TOP LOCAL COHOMOLOGY AND TOP FORMAL LOCAL COHOMOLOGY MODULES WITH SPECIFIED ATTACHED PRIMES

A. NAZARI* AND F. RASTGOO

ABSTRACT. Let \((R, \mathfrak{m})\) be a Noetherian local ring, \(M\) be a finitely generated \(R\)-module of dimension \(n\) and \(\mathfrak{a}\) be an ideal of \(R\). In this paper, generalizing the main results of Dibaei and Jafari [3] and Rezaei [8], we will show that if \(T\) is a subset of \(\text{Ass}_R M\), then there exists an ideal \(\mathfrak{a}\) of \(R\) such that \(\text{Att}_R H^n_{\mathfrak{a}}(M) = T\). As an application, we give some relationships between top local cohomology modules and top formal local cohomology modules.

1. Introduction

Throughout this paper, let \((R, \mathfrak{m})\) be a commutative Noetherian local ring, \(\mathfrak{a}\) be an ideal of \(R\) and \(M\) be a finitely generated \(R\)-module of dimension \(n\). For an \(R\)-module \(M\), the \(i\)-th local cohomology module of \(M\) with respect to \(\mathfrak{a}\) is defined as

\[
H^i_{\mathfrak{a}}(M) = \lim_{n \geq i} \text{Ext}^i_R(R/\mathfrak{a}^n, M).
\]

For the basic properties of local cohomology the reader can refer to [2]. Also, for each \(i \geq 0\); \(\delta^i_{\mathfrak{a}}(M) := \lim_{\mathfrak{T}} H^i_{\mathfrak{m}}(M/\mathfrak{a}^t M)\) is called the \(i\)-th formal local cohomology module of \(M\) with respect to \(\mathfrak{a}\). The formal local cohomology modules have been studied by several authors; see
for example [1], [5] and [9]. Let M be a finitely generated R-module of dimension n, then $\operatorname{Max}\{i \in \mathbb{Z} : H^i_a(M) \neq 0\} \leq n$ by [2, Theorem 6.1.2] and $\operatorname{Max}\{i \in \mathbb{Z} : \mathfrak{F}^i_a(M) \neq 0\} \leq n$ by [9, Theorem 4.5]. Recall that the module $H^n_a(M)$ is called a top local cohomology module if $\operatorname{Max}\{i \in \mathbb{Z} : H^i_a(M) \neq 0\} = n$ and the module $\mathfrak{F}^n_a(M)$ is called a top formal local cohomology module if $\operatorname{Max}\{i \in \mathbb{Z} : \mathfrak{F}^i_a(M) \neq 0\} = n$. For each Artinian R-module A, we denote by $\operatorname{Att}_R A$ the set of all attached prime ideals of A.

In section 2, we show that any subset T of $\operatorname{Assh}_R M$, where $\operatorname{Assh}_R M = \{p \in \operatorname{Ass}_R M : \dim(R/p) = \dim M\}$, can be expressed as the set of attached primes of the top local cohomology module $H^n_a(M)$ for some ideal a of R. This generalizes a result of Dibaei and Jafari [3] to Noetherian local rings that are not necessarily complete.

We say that the top local cohomology module $H^n_a(M)$ satisfies the property (\ast), if $\operatorname{Att}_R H^n_a(M) = \{p \in \operatorname{Ass}_R M : \dim(R/p) = n \text{ and } \sqrt{a + p} = m\}$. Rezaei in [8], showed that if (R, m) is a complete Noetherian local ring and M is a finitely generated R-module of dimension n then for each ideal a of R there exists an ideal b such that $H^n_a(M) \cong \mathfrak{F}^n_a(M)$ and there exists an ideal c such that $\mathfrak{F}^n_a(M) \cong H^n_c(M)$. In section 3, we generalize this result. In fact, we show that over Noetherian local rings that are not necessarily complete, there exists an ideal c such that $\mathfrak{F}^n_a(M) \cong H^n_c(M)$ and if $H^n_a(M)$ satisfies the property (\ast) then there exists an ideal b such that $H^n_a(M) \cong \mathfrak{F}^n_b(M)$.

