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NEW BOUNDS AND EXTREMAL GRAPHS FOR
DISTANCE SIGNLESS LAPLACIAN SPECTRAL

RADIUS

A. ALHEVAZ∗, M. BAGHIPUR AND S. PAUL

Abstract. The distance signless Laplacian spectral radius of a
connected graph G is the largest eigenvalue of the distance signless
Laplacian matrix of G, defined as DQ(G) = Tr(G) +D(G), where
D(G) is the distance matrix of G and Tr(G) is the diagonal matrix
of vertex transmissions of G. In this paper, we determine some new
upper and lower bounds on the distance signless Laplacian spectral
radius of G and characterize the extremal graphs attaining these
bounds.

1. Introduction

In this article, we consider only connected, undirected, simple and
finite graphs, i.e, graphs on a finite number of vertices without multiple
edges or loops. G is the complement of the graph G. A graph is denoted
by G = (V (G), E(G)), where V (G) is its vertex set and E(G) is its edge
set. The order of G is the number n = |V (G)| and its size is the number
m = |E(G)|. The set of vertices adjacent to v ∈ V (G), denoted by
N(v), refers to the neighborhood of v. The degree of v, denoted by dG(v)
(we simply write dv if it is clear from the context) means the cardinality
of N(v). A graph is called regular if each of its vertex has the same
degree. The distance between two vertices u, v ∈ V (G), denoted by
duv or dG(u, v), is defined as the length of a shortest path between u
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and v in G. The diameter of G is the maximum distance between any
two vertices of G. The distance matrix of G is denoted by D(G) and is
defined as D(G) = (duv)u,v∈V (G). The transmission TrG(v) of a vertex
v is defined to be the sum of the distances from v to all other vertices
in G, i.e., TrG(v) =

∑
u∈V (G)

duv. A graph G is said to be k-transmission

regular if TrG(v) = k, for each v ∈ V (G). The transmission of a graph
G, denoted by σ(G), is the sum of distances between all unordered
pairs of vertices in G. Clearly, σ(G) = 1

2

∑
v∈V (G)

TrG(v).

For a graph G with V (G) = {v1, v2, . . . , vn}, T rG(vi) has been re-
ferred as the transmission degree Tri [26] and hence the transmission
degree sequence is given by {Tr1, T r2, . . . , T rn}. The second transmis-

sion degree of vi, denoted by Ti is given by Ti =
n∑

j=1

dijTrj.

Let Tr(G) = diag(Tr1, T r2, . . . , T rn) be the diagonal matrix of ver-
tex transmissions of G. M. Aouchiche and P. Hansen [13, 14, 15] in-
troduced the Laplacian and the signless Laplacian for the distance ma-
trix of a connected graph. The matrix DL(G) = Tr(G) − D(G) is
called the distance Laplacian matrix of G, while the matrix DQ(G) =
Tr(G) + D(G) is called the distance signless Laplacian matrix of G.
Since DQ(G) is symmetric (positive semi-definite), its eigenvalues can
be arranged as: ρ1(G) ≥ ρ2(G) ≥ · · · ≥ ρn(G) ≥ 0, where ρ1(G) is
called the distance signless Laplacian spectral radius of G. Afterwards,
we will denote ρ1(G) by ρ(G). As DQ(G) is nonnegative and irre-
ducible, by the Perron-Frobenius theorem, ρ(G) is positive, simple and
there is a unique positive unit eigenvector X corresponding to ρ(G),
which is called the distance signless Laplacian Perron vector of G. For
some recent papers on spectral properties of the (generalized) distance
(signless Laplacian) matrix, see [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 19, 21, 23, 24, 30, 29, 36] and the references therein.

The investigation of matrices related to various graphical structures
is a very large and growing area of research. In particular, distance
signless Laplacian matrix (spectral radius) have attracted serious at-
tention in the literature. In [37], Xing et al. have determined the
graphs with minimum distance signless Laplacian spectral radii among
the n-vertex tree, unicyclic graphs and bipartite graphs, respectively.
In [36], the authors have determined the unique graphs with mini-
mum and second-minimum distance signless Laplacian spectral radii
among all bicyclic graphs of order n. In [25], bounds for distance sign-
less Laplacian spectral radius are given using vertex transmissions and
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in [29], lower bound for distance signless Laplacian spectral radius is
given in terms of chromatic number. In this paper, we give some upper
and lower bounds on the distance signless Laplacian spectral radius of
G, analogously to the results obtained in the literature for the case of
distance matrix and also for signless Laplacian matrix.

