QUASI-PRIMARY DECOMPOSITION IN MODULES OVER PRÜFER DOMAINS

M. BEHBOODI, R. JAHANI-NEZhad AND M. H. NADERI

Abstract. In this paper we investigate decompositions of submodules in modules over a Prüfer domain into intersections of quasi-primary and classical quasi-primary submodules. In particular, existence and uniqueness of quasi-primary decompositions in modules over a Prüfer domain of finite character are proved.

1. Introduction

Throughout this paper all rings are commutative with identity elements, and all modules are unital. Let M be an R-module. For every nonempty subset X of M and every submodule N of M, the ideal $\{ r \in R \mid rX \subseteq N \}$ will be denoted by $(N : X)$. Note that $(N : M)$ is the annihilator of the module M/N. Also we denote the classical Krull dimension of R by $\dim(R)$, and for an ideal I of R, $\sqrt{I} := \{ r \in R \mid r^k \in I \text{ for some } k \in \mathbb{N} \}$.

We recall that a proper ideal Q of the ring R is called a primary ideal if $ab \in Q$ where $a, b \in R$, implies that either $a \in Q$ or $b^k \in Q$ for some $k \in \mathbb{N}$ (see for example [2]). The notion of primary ideal was generalized by Fuchs [6] by defining an ideal Q of a ring R to be quasi-primary if its radical is a prime ideal, i.e., if $ab \in Q$ where $a, b \in R$, then either $a^k \in Q$ or $b^k \in Q$ for some $k \in \mathbb{N}$ (see also [7]). There are some extensions of these notions to modules. For instance, a proper submodule Q of M is called a primary submodule if $am \in Q$, where

MSC(2010): Primary: 13C13; 16D10; Secondary: 13A15
Keywords: Prüfer domain; Primary submodule; Quasi-primary submodule; Classical quasi-primary; Decomposition.
Received: 14 March 2013, Revised: 11 December 2013.
*Corresponding author.
a \in R, \ m \in M \setminus Q, \ then \ a^kM \subseteq Q \ for \ some \ k \in \mathbb{N} \ (see \ for \ example [9, 10]). \ Also, \ Q \ is \ called \ quasi-primary \ if \ \sqrt{(Q : M)} \ is \ a \ prime \ ideal \ of \ R \ (see \ [1]). \ Moreover, \ Q \ is \ called \ a \ classical \ primary \ submodule \ of \ M \ if \ abN \subseteq Q, \ where \ a, b \in R \ and \ N \ is \ a \ submodule \ of \ M, \ then \ either \ aN \subseteq Q \ or \ b^kN \subseteq Q \ (resp. \ a^kN \subseteq Q \ or \ b^kN \subseteq Q) \ for \ some \ k \in \mathbb{N} \ (see \ [3, 4]). \ We \ note \ that \ if \ Q \ is \ a \ primary, \ quasi-primary, \ classical \ primary \ or \ a \ classical \ quasi-primary submodule \ of \ M, \ then \ \mathcal{P} := \sqrt{(Q : M)} \ is \ a \ prime \ ideal \ of \ R, \ and \ hence, \ we \ say \ that \ Q \ is \ a \ \mathcal{P}-primary, \ \mathcal{P}-quasi-primary, \ classical \ \mathcal{P}-primary \ or \ a \ classical \ \mathcal{P}-quasi-primary submodule; \ respectively.

Let K, N, N_1, \ldots, N_l, \ for \ some \ l \in \mathbb{N}, \ be \ submodules \ of \ an \ R-module \ M. \ We \ say \ that \ N \ and \ K \ are \ co-maximal \ (resp. \ with \ incomparable radicals) \ when \ N + K = M \ (resp. \ when \ \sqrt{(N : M)} \ and \ \sqrt{(K : M)} \ are \ not \ comparable); \ also \ we \ say \ that \ the \ submodules \ N_1, \ldots, N_l \ are \ pairwise \ co-maximal \ (resp. \ with \ pairwise \ incomparable radicals) \ if \ and only \ if \ for \ every \ i, j \in \{1, 2, \ldots, l\} \ such \ that \ i \neq j, \ N_i + N_j = M \ (resp. \ \sqrt{(N_i : M)} \ and \ \sqrt{(K_j : M)} \ are \ not \ comparable). \ An \ R-module \ M \ is \ called \ a \ multiplication module \ if, \ for \ each \ submodule \ N \ of \ M, \ there \ exists \ an \ ideal \ I \ of \ R \ such \ that \ N = IM; \ In \ this \ case \ we \ can \ take \ I = (