For any ideal a of R, the radical of a, denoted by \sqrt{a}, is defined to be the set $\{x \in R : x^n \in a \text{ for some } n \in \mathbb{N}\}$. Also, we denote $\{p \in \operatorname{Spec} R : p \supseteq a\}$ by $V(a)$ and $\operatorname{Min} V(a)$ by $\operatorname{Min}(a)$. For an R-module M, we show the set of minimal members of associated primes of M by $\operatorname{mAss}_R(M)$. For any unexplained notation and terminology, we refer the reader to [2] and [6].

2. TOP LOCAL Cohomology MODULES WITH SPECIFIED ATTACHED PRIMES

In this section, we study the set of attached primes of top local cohomology modules.

Notation 2.1. Let a be an ideal of R and M be a finitely generated R-module of dimension n. Let $0 = \bigcap_{p \in \operatorname{Ass}_R M} N(p)$ be a reduced primary
decomposition of the submodule 0 of M. Following [7], we set

$$\text{Ass}_R(\mathfrak{a}, M) = \{ \mathfrak{p} \in \text{Ass}_R M : \dim(R/\mathfrak{p}) = n \text{ and } \sqrt{\mathfrak{a} + \mathfrak{p}} = \mathfrak{m} \}. $$

Set $N^\mathfrak{a} = \bigcap_{\mathfrak{p} \in \text{Ass}_R(\mathfrak{a}, M)} N(\mathfrak{p})$. Note that $N^\mathfrak{a}$ does not depend on the choice of the reduced primary decomposition of zero because

$$\text{Ass}_R(\mathfrak{a}, M) \subseteq m\text{Ass}_R M. $$

It is clear that $\text{Ass}_R(\mathfrak{a}, M) = \text{Ass}_R(M/N^\mathfrak{a})$ and

$$\text{Ass}_R N^\mathfrak{a} = \text{Ass}_R M \setminus \text{Ass}_R(\mathfrak{a}, M). $$

For each integer $l \geq 0$ and any subset S of $\text{Spec} R$ we define

$$S_l := \{ \mathfrak{p} \in S : \dim(R/\mathfrak{p}) = l \}. $$

Lemma 2.2. Let $N^\mathfrak{a}$ be defined as above. Then the following statements are equivalent:

(i) $H^n_R(N^\mathfrak{a}) = 0$;

(ii) $H^n_R(M) \cong H^n_R(M/N^\mathfrak{a})$;

(iii) $\text{Att}_R H^n_R(M) = \text{Att}_R H^n_R(M/N^\mathfrak{a}) = \text{Ass}_R(\mathfrak{a}, M)$.

Proof. By the exact sequence

$$H^n_R(N^\mathfrak{a}) \to H^n_R(M) \to H^n_R(M/N^\mathfrak{a}) \to 0$$

it is enough for us to prove (iii)⇒(i). Suppose, on the contrary, that $H^n_R(N^\mathfrak{a}) \neq 0$. Then there exists $\mathfrak{p} \in \text{Att}_R H^n_R(N^\mathfrak{a})$. By [4, Theorem A], $\mathfrak{p} \in \text{Ass}_R N^\mathfrak{a}$ and $\text{cd}(\mathfrak{a}, R/\mathfrak{p}) = n$ and so $\mathfrak{p} \in \text{Att}_R H^n_R(M) = \text{Att}_R H^n_R(M/N^\mathfrak{a})$. But by Notation 2.1, $\text{Att}_R H^n_R(M/N^\mathfrak{a}) = \text{Ass}_R(\mathfrak{a}, M)$, that means $\mathfrak{p} \in \text{Ass}_R(\mathfrak{a}, M) = \text{Ass}_R(M/N^\mathfrak{a})$, a contradiction. \qed

Definition 2.3. Let \mathfrak{a} be an ideal of R, M be a finitely generated R-module of dimension n and $N^\mathfrak{a}$ be defined as in Notation 2.1. We say $H^n_R(M)$ satisfies the property (\ast), if one of the equivalent conditions of Lemma 2.2 holds.

Proposition 2.4. Let \mathfrak{a} and \mathfrak{b} be two ideals of R such that $H^n_R(M)$ satisfies the property (\ast). If $\text{Att}_R H^n_R(\mathfrak{b}, M) \subseteq \text{Att}_R H^n_R(\mathfrak{a}, M)$, then there exists an epimorphism $H^n_R(M) \to H^n_R(M)$.