2. Notations and Preliminaries

A column vector X = (x1, x2, . . . , xn)
T ∈ Rn can be considered as a

function defined on V (G) which maps vertex vi to xi, i.e., X(vi) = xi

for i = 1, 2, . . . , n. Then,

XTDQ(G)X =
∑

{u,v}⊆V (G)

duv(xu + xv)
2,

and λ is an eigenvalue of DQ(G) corresponding to the eigenvector X
if and only if X ̸= 0 and for each v ∈ V (G),

λxv =
∑

u∈V (G)

duv(xu + xv).

These equations are called the (λ, x)-eigenequations of G. For a
normalized column vector X ∈ Rn with at least one non-negative com-
ponent, by the Rayleigh’s principle, we have

ρ(G) ≥ XTDQ(G)X,

with equality if and only if X is the distance signless Laplacian Perron
vector of G.

For a connected graph G and two nonadjacent vertices u and v in
V (G), recall that G + uv is the supergraph formed from G by adding
an edge between vertices u and v. We now mention the following result
which will be useful to derive some of the main results of this article.

Lemma 2.1. [33] If A is an n×n nonnegative matrix with the spectral
radius λ(A) and row sums r1, r2, . . . , rn, then

min
1≤i≤n

ri ≤ λ(A) ≤ max
1≤i≤n

ri.

Moreover, if A is irreducible, then both of the equalities holds if and
only if the row sums of A are all equal.

The following is the well known Weyl’s inequality and can be found
in [27]. Note that the equality case was discussed in [35].
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Lemma 2.2. Let X and Y be Hermitian matrices of order n such that
Z = X + Y . Then

λk(Z) ≤ λj(X) + λk−j+1(Y ), n ≥ k ≥ j ≥ 1,

λk(Z) ≥ λj(X) + λk−j+n(Y ), n ≥ j ≥ k ≥ 1,

where λi(M) is the ith largest eigenvalue of the matrix M . In either of
these inequalities, equality holds if and only if there exists a unit vector
that is an eigenvector to each of the three eigenvalues involved.

3. Bounds on distance signless Laplacian spectral radius

In this section, we give some bounds on the distance signless Lapla-
cian spectral radius. We first list some important observations about
the components of the distance signless Laplacian Perron vector.

Lemma 3.1. If X = (x1, x2, . . . , xn)
T is the distance signless Laplacian

Perron vector of a graph G and xi = max{xk|k = 1, 2, . . . , n}, then
Tri ≥ ρ(G)

2
.

Proof. From the i-th eigenequation we have,

ρ(G)xi = Trixi +
n∑

j=1

dijxj.

Then, we get ρ(G)− Tri =
∑n

j=1 dij
xj

xi
. Hence, ρ(G)− Tri ≤ Tri, and

therefore Tri ≥ ρ(G)
2

, as desired. □

Corollary 3.2. Let Tr1max and Tr2max denote the maximum and the
second maximum vertex transmission of G, respectively. If ρ(G) =
Tr1max + Tr2max and Tr1max ̸= Tr2max, then the vertex corresponding to
the maximum Perron component is the vertex having maximum trans-
mission.

Proof. Let X = (x1, x2, . . . , xn)
T be the distance signless Laplacian

Perron vector of G and xi = max{xk| k = 1, 2, . . . , n}. Then, using
Lemma 3.1 we have, Tri ≥ Tr1max+Tr2max

2
, and thus Tri = Tr1max. □

Lemma 3.3. Let X = (x1, x2, . . . , xn)
T be the distance signless Lapla-

cian Perron vector of a graph G and Tr1max , Tr2max denote the maxi-
mum and the second maximum vertex transmission of it, respectively.
If ρ(G) = Tr1max + Tr2max and Tr1max ̸= Tr2max, then the second max-
imum Perron component is greater than or equal to Tr2max

Tr1max
xs, where

xs = max{xk|k = 1, 2, . . . , n}.
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Proof. If xt = max{xk| k = 1, 2, . . . , n; k ̸= s}, then from the s-th
eigenequation, we have

ρ(G)xs = Trsxs +
n∑

j=1

dsjxj,

i.e., (ρ(G)− Tr1max)xs ≤ Tr1maxxt, [by Corollary 3.2]

i.e., xt ≥ Tr2max

Tr1max

xs.

□

We now give our first upper bound on ρ(G) in terms of transmission
degrees of G.

Theorem 3.4. Let G be a graph of order n with the transmission degree
sequence {Tr1, T r2, . . . , T rn}. Then

ρ(G) ≤ max
1≤i,j≤n

{Tri + Trj}, (3.1)

with equality holding if G is a transmission regular graph.

