space X and it
is denoted by ¢(X). If ¢(X) is countable, then we say that X has the
Souslin property.

Proposition 2.14. Let G be a topological generalized group that has
the Souslin property and the family F = {Gq}ace() @5 locally finite.
Then G is w-narrow.

Proof. Let a € e(G). Since the family F is locally finite, G, is open
in G by Proposition 1.4. Thus, ¢(G,) < ¢(G), and so G, has the
Souslin property. Now [3, Theorem 3.4.7] implies that G, is w-narrow.
Moreover, Since F is the family of pairwise disjoint non-empty open
subsets of G, we have card(e(G)) < ¢(G). Therefore, card(e(G)) is
countable and this completes the proof. O

Clearly, every separable space has the Souslin property. Thus, we
have the following result.

Corollary 2.15. Let G be a separable topological generalized group,
such that the family {Gg}ace(q) s locally finite. Then G is w-narrow.

Proposition 2.16. If a topological generalized group G contains an w-
narrow dense generalized subgroup, such that the family F = {Go}ace(c)
is locally finite, then G is w-narrow.

Proof. This follows from [3, Theorem 3.4.9] and Proposition 1.5.
0J
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Recall that w is the first infinite ordinal. The invariance number
inv(G,) [3] of a topological group G, is countable, i.e., inv(G,) < w,
if for each open neighbourhood U of the neutral element e(a) in G,,
there exists a countable family v of open neighbourhoods of e(a) such
that for each x € G, there exists V € ~ satisfying zVa~! C U.

Definition 2.17. Let G be a topological generalized group. Then
inv(G) = max{inv(G,) | a € e(G)} is called the invariance number of
G and if inv(G) is countable, then G is called w-balanced.

Clearly, every generalized subgroup of an w-balanced topological gen-
eralized group is w-balanced.

Proposition 2.18. Let G be an w-narrow topological generalized group,
then G is w-balanced.

Proof. Let a be an arbitrary element of e(G). Since G is w-narrow,
G, is an w-narrow group. By [3, Proposition 3.4.10], the invariance
number of GG, is countable and so G is w-balanced. O

The converse of Proposition 2.18 need not be true. Indeed, a topo-
logical generalized group G with multiplication a x b = a and discrete
topology is w-balanced, while it is w-narrow if and only if e(G) = G is
countable.

Proposition 2.19. The invariance number of a first-countable topo-
logical generalized group G is countable.

Proof. Let a be an arbitrary element of e(G). Then, G, is a first-
countable topological group. By [3, Theorem 3.4.11] we have inv(G,) <
w. Thus, the invariance number of G is countable. 0

3. Resolvability of topological generalized groups

A topological space X is called irresolvable if each pair of dense sub-
sets of X has non-empty intersection; otherwise, X is called resolvable
[6]. X is called hereditarily irresolvable if every non-empty subspace of
X is irresolvable [0].

Hewitt studied resolvable and irresolvable spaces in [6]. The follow-
ing theorem is needed in the sequel.

Theorem 3.1. [6] Every topological space X can be represented as a
disjoint union X = F U FE, where F is closed and resolvable and E s
open and hereditarily irresolvable.

It is easily seen that the representation of X in Theorem 3.1 is unique.
It will henceforth be called “Hewitt representation” of X. The next
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proposition is an immediate consequence of [/, Lemma 3.1] and Theo-
rem 1.4.

Proposition 3.2. Suppose that G is a topological generalized group
such that the family F = {Ga}ace(q) i locally finite. Then G is resolv-
able if and only if G, is resolvable for every a € e(G).

The assumption that the family 7 = {G4}aec(q) is locally finite is
essential in the proof of Proposition 3.2. For example, the real line R
is resolvable and R with the multiplication x.y = x is a topological
generalized group such that the family {R,}qcer) is not locally finite
and if a € e(R), then R, = {a} is irresolvable.

Proposition 3.3. Let G be a topological generalized group and let the
Jamily F = {Gq}acea) be locally finite. If for every a € e(G), E, is a
hereditarily irresolvable subspace of G, then UaEC(G) E, is hereditarily
irresolvable subspace of G.

Proof. Suppose to the contrary that Uaee(G) E, is not hereditarily ir-
resolvable. So there is a resolvable subspace A in Uaee(G) E,. Now it
follows that for some a € e(G), A, = AN G, is a non-empty open
subspace of A and so, it is resolvable. Therefore, A, is a resolvable
subspace of E,, which is a contradiction. O

Proposition 3.4. Let G be a topological generalized group such that
the family F = {Ga}acea) i locally finite. Then, F'U E is the Hewitt
representation of G if and only if for any a € e(G), F, U E, is the
Hewitt representation of G,, where F, = FNG, and E, = ENG,.

Proof. Let F,UE, be the Hewitt representation of G,, where a € ¢(G).
We claim that (Useea)Fa) U (Usee(e) Ea) is the Hewitt representation of
G. Ugee(c) Fy is resolvable and it is closed since the family {G, }ace(q) is
locally finite. On the other hand, Uuec.a)F, is an open subspace of G
which is hereditarily irresolvable by the above proposition. It is clear
that (Ugee(e)Fa) N (Uaee(yEa) = 0. Thus, our claim is proved.
Conversely, let F'UFE be the Hewitt representation of G. By Theorem
1.4, F, = FNG, is an open subset of I’ and so it is resolvable. It is also
clear that F, is a closed subset of GG,. On the other hand, since every
subspace of a hereditarily irresolvable space is hereditarily irresolvable,
then £, = F NG, is an open and hereditarily irresolvable subspace of
G,. Now we can see F, N E, = () and so, G, = F, U E, is the Hewitt
representation of G,. O

Proposition 3.5. Let G be a topological generalized group and let H
be a dense generalized subgroup of G. If the family F = {Gq}ace(c) s
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locally finite and H # G, then G, is a resolvable topological group for
some a € e(G).

Proof. By hypothesis H is a proper dense generalized subgroup of G =
Usce(g)Ga- Thus, there exists a € e(G) such that H, = HN G, is a
proper subgroup of G,. On the other hand, by Proposition 1.5 H, is
dense in G,. Therefore, H, is a proper dense subgroup of G, and so
by [1, Lemma 3.3], G, is resolvable. O

Proposition 3.6. Let G be a resolvable topological generalized group
and a € e(@). If int(G,) # 0, then G, is resolvable.

Proof. Since G is resolvable, int(G,) is resolvable and the topological
group G, is a homogeneous space containing int(G,). Thus, G, is
resolvable. O

Note that Proposition 3.6 implies that if for some a € e(G), int(G,) #
() and G, is irresolvable, then G is irresolvable.
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