Proof. Since $H^n_R(M)$ satisfies the property (\ast), we have

$$H^n_R(M) \cong H^n_R(M/N^\mathfrak{a}) \cong H^n_R(M/N^\mathfrak{a})$$

and

$$\text{Att}_R H^n_R(\mathfrak{a}, M) = \text{Att}_R H^n_R(M/N^\mathfrak{a}) = \text{Ass}_R(\mathfrak{a}, M) = \text{Ass}_R(M/N^\mathfrak{a})$$

where, $N^\mathfrak{a} = \bigcap_{\mathfrak{p} \in \text{Ass}_R(\mathfrak{a}, M)} N(\mathfrak{p})$. Now we show that $H^n_R(N^\mathfrak{a}) = 0$. Suppose, on the contrary, that $H^n_R(N^\mathfrak{a}) \neq 0$. Then there exists a prime ideal
\(p \in \text{Att}_R \mathcal{H}^\alpha(M) \) and therefore for this prime ideal, by [4, Theorem A] we have, \(p \in \text{Ass}_R N^\alpha \) and \(\text{cd}(b, R/p) = n \). Since \(\text{Ass}_R N^\alpha \subseteq \text{Ass}_R M \), we have \(p \in \text{Att}_R \mathcal{H}^\alpha(M) \) and therefore \(p \in \text{Att}_R \mathcal{H}^\alpha(M) \) that is a contradiction by Notation 2.1. So, \(\mathcal{H}^\alpha(M) \cong \mathcal{H}^\alpha(M/N^\alpha) \). By [2, Proposition 8.1.2], for each \(x \in m \setminus b \), there is a long exact sequence

\[
\cdots \rightarrow \mathcal{H}^\alpha_{b + Rx}(M/N^\alpha) \rightarrow \mathcal{H}^\alpha_b(M/N^\alpha) \rightarrow \mathcal{H}^\alpha_b((M/N^\alpha)_x) \rightarrow \cdots
\]

where \((M/N^\alpha)_x \) is the localization of \(M/N^\alpha \) at \(\{x^i : i \geq 0\} \). Note that \(\mathcal{H}^\alpha_b(M/N^\alpha) \) is Artinian and \(\mathcal{H}^\alpha_b((M/N^\alpha)_x) \cong (\mathcal{H}^\alpha_b(M/N^\alpha))_x \). It follows that \(\mathcal{H}^\alpha_b((M/N^\alpha)_x) = 0 \) and so there exists an epimorphism \(\mathcal{H}^\alpha_{b + Rx}(M/N^\alpha) \rightarrow \mathcal{H}^\alpha_b(M/N^\alpha) \). Repeating the argument with \(b + Rx \) in place of \(b \) and continuing gives an epimorphism \(\mathcal{H}^\alpha_m(M/N^\alpha) \rightarrow \mathcal{H}^\alpha_b(M/N^\alpha) \) and so we have the epimorphism \(\mathcal{H}^\alpha_a(M) \rightarrow \mathcal{H}^\alpha_b(M) \).

\begin{corollary}
Let \(a \) and \(b \) be two ideals of \(R \) such that \(\mathcal{H}^\alpha_a(M) \) and \(\mathcal{H}^\alpha_b(M) \) satisfy the property \((*)\). If \(\text{Att}_R \mathcal{H}^\alpha_a(M) = \text{Att}_R \mathcal{H}^\alpha_b(M) \), then \(\mathcal{H}^\alpha_a(M) \cong \mathcal{H}^\alpha_b(M) \).
\end{corollary}

\begin{proof}
As in the proof of Proposition 2.4, since

\[
\text{Att}_R \mathcal{H}^\alpha_a(M) = \text{Att}_R \mathcal{H}^\alpha_b(M),
\]

we have \(N^\alpha = N^b \) and so

\[
\mathcal{H}^\alpha_a(M) \cong \mathcal{H}^\alpha_m(M/N^\alpha) \cong \mathcal{H}^\alpha_m(M/N^b) \cong \mathcal{H}^\alpha_b(M).
\]

\end{proof}

Dibaei and Jafari in [3], have shown that if \(R \) is a complete Noetherian local ring and \(M \) is a finitely generated \(R \)-module of dimension \(n \), then any subset \(T \) of \(\text{Assh}_R M \) can be expressed as the set of attached primes of the top local cohomology module \(\mathcal{H}^\alpha_a(M) \) for some ideal \(a \) of \(R \) (see [3, Theorem 2.8]). In the next theorem, we generalize this result to Noetherian local rings that are not necessarily complete.