Proof. Let X = (x1, . . . , xn)
T be an eigenvector of Tr(G)−1DQ(G)Tr(G)

corresponding to ρ(G) and xk = max{xj|j = 1, 2, . . . , n}. The (i, j)-th
entry of Tr(G)−1DQ(G)Tr(G) is{

Tri if i = j
Trj
Tri

dij otherwise.

We have

Tr(G)−1DQ(G)Tr(G)X = ρ(G)X. (3.2)

From the k-th equation of (3.2), we have

ρ(G)xk = Trkxk +
n∑

j=1

Trjdkj
Trk

xj,

i.e., (ρ(G)− Trk)xk =
n∑

j=1

Trjdkj
Trk

xj,

i.e., xk(ρ(G)− Trk)xk =
n∑

j=1

Trj
Trk

xkdkjxj ≤ x2
k

n∑
j=1

Trj
Trk

dkj,(3.3)
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i.e., ρ(G) ≤ Trk +
1

Trk

n∑
j=1

Trjdkj

≤ Trk +
1

Trk
max
1≤j≤n

{Trj}
n∑

j=1

dkj (3.4)

≤ Trk + max
1≤j≤n

{Trj}

≤ max
1≤i,j≤n

{Tri + Trj}.

Which completes the proof of inequality (3.1). Now suppose that
equality in (3.1) holds, then all inequalities in the above argument must
be equalities. From equality in (3.3), we get x1 = x2 = · · · = xn. From
equality in (3.4), we get Tr1 = Tr2 = · · · = Trn = max

1≤j≤n , j ̸=k
{Trj}.

Set Trs := max
1≤j≤n , j ̸=k

{Trj}. Then we have the following two cases:
Case (1): If Trk = Trs, then all the transmissions of the vertices are

equal and G is a transmission regular graph.
Case (2): If Trk ≠ Trs, then we consider the following two subcases:
Subcase (2.1): Trk = n− 1. In this case the vertex vk is adjacent to

all the other remaining n− 1 vertices in G, and therefore G ∼= Sn. But

since ρ(Sn) =
5n− 8 +

√
9n2 − 32n+ 32

2
, it contradicts the fact that

(3.1) holds.
Subcase (2.2): Trk > n−1. In this case there exists 1 ≤ j ≤ n , k ̸= j

such that for a vertex vj we have djk ≥ 2. But then Trj ̸= Trs, which
is impossible. □

In the following result, we give bounds on ρ(G), in terms of trans-
mission degrees and second transmission degrees of graph G.

Theorem 3.5. Let G be a graph of order n. If the transmission de-
gree sequence and the second transmission degree sequence of G are
{Tr1, T r2, . . . , T rn} and {T1, T2, . . . , Tn}, respectively, then

ρ(G) ≤
√
2 max
vi∈V (G)

(Tr2i + Ti)
1
2 .

Moreover, the equality holds if and only if Tr2i + Ti is the same for all
vi ∈ V (G). Also

ρ(G) ≥
√
2 min
vi∈V (G)

(Tr2i + Ti)
1
2 .

Moreover, the equality holds if and only if Tr2i + Ti is the same for all
vi ∈ V (G).
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Proof. Since DQ = Tr+D, by a simple calculation we have, rvi(DQ) =

2Tri and rvi(DTr) = rvi(D
2) =

n∑
j=1

dijTrj. Then

rvi((D
Q)2) = rvi(Tr

2 + TrD +DTr +D2)

= Trirvi(D
Q) + 2

n∑
j=1

dijTrj = 2(Tr2i +
n∑

j=1

dijTrj)

By Lemma 2.1, we get

ρ(G) ≤
√
2 max
vi∈V (G)

(Tr2i + Ti)
1
2 ,

and the equality holds if and only if Tr2i + Ti is the same for all
vi ∈ V (G).

The second part can be proved similarly. □

Corollary 3.6. If ∆ denotes the maximum degree of a graph G, then

ρ(G) ≥
√
2
(
(2n−∆)2 − 4n+∆

) 1
2
, (3.5)

with equality holding if and only if G is a regular graph with diameter
less than or equal to 2.

Proof. It is easily seen that Tri ≥ di + 2(n− di − 1) = 2n− di − 2 and
Ti =

∑n
j=1 dijTrj ≥

∑n
j=1 d

2
ij. Therefore, by Theorem 3.5, we have

ρ(G) ≥
√
2 min
vi∈V (G)

(Tr2i + Ti)
1
2

≥
√
2
(
(2n− di − 2)2 + di + 4(n− di − 1)

) 1
2

≥
√
2
(
(2n−∆− 2)2 + (4n− 3∆− 4)

) 1
2

=
√
2
(
(2n−∆)2 − 4n+∆

) 1
2
.

The equality in (3.5) holds if and only if the diameter of G is less
than or equal to 2 and all coordinates the distance signless Laplacian
perron vector of G are equal. In other words, for d = 1, we get a
complete graph Kn. And for d = 2, we get G is a regular graph.

Conversely, it is easily seen that ρ(G) =
√
2
(
(2n−∆)2 − 4n +∆

) 1
2

if G is a regular graph with diameter less than or equal to 2. □
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Corollary 3.7. If δ and d denote the minimum degree and diameter
of a graph G, respectively, then

ρ(G) ≤ 2
(
dn− d(d− 1)

2
− 1− δ(d− 1)

)
.

Proof. It is easily seen that,

Tri ≤ di+2+· · ·+(d−1)+d(n−1−di−(d−2)) = dn−d(d− 1)

2
−1−di(d−1).

If Trmax is the maximum vertex transmission, then Ti =
∑n

j=1 dijTrj ≤
(Trmax)

2. Then by Theorem 3.5, we have

ρ(G) ≤
√
2 max
vi∈V (G)

(Tr2i + Ti)
1
2

≤
√
2

((
dn− d(d− 1)

2
− 1− δ(d− 1)

)2
+

(
dn− d(d− 1)

2
− 1− δ(d− 1)

)2) 1
2

≤
√
2

(
2
(
dn− d(d− 1)

2
− 1− δ(d− 1)

)2) 1
2

= 2
(
dn− d(d− 1)

2
− 1− δ(d− 1)

)
.

□

We now give a Nordhaus-Gaddam type inequality for the distance
signless Laplacian spectral radius of a graph and its complement.

Corollary 3.8. Suppose G be a graph such that both G and Ḡ are
connected. Let δ and ∆ be the minimum degree and the maximum
degree of G, respectively. Then

ρ(G) + ρ(Ḡ) ≤ 2
(
2nk − (t− 1)(t+ n+ δ −∆− 1)− 2

)
,

where k = max{d, d̄}, t = min{d, d̄} and d, d̄ are the diameters of G
and Ḡ, respectively.
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Proof. Let δ̄ denote the minimum degree of G. Then δ̄ = n − 1 − ∆,
and by Corollary 3.7, we have

ρ(G) + ρ(Ḡ) ≤ 2
(
dn− d(d− 1)

2
− 1− δ(d− 1)

)
+ 2

(
d̄n− d̄(d̄− 1)

2
− 1− δ̄(d̄− 1)

)
= 2n(d+ d̄)−

(
d(d− 1) + d̄(d̄− 1)

)
− 4

− 2δ(d− 1)− 2(n− 1−∆)(d̄− 1)

≤ 2
(
2nk − (t− 1)(t+ n+ δ −∆− 1)− 2

)
.

□

The following result is analogous to the result presented by Maden
et al. in [32] in the case of signless Laplacian matrix of G.

Theorem 3.9. Let G be a graph of order n. If the transmission de-
gree sequence and the second transmission degree sequence of G are
{Tr1, T r2, . . . , T rn} and {T1, T2, . . . , Tn}, respectively, then

ρ(G) ≤ max
vi∈V (G)


Tri +

√√√√Tr2i +
4

Tri

n∑
j=1

dij(Tj + Tr2j )

2


, (3.6)

with equality holding if and only if G is transmission regular.

Proof. Let X = (x1, x2, . . . , xn)
T be an eigenvector corresponding to

the eigenvalue ρ(G) of Tr−1(G)DQ(G)Tr(G). We assume that one
eigencomponent xi is equal to 1 and the other eigencomponents are
less than or equal to 1. The (i, j)-th entry of Tr(G)−1DQ(G)Tr(G) is{

Tri if i = j
Trj
Tri

dij otherwise.

We have

Tr(G)−1DQ(G)Tr(G)X = ρ(G)X. (3.7)
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From the i−th equation of (3.7), we have

ρ(G)xi = Trixi +
n∑

j=1

Trj
Tri

dijxj,

i.e., ρ(G) = Tri +
n∑

j=1

Trj
Tri

dijxj. (3.8)

Again from the j−th equation of (3.7),

ρ(G)xj = Trjxj +
n∑

k=1

Trk
Trj

djkxk.