\begin{theorem}
Let \(M \) be a finitely generated \(R \)-module of dimension \(n \) and \(T \) be a subset of \(\text{Assh}_R(M) \), then there exists an ideal \(a \) of \(R \) such that \(\text{Att}_R \mathcal{H}^\alpha_a(M) = T \).
\end{theorem}

\begin{proof}
Let \(\text{Assh}_R M = \{p_1, \ldots, p_k\} \) and \(T = \{p_1, \ldots, p_r\} \), where \(r \leq k \). When \(r = k \), the result is immediate from [2, Theorem 7.3.2], just take \(a = m \). We therefore assume henceforth in this proof that \(r < k \). So \(\text{Assh}_R M \setminus T = \{p_{r+1}, \ldots, p_k\} \). Since, for each \(1 \leq i \leq k \), \(p_i \) is a minimal associated prime of \(M \), we have \(\cap_{i=r+1}^k p_i \notin \bigcup_{i=1}^r p_i \). So we can choose an element \(y \in \cap_{i=r+1}^k p_i \setminus \bigcup_{i=1}^r p_i \). Set \(M = \overline{\{(\cap_{i=1}^r p_i)M\}} \), then \(\text{Assh}_R M = T \) and \(\dim(M) = n \). Since \(y \notin \bigcup_{i=1}^r p_i \), there are
elements x_1, \ldots, x_{n-1} such that y, x_1, \ldots, x_{n-1} forms a system of parameters for R-module \overline{M}. Set $\mathfrak{a} = \langle y, x_1, \ldots, x_{n-1} \rangle$. It follows from [2, Independence Theorem 4.2.1 and Exercise 6.1.9] that

$$H^n_\mathfrak{a}(M) \otimes_{\overline{M}} \frac{R}{\bigcap_{i=1}^n \mathfrak{p}_i} \cong H^n_\mathfrak{a}(M \otimes_{\overline{M}} \frac{R}{\bigcap_{i=1}^n \mathfrak{p}_i}) \cong H^n_{\mathfrak{a}}(\overline{M}) \cong H^n_{\mathfrak{m}}(\overline{M}) \neq 0.$$

We can now use [2, Theorem 7.3.2 and Exercise 7.2.6] to deduce that

$$T = \text{Att}_R H^n_\mathfrak{a}(\overline{M}) \subseteq \text{Att}_R H^n_\mathfrak{a}(M).$$

On the other hand, if $\mathfrak{p}_i \in \text{Assh}_R M \setminus T$, then

$$H^n_\mathfrak{a}(\frac{R}{\mathfrak{p}_i}) = H^n_{\langle y, x_1, \ldots, x_{n-1} \rangle}(\frac{R}{\mathfrak{p}_i}) \cong H^n_{\langle x_1, \ldots, x_{n-1} \rangle}(\frac{R}{\mathfrak{p}_i}) \text{ by [2, Theorem 3.3.1]} = 0.$$

It follows from this observation and [4, Theorem A] that $\text{Att}_R H^n_\mathfrak{a}(M) = T$. Hence $\text{Att}_R H^n_\mathfrak{a}(M) = T$ and this completes the proof. \(\square\)

Remark 2.7. Let M be a finitely generated R-module of dimension n and T be a subset of $\text{Assh}_R M$. By Theorem 2.6, there exists an ideal \mathfrak{a} of R such that $\text{Att}_R H^n_\mathfrak{a}(M) = T$. By the choice of this ideal in the proof of Theorem 2.6, one can see that, for each $\mathfrak{p} \in T$, $\sqrt{\mathfrak{a} + \mathfrak{p}} = \mathfrak{m}$. Therefore

$$\text{Att}_R H^n_\mathfrak{a}(M) = \{ \mathfrak{p} \in \text{Assh}_R M : \sqrt{\mathfrak{a} + \mathfrak{p}} = \mathfrak{m} \} = \text{Assh}_R(\mathfrak{a}, M)$$

and so $\text{Att}_R H^n_\mathfrak{a}(M) = \text{Att}_R H^n_\mathfrak{a}(M/N^\mathfrak{a})$. Hence $H^n_\mathfrak{a}(M)$ satisfies the property (\ast).