Multiplying both sides of (3.8) by ρ(G) and substituting this value
ρ(G)xj, we get

ρ2(G) = Triρ(G) +
n∑

j=1

{Trj
Tri

dij[Trjxj +
n∑

k=1

Trk
Trj

djkxk]
}

= Triρ(G) +
n∑

j=1

Tr2j
Tri

dijxj +
n∑

j=1

n∑
k=1

Trk
Tri

dijdjkxk

≤ Triρ(G) +
n∑

j=1

Tr2j
Tri

dij +
n∑

j=1

Tj

Tri
dij

= Triρ(G) +
1

Tri

n∑
j=1

dij(Tj + Tr2j ). (3.9)

From above the bound follows. Now suppose that the equality holds
in (3.6). Then all inequalities in the above argument must be equalities.
From equality in (3.9), we get xj = 1 for all j. From this one can easily
show that xi = 1 for all i ∈ V. Thus we have Tr1 +

T1

Tr1
= Tr2 +

T2

Tr2
= · · · = Trn +

Tn

Trn
. Let Trmax and Trmin denote the maximum and

minimum vertex transmission, respectively. Without loss of generality,
assume that Tri = Trmax and Trj = Trmin. Therefore, Trmax+

Ti

Trmax
=

Trmin +
Tj

Trmin
. Since Ti ≥ TrmaxTrmin and Tj ≤ TrmaxTrmin,

T rmax + Trmin ≤ Trmax +
Ti

Trmax

= Trmin +
Tj

Trmin

≤ Trmax + Trmin.

Thus we must have Ti = TrmaxTrmin = Tj and hence
Tr2max + TrmaxTrmin = Tr2min + TrmaxTrmin.

From which it implies that Trmax = Trmin. Hence G is a transmission
regular graph.
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Conversely, one can easily see that the equality holds in (3.6) for
transmission regular graph. □

Based on a simple technique suggested in [18], we next prove the
following upper bound for ρ(G).

Theorem 3.10. Let G be a graph of order n. If the transmission
degree sequence and the second transmission degree sequence of G are
{Tr1, T r2, . . . , T rn} and {T1, T2, . . . , Tn}, respectively, then

ρ(G) ≤ max
1≤i≤n

{
Tri +

√
Tr2i + 8Ti

2

}
. (3.10)

Equality occurs if and only if G is a transmission regular graph.

Proof. Let X = (x1, . . . , xn) be the distance signless Laplacian Perron
vector of G and xi = max{xj| j = 1, 2, . . . , n}. Since

ρ(G)2X = (DQ(G))
2
X = (Tr +D)2X = Tr2X + TrDX +DTrX +D2X,

we have

ρ2(G)xi = Tr2i xi + Tri

n∑
j=1

dijxj +
n∑

j=1

dijTrjxj +
n∑

j=1

n∑
k=1

dijdjkxk.

Now, we consider a simple quadratic function of ρ(G):
(ρ2(G) + αρ(G))X = (Tr2X + TrDX +DTrX +D2X) + α(TrX +DX).

Considering the i-th equation, we have(
ρ2(G) + αρ(G)

)
xi = Tr2i xi + Tri

n∑
j=1

dijxj +
n∑

j=1

dijTrjxj

+
n∑

j=1

n∑
k=1

dijdjkxk + α
(
Trixi +

n∑
j=1

dijxj

)
.

It is easy to see that the inequalities below are true

Tri

n∑
j=1

dijxj ≤ Tr2i xi,
n∑

j=1

dijTrjxj ≤ Tixi,

n∑
j=1

n∑
k=1

djkdijxk ≤ Tixi,
n∑

j=1

dijxj ≤ Trixi.

Hence, we have(
ρ2(G) + αρ(G)

)
xi ≤ 2Tr2i xi + 2Tixi + 2αTrixi
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i.e., ρ2(G) + αρ(G)− (2Tr2i + 2Ti + 2αTri) ≤ 0

i.e., ρ(G) ≤
−α +

√
α2 + 8Tri(Tri +

Ti

Tri
+ α)

2
.

From the above inequality we can get several distinct upper bounds
for every different value of α. In particular, if α = −Tri, we have

ρ(G) ≤ max
1≤i≤n

{
Tri +

√
Tr2i + 8Ti

2

}
.

From this the result follows.
Now, suppose that equality occurs in (3.10), then each of the above

inequalities in the above argument occur as equalities. Since each of
the inequalities

Tri

n∑
j=1

dijxj ≤ Tr2i xi,
n∑

j=1

dijTrjxj ≤ Tixi

and
n∑

j=1

n∑
k=1

djkdijxk ≤ Tixi,
n∑

j=1

dijxj ≤ Trixi,

occur as equalities if and only if G is a transmission regular graph. It
follows that equality occurs in (3.10) if and only if G is a transmission
regular graph. That completes the proof. □

The proof of the following theorem is similar to that of Theorem 3.10.
We bring its proof for the sake of completenes.

Theorem 3.11. Let G be a graph of order n. If the transmission
degree sequence and the second transmission degree sequence of G are
{Tr1, T r2, . . . , T rn} and {T1, T2, . . . , Tn}, respectively, then

ρ(G) ≥ min
1≤i≤n

{
Tri +

√
Tr2i + 8Ti

2

}
. (3.11)

Equality occurs if and only if G is a transmission regular graph.

Proof. Let X = (x1, . . . , xn) be the distance signless Laplacian Perron
vector of G and xi = min{xj| j = 1, 2, . . . , n}. Since

ρ(G)2X = (DQ(G))
2
X = (Tr +D)2X = Tr2X + TrDX +DTrX +D2X,
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we have

ρ2(G)xi = Tr2i xi + Tri

n∑
j=1

dijxj +
n∑

j=1

dijTrjxj +
n∑

j=1

n∑
k=1

dijdjkxk.

Now, we consider a simple quadratic function of ρ(G):
(ρ2(G) + αρ(G))X = (Tr2X + TrDX +DTrX +D2X) + α(TrX +DX).

Considering the i-th equation, we have

(ρ2(G) + αρ(G))xi = Tr2i xi + Tri

n∑
j=1

dijxj +
n∑

j=1

dijTrjxj

+
n∑

j=1

n∑
k=1

dijdjkxk + α(Trixi +
n∑

j=1

dijxj).

It is easy to see that the inequalities below are true

Tri

n∑
j=1

dijxj ≥ Tr2i xi,
n∑

j=1

dijTrjxj ≥ Tixi,

n∑
j=1

n∑
k=1

djkdijxk ≥ Tixi,
n∑

j=1

dijxj ≥ Trixi.

Hence, we have
(ρ2(G) + αρ(G))xi ≥ 2Tr2i xi + 2Tixi + 2αTrixi

i.e., ρ2(G) + αρ(G)− (2Tr2i + 2Ti + 2αTri) ≥ 0

i.e., ρ(G) ≥
−α +

√
α2 + 8Tri(Tri +

Ti

Tri
+ α)

2
.

From the above inequality we can get several distinct lower bounds
for every different value of α. In particular, if α = −Tri, we have

ρ(G) ≥ min
1≤i≤n

{
Tri +

√
Tr2i + 8Ti

2

}
.

From this the result follows.
Now, suppose that equality occurs in (3.11), then each of the above

inequalities in the above argument occur as equalities. Since each of
the inequalities

Tri

n∑
j=1

dijxj ≥ Tr2i xi,

n∑
j=1

dijTrjxj ≥ Tixi
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and
n∑

j=1

n∑
k=1

djkdijxk ≥ Tixi,

n∑
j=1

dijxj ≥ Trixi,

occur as equalities if and only if G is a transmission regular graph, it
follows that equality occurs in (3.11) if and only if G is a transmission
regular graph. That completes the proof. □
Theorem 3.12. If ∆ denotes the maximum degree of a graph G, then

ρ(G) ≥
2n−∆− 2 +

√
(2n−∆)2 − 20∆ + 24n− 28

2
, (3.12)

with equality holding if and only if G is a regular graph with diameter
less than or equal to 2.

Proof. Since DQ = Tr+D, by a simple calculation we have, rvi(DQ) =

2Tri and rvi(DTr) = rvi(D
2) =

n∑
j=1

dijTrj. Then

rvi((D
Q)

2
) = rvi(Tr

2 + TrD +DTr +D2)

= Tr(vi)rvi(D
Q) + 2

n∑
j=1

dijTr(vj)

≥ Tr(vi)rvi(D
Q) + 2

n∑
j=1

d2ij, (since
n∑

j=1

dijTr(vj) ≥
n∑

j=1

d2ij),

≥ (2n− di − 2)rvi(D
Q) + 2(di + 4(n− 1− di))

≥ (2n−∆− 2)rvi(D
Q) + 2(4n− 3∆− 4).

Hence for each vi ∈ V (G), we have

rvi((D
Q)

2
) ≥ rvi [(2n−∆− 2)DQ] + 8n− 6∆− 8.

Then Lemma 2.1 implies that
ρ2(G)− (2n−∆− 2)ρ(G)− (8n− 6∆− 8) ≥ 0

i.e., ρ(G) ≥
2n−∆− 2 +

√
(2n−∆)2 − 20∆ + 24n− 28

2
.

The equality in (3.12) holds if and only if the diameter of G is less
than or equal to 2. In other words, for d = 1, we get a complete graph
Kn. For d = 2, we get G is a regular graph.