3. Some Results on Top Formal Local Cohomology

In [8], Rezaei proved that if (R, \mathfrak{m}) is a complete Noetherian local ring and M is a finitely generated R-module of dimension n, then for each ideal \mathfrak{a} of R there exists an ideal \mathfrak{b} such that $H^n_\mathfrak{a}(M) \cong H^n_\mathfrak{b}(M)$ and there exists an ideal \mathfrak{c} such that $H^n_\mathfrak{a}(M) = H^n_\mathfrak{c}(M)$. In this section we give a generalization of this result.

Lemma 3.1. (See [8, Theorem 2.2].) Let (R, \mathfrak{m}) be a Noetherian local ring and M be a finitely generated R-module of dimension n. If T is a proper subset of $\text{Assh}_R M$, then $\text{Att}_R H^n_\mathfrak{a}(M) = T$ where $\mathfrak{a} := \bigcap_{\mathfrak{p}_i \in T} \mathfrak{p}_i$ is an ideal of R.

Lemma 3.2. (See [8, Lemma 2.4].) Let \mathfrak{a} be an ideal of a Noetherian local ring R and M be a finitely generated R-module. If M is an \mathfrak{a}-torsion module, then $\widehat{H}_\mathfrak{a}^i(M) \cong H^i_\mathfrak{m}(M)$ for all $i \geq 0$.

By [5, Proposition 2.1], if \(\mathfrak{a} \) is an ideal of \(R \) and \(M \) is a finitely generated \(R \)-module of dimension \(n \), then \(\mathfrak{F}_b^\alpha(M) \) is an Artinian \(R \)-module and there exists an integer \(n_0 \) such that \(\mathfrak{F}_b^\alpha(M) \cong \frac{H_a^\alpha(M)}{a^{n_0}H_a^\alpha(M)} \).

Now we can reduce the completeness assumption in [8, Theorem 2.5] to the assumption that \(H_a^\alpha(M) \) satisfies the property (*)

Theorem 3.3. Let \(\mathfrak{a} \) and \(\mathfrak{b} \) be two ideals of a Noetherian local ring \((R, \mathfrak{m})\) and \(M \) be a finitely generated \(R \)-module of dimension \(n \) such that \(H_a^\alpha(M) \) satisfies the property (*). If \(\text{Att}_R H_a^\alpha(M) = \text{Att}_R \mathfrak{F}_b^\alpha(M) \), then \(H_a^\alpha(M) \cong \mathfrak{F}_b^\alpha(M) \).

Proof. Since \(H_a^\alpha(M) \) satisfies the property (*), by Notation 2.1 and Definition 2.3 we have \(H_a^\alpha(N^0) = 0 \) and

\[
\text{Att}_R \mathfrak{F}_b^\alpha(M) = \text{Att}_R H_a^\alpha(M) = \{ \mathfrak{p} \in \text{Ass}_R M : \dim(R/\mathfrak{p}) = n \text{ and } \sqrt{\mathfrak{a} + \mathfrak{p}} = \mathfrak{m} \} = \text{Ass}_R(\mathfrak{a}, M).
\]

Now we show that the Artinian module \(\mathfrak{F}_b^\alpha(N^0) \) is zero. Suppose, on the contrary, that \(\mathfrak{F}_b^\alpha(N^0) \neq 0 \). Therefore there exists a prime ideal \(\mathfrak{p} \in \text{Att}_R \mathfrak{F}_b^\alpha(N^0) \). By [5, Proposition 2.1], \(\mathfrak{p} \in \text{Ass}_R N^0 \), \(\dim(R/\mathfrak{p}) = n \) and \(\mathfrak{b} \subseteq \mathfrak{p} \). Therefore \(\mathfrak{p} \in \text{Att}_R \mathfrak{F}_b^\alpha(M) = \text{Att}_R H_a^\alpha(M) = \text{Ass}_R(\mathfrak{a}, M) \), a contradiction. Therefore \(\mathfrak{F}_b^\alpha(N^0) = 0 \) and \(\mathfrak{F}_b^\alpha(M) \cong \mathfrak{F}_b^\alpha(M/N^0) \).