Conversely, it is easily seen that ρ(G) =
2n−∆−2+

√
(2n−∆)2−20∆+24n−28

2
if G is a regular graph with diameter less than or equal to 2. □
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The following gives a relation between the distance signless Laplacian
eigenvalues of the graph G of diameter 2 with the adjacency eigenvalues
of the complement G of the graph G.
Theorem 3.13. Let G be a connected graph of order n ≥ 4 hav-
ing diameter d. Let G be the complement of G and let λ1(A(G)) ≥
λ2(A(G)) ≥ · · · ≥ λn(A(G)) be the adjacency eigenvalues of G. If
d = 2, then for all k = 1, 2, . . . , n, we have

λk(Q(G)) + n− 2 ≤ ρk(G) ≤ 2n− 2 + λk(Q(G)). (3.13)
Equality occurs on the right if and only if k = 1 and G is a transmission
regular graph.
Proof. Let G be a connected graph of order n ≥ 4 having diameter
d. Let Deg(G) = diag(d1, d2, . . . , dn) be the diagonal matrix of vertex
degrees of G and Deg(G) = diag(n− 1− d1, n− 1− d2, . . . , n− 1− dn)
be the diagonal matrix of vertex degrees of G. Let Q(G) = Deg(G)+A
be the signless Laplacian matrix of G. Suppose that the diameter d of
G is two, then transmission degree Tri = 2n − 2 − di, for all i. Since
diameter of G is two, it gives that any two vertices are either adjacent
in G or in G. It then follows that the distance matrix of G can be
written as D(G) = A+2A, where A and A are the adjacency matrices
of G and G, respectively. We have

DQ(G) = Tr(G) +D(G) = (2n− 2)I −Deg(G) + A+ 2A

= (n− 1)I + A+ A+ (n− 1)I −Deg(G) + A

= DQ(Kn) +Q(G),

where I is the identity matrix and J is the all one matrix of order
n. Taking Z = DQ(G), X = DQ(Kn), Y = Q(G), j = 1 in the first
inequality of Lemma 2.2 and using the fact that the eigenvalues of Kn

are 2n − 2 with multiplicity one and n − 2 with multiplicity n − 1, it
follows that

ρk(G) ≤ 2n− 2 + λk(Q(G)), for all k = 1, 2, . . . , n. (3.14)

Taking Z = DQ(G), X = DQ(Kn), Y = Q(G), j = n in the second
inequality of Lemma 2.2, it follows that

ρk(G) ≥ n− 2 + λk(Q(G)), for all k = 1, 2, . . . , n. (3.15)
Combining (3.14) and (3.15), the inequality (3.13) follows. Equality
occurs in the right inequality (3.13) if and only if equality occurs in
(3.14). Suppose that equality occurs in (3.14), then by Lemma 2.2, the
eigenvalues ρk, 2n− 2 and λk(Q(G)) of the matrices DQ(G), X and Y
have the same unit eigenvector. Since 1 = 1

n
(1, 1, . . . , 1)T is the unit
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eigenvector of X for the eigenvalue 2n−2, it follows that equality occurs
in (3.14) if and only if 1 is the unit eigenvector for each of the matrices
DQ(G), X and Y . This gives that G is a transmission regular graph
and G is a regular graph. Since a graph of diameter 2 is regular if and
only if it is transmission regular and complement of a regular graph is
regular. Using the fact that for a connected graph G the unit vector 1
is an eigenvector for the eigenvalue ρ1 if and only if G is transmission
regular graph, it follows that equality occurs in first inequality if and
only if k = 1 and G is a transmission regular graph. That completes
the proof. □

Analogously to the result stated in [38, Theorem 2] for distance ma-
trix, we present, in the sequel, a lower bound for the spectral radius of
distance signless Laplacian matrix.

Theorem 3.14. Let {Tr1, T r2, . . . , T rn} be the transmission degree
sequence of G, where n ≥ 2. If Tr1 ≥ · · · ≥ Trn and Trl > Trn, where
1 ≤ l ≤ n− 1. Then

ρ(G) >
2Trn + Trl − 1 +

√
(2Trn − Trl)2 − 8l(Trn − Trl) + 2(2Trn − Trl) + 1

2
.