On the other hand, since \(\text{Att}_R \mathfrak{F}_b^\alpha(M) = \text{Ass}_R(M/N^0) \), we have \(\mathfrak{b} \subseteq \bigcap_{\mathfrak{p} \in \text{Ass}_R(M/N^0)} \mathfrak{p} \). Therefore \(M/N^0 \) is a \(\mathfrak{b} \)-torsion \(R \)-module and by Lemma 3.2, we have \(\mathfrak{F}_b^\alpha(M/N^0) \cong H_m^\alpha(M/N^0) \cong H_a^\alpha(M/N^0) \cong H_a^\alpha(M) \).

\(\square \)

Corollary 3.4. Let \(\mathfrak{a} \) be an ideal of a Noetherian local ring \((R, \mathfrak{m})\) such that \(H_a^\alpha(M) \) satisfies the property (*). Then \(H_a^\alpha(M) \cong \mathfrak{F}_b^\alpha(M) \), where \(\mathfrak{b} = \text{Ann}_R H_a^\alpha(M) \).

Proof. Let \(\mathfrak{b} = \text{Ann}_R H_a^\alpha(M) \), then \(\sqrt{\mathfrak{b}} = \bigcap_{\mathfrak{p} \in \text{Ass}_R H_a^\alpha(M)} \mathfrak{p} \). Since

\[
\text{Att}_R H_a^\alpha(M) \subseteq \text{Assh}_R M,
\]

it follows from Lemma 3.1 that \(\text{Att}_R H_a^\alpha(M) = \text{Att}_R \mathfrak{F}_b^\alpha(M) \) and so by Theorem 3.3, we have \(H_a^\alpha(M) \cong \mathfrak{F}_b^\alpha(M) \).

\(\square \)

Now we can generalize [8, Theorem 2.6 (ii)] and [8, Corollary 2.7] to Noetherian local rings that are not necessarily complete.

Theorem 3.5. Let \(\mathfrak{a} \) be an ideal of a Noetherian local ring \((R, \mathfrak{m})\) and \(M \) be a finitely generated \(R \)-module of dimension \(n \). Then there exists an ideal \(\mathfrak{c} \) of \(R \) such that \(\mathfrak{F}_a^\alpha(M) \cong H_c^\alpha(M) \).
Proof. Since $\Att_R \mathfrak{F}^a_n(M) \subseteq \Assh_R M$, it follows from Theorem 2.6 that there exists an ideal \mathfrak{c} of R such that $\Att_R H^a_n(M) = \Att_R \mathfrak{F}^a_n(M)$. By Remark 2.7, $H^a_{\mathfrak{c}}(N^c) = 0$, where N^c is defined as in Notation 2.1. Therefore $H^a_{\mathfrak{c}}(M)$ satisfies the property (*). Now by Theorem 3.3, $\mathfrak{F}^a_n(M) \cong H^a_{\mathfrak{c}}(M)$.

\textbf{Corollary 3.6.} Let a be an ideal of a Noetherian local ring (R, \mathfrak{m}) and M be a finitely generated R-module of dimension n. Then $\mathfrak{F}^a_n(M) \cong \mathfrak{F}_{Ann_R \mathfrak{F}^a_n(M)}(M)$.

\textbf{Proof.} By Theorem 3.5, there exists an ideal \mathfrak{c} of R such that $\mathfrak{F}^a_n(M) \cong H^a_{\mathfrak{c}}(M)$. As $H^a_{\mathfrak{c}}(M)$ satisfies the property (*), we have $H^a_{\mathfrak{c}}(M) \cong \mathfrak{F}_{Ann_R H^a_{\mathfrak{c}}(M)}(M)$ by Corollary 3.4, and so $\mathfrak{F}^a_n(M) \cong \mathfrak{F}_{Ann_R \mathfrak{F}^a_n(M)}(M)$, as required.

\textbf{Theorem 3.7.} Let a be an ideal of a Noetherian local ring (R, \mathfrak{m}) and M be a finitely generated R-module of dimension n such that $H^a_n(M)$ satisfies the property (*). Then $H^a_n(M) \cong \frac{H^a_m(M)}{(Ann_R H^a_n(M)) H^a_m(M)}$.

\textbf{Proof.} By Corollary 3.4, we have $H^a_n(M) \cong \mathfrak{F}_{Ann_R H^a_n(M)}(M)$ and by [5, Proposition 2.1], there exists an integer t_0 such that

$$\mathfrak{F}_{Ann_R H^a_n(M)}(M) = \frac{H^a_m(M)}{(Ann_R H^a_n(M))^t H^a_m(M)}$$ for all $t \geq t_0$.

Hence $H^a_n(M) \cong \frac{H^a_m(M)}{(Ann_R H^a_n(M))^t H^a_m(M)}$ for all $t \geq t_0$ and so

$$Ann_R H^a_n(M) = Ann_R(\frac{H^a_m(M)}{(Ann_R H^a_n(M))^t H^a_m(M)})$$ for all $t \geq t_0$.

It follows that

$$(Ann_R H^a_n(M)) H^a_m(M) \subseteq (Ann_R H^a_n(M))^t H^a_m(M)$$ for all $t \geq t_0$.

Hence $(Ann_R H^a_n(M))^t H^a_m(M) = Ann_R H^a_n(M) H^a_m(M)$ for all $t \geq t_0$ and therefore

$$H^a_n(M) \cong \frac{H^a_m(M)}{(Ann_R \mathfrak{F}^a_n(M)) H^a_m(M)}.$$

\textbf{Theorem 3.8.} Let a be an ideal of a Noetherian local ring (R, \mathfrak{m}) and M be a finitely generated R-module of dimension n. Then $\mathfrak{F}^a_n(M) \cong \frac{H^a_m(M)}{(Ann_R \mathfrak{F}^a_n(M)) H^a_m(M)}$.
Corollary 3.9. Let \(a \) and \(b \) be two ideals of a Noetherian local ring \((R, m)\) and \(M \) be a finitely generated \(R \)-module of dimension \(n \).

(i) If \(\text{Ann}_R \mathfrak{F}_a^n(M) = \text{Ann}_R \mathfrak{F}_b^n(M) \), then \(\mathfrak{F}_a^n(M) \cong \mathfrak{F}_b^n(M) \);
(ii) If \(\text{H}_a^n(M) \) satisfies the property (\(* \)) and
\[
\text{Ann}_R \text{H}_a^n(M) = \text{Ann}_R \mathfrak{F}_b^n(M),
\]
then \(\text{H}_a^n(M) \cong \mathfrak{F}_b^n(M) \);
(iii) If both \(\text{H}_a^n(M) \) and \(\text{H}_b^n(M) \) satisfy the property (\(* \)) and
\[
\text{Ann}_R \text{H}_a^n(M) = \text{Ann}_R \text{H}_b^n(M),
\]
then \(\text{H}_a^n(M) \cong \text{H}_b^n(M) \).

Proof. All items are clear by Theorem 3.7 and Theorem 3.8. □

Theorem 3.10. Let \(a \) be an ideal of a Noetherian local ring \((R, m)\) and \(M \) be a finitely generated \(R \)-module of dimension \(n \). Then

(i) We have the equalities
\[
\text{Att}_R \mathfrak{F}_a^n(M) = \text{V}(\text{Ann}_R \mathfrak{F}_a^n(M)) \cap \text{Assh}_R M
= \text{Min} \text{V}(\text{Ann}_R \mathfrak{F}_a^n(M)).
\]
(ii) If \(\text{H}_a^n(M) \) satisfies the property (\(* \)), then
\[
\text{Att}_R \text{H}_a^n(M) = \text{V}(\text{Ann}_R \text{H}_a^n(M)) \cap \text{Assh}_R M = \text{Min} \text{V}(\text{Ann}_R \text{H}_a^n(M)).
\]

Proof. (i) Since for each Artinian \(R \)-module \(A \),
\[
\text{Att}_R (A/aA) = \text{Att}_R A \cap \text{V}(a),
\]
by Theorem 3.8, we have
\[
\text{Att}_R \mathfrak{F}_a^n(M) = \text{Att}_R \text{H}_m^n(M) \cap \text{V}(\text{Ann}_R \mathfrak{F}_a^n(M))
= \text{Assh}_R M \cap \text{V}(\text{Ann}_R \mathfrak{F}_a^n(M))
\subseteq \text{Min} \text{V}(\text{Ann}_R \mathfrak{F}_a^n(M)).
\]
On the other hand
\[
\text{Min} \text{V}(\text{Ann}_R \mathfrak{F}_a^n(M)) = \text{Min} \text{Att}_R \mathfrak{F}_a^n(M)
\subseteq \text{Assh}_R M \cap \text{V}(\text{Ann}_R \mathfrak{F}_a^n(M)).
\]
Therefore
\[
\text{Att}_R \mathfrak{F}_a^n(M) = \text{Assh}_R M \cap \text{V}(\text{Ann}_R \mathfrak{F}_a^n(M)) = \text{Min} \text{V}(\text{Ann}_R \mathfrak{F}_a^n(M)).
\]
(ii) The proof is similar to the proof (i). □
Corollary 3.11. Let a be an ideal of a Noetherian local ring (R, \mathfrak{m}) and M be a finitely generated R-module of dimension n. Then