Proof. Let V1 = {v1, . . . , vl} and V2 = V (G) \ V1. Then DQ(G) may be
partitioned as

DQ(G) =

[
D11 D12

D21 D22

]
+

[
Tr11 0
0 Tr22

]
,

where D11 and Tr11 are l × l matrix. Let

U =

[
yIl 0
0 In−l

]
,

for y > 1 (to be determined) and B = U−1DQ(G)U, where Is the s× s
identity matrix. Then

B =

[
D11

1
y
D12

yD21 D22

]
+

[
Tr11 0
0 Tr22

]
is a nonnegative irreducible matrix that has the same spectrum as
DQ(G). If i = 1, . . . , l, then since dii = 0 and dij ≥ 1 for j = 1, . . . , l
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with i ̸= j, we have

ri(B) =
l∑

j=1

dij +
1

y

n∑
j=l+1

dij +
n∑

j=1

dij

= (1 +
1

y
)

n∑
j=1

dij + (1− 1

y
)

l∑
j=1

dij

= (1 +
1

y
)Tri + (1− 1

y
)

l∑
j=1

dij ≥ (1 +
1

y
)Trl + (1− 1

y
)(l − 1).

Again, if i = l+ 1, . . . , n, then since dij ≥ 1 for j = 1, . . . , l, we have

ri(B) = y
l∑

j=1

dij +
n∑

j=l+1

dij +
n∑

j=1

dij

= 2
n∑

j=1

dij + (y − 1)
l∑

j=1

dij

= 2Tri + (y − 1)
l∑

j=1

dij ≥ 2Trn + (y − 1)l.

Let

y =
2l − 2Trn + Trl − 1 +

√
(2Trn − Trl)2 − 8l(Trn − Trl) + 2(2Trn − Trl) + 1

2l
.

Then
(1 + 1

y
)Trl + (1− 1

y
)(l − 1) = 2Trn + (y − 1)l

=
2Trn + Trl − 1 +

√
(2Trn − Trl)2 − 8l(Trn − Trl) + 2(2Trn − Trl) + 1

2
.

Since Trl > Trn, we have y > 1. Thus by Lemma 2.1, we have

ρ(G) ≥ min
1≤i≤n

ri(B)

≥ 2Trn + Trl − 1

2
(3.16)

+

√
(2Trn − Trl)2 − 8l(Trn − Trl) + 2(2Trn − Trl) + 1

2
.

Suppose that equality holds in (3.16). Then

r1(B) = · · · = rn(B) = (1 +
1

y
)Trl + (1− 1

y
)(l − 1) = 2Trn + (y − 1)l.
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Since ri(B) = (1+ 1
y
)Trl+(1− 1

y
)(l−1) for i = 1, . . . , l, we have dij = 1

for i, j = 1, . . . , l, with i ̸= j, which implies that V1 induces a complete
subgraph in G. Again, since ri(B) = 2Trn+(y−1)l for i = l+1, . . . , n
we have dij = 1 for i = l+1, . . . , n and j = 1, . . . , l, which implies that
every vertex in V2 is adjacent to all vertices in V1. Thus the degree of
every vertex in V1 is n − 1, and then Tr1 = · · · = Trl = n − 1, which
is a contradiction to the assumption that Trl > Trn. □
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NEW BOUNDS AND EXTREMAL GRAPHS FOR
DISTANCE SIGNLESS LAPLACIAN SPECTRAL RADIUS

A. ALHEVAZ, M. BAGHIPUR AND S. PAUL

فاصله  بدون علامت لاپلاسین ماتریس طیفی شعاع برای مرزی گراف های و جدید کران های

پاول٣ سومنات و باغی پور٢ مریم آل هوز١، عبداله

ایران شاهرود، شاهرود، صنعتی دانشگاه ریاضی، علوم دانشکده ١

ایران بندرعباس، هرمزگان، دانشگاه ریاضی، گروه ٢

هند تزپور، تزپور، دانشگاه علوم، دانشکده ٣

فاصله علامت بدون لاپلاسین ماتریس باشد. n مرتبه از همبند و ساده گراف یک G کنید فرض
تعریف DQ(G) = Tr(G) +D(G) صورت به می شود، داده نمایش DQ(G) نماد با که G گراف
انتقال اعداد از متشکل قطری ماتریس Tr(G) و G گراف فاصله ماتریس D(G) جایی که می شود،
ماتریس طیفی شعاع برای جدید پایین و بالا کران های برخی مقاله این در می باشد. G گراف رئوس
صدق کران ها این مرزی شرایط در که گراف هایی و به دست آورده G گراف فاصله علامت بدون لاپلاسین

می کنیم. مشخص را می کنند

عدد لحاظ از منظم گراف های طیفی، شعاع فاصله، علامت بدون لاپلاسین ماتریس کلیدی: کلمات
انتقال.


	1. Introduction
	2. Notations and Preliminaries
	3. Bounds on distance signless Laplacian spectral radius
	References