(i) $\text{Att}_R \mathfrak{F}_a^n(M) = \text{Ass}_R \left(\frac{R}{\text{Ann}_R \mathfrak{F}_a^n(M)} \right)$.

(ii) If $H_a^n(M)$ satisfies the property $(*),$ then $\text{Att}_R H_a^n(M) = \text{Ass}_R \left(\frac{R}{\text{Ann}_R H_a^n(M)} \right)$.

Proof. (i) Since $\mathfrak{F}_a^n(M)$ is Artinian, it follows from [10, Theorem 3.1 and Theorem 3.3 (b)] that $\text{Ass}_R (R/\text{Ann}_R \mathfrak{F}_a^n(M)) \subseteq \text{Att}_R (\mathfrak{F}_a^n(M))$. But the sets $V(\text{Ann}_R \mathfrak{F}_a^n(M))$ and $\text{Ass}_R (R/\text{Ann}_R \mathfrak{F}_a^n(M))$ have the same minimal elements, by [10, Theorem 3.3 (c)]. Thus, by Theorem 3.10, $\text{Att}_R (\mathfrak{F}_a^n(M)) \subseteq \text{Ass}_R (R/\text{Ann}_R \mathfrak{F}_a^n(M))$. Therefore

$\text{Att}_R (\mathfrak{F}_a^n(M)) = \text{Ass}_R (R/\text{Ann}_R \mathfrak{F}_a^n(M))$.

(ii) The proof is similar to the proof (i). \hfill \Box

Acknowledgments

The authors are deeply grateful to the referee for his/her careful reading of the paper and valuable suggestions.

References

Alireza Nazari
Department of Mathematics, Lorestan University, P.O. Box 68151-44316, Khorram Abad, Iran.
Email: nazari.ar@lu.ac.ir

Fahimeh Rastgoo
Department of Mathematics, Lorestan University, P.O. Box 68151-44316, Khorram Abad, Iran.
Email: rastgoo.fa@fs.lu.ac.ir
TOP LOCAL COHOMOLOGY AND TOP FORMAL LOCAL COHOMOLOGY MODULES WITH SPECIFIED ATTACHED PRIMES

A. NAZARI AND F. RASTGOO

پایان‌مطابق دو مدل‌های کوهمولوژی و کوهومولوژی موضوعی، با ایده‌آل‌های اول چسبیده مشخص

علیرضا نظری و فهیمه راستگو

گروه ریاضی و علوم کامپیوتر، دانشگاه علوم پایه، دانشگاه لرستان، خرم‌آباد، ایران

فرض کنید (R, m) یک حلقه موضعی نوتری باشد. در این مقاله نشان می‌دهیم که با اضافه‌سازی هر زیر مجموعهی a ایده‌آل R از R، تاریخچه ایده‌آل

\[\text{Ass}_{R} M \]

از T باشد. با استفاده از این مطلب برخی ارتباطات بین

\[\text{Att}_{R} H_{n}^{a}(M) = T \]

با این مدل‌های کوهومولوژی موضوعی، مدل‌های کوهومولوژی موضوعی، مدل‌های کوهومولوژی موضوعی

کلمات کلیدی: ایده‌آل‌های اول چسبیده، مدل‌های کوهومولوژی موضوعی، مدل‌های کوهومولوژی موضوعی

\[\text{Ass}_{R} M \]

روش‌های نوتری موضوعی

\[\text{Att}_{R} H_{n}^{a}(M) = T \]

را تعمیم می‌دهد.

\[\text{Ass}_{R} M \]

\[\text{Att}_{R} H_{n}^{a}(M) = T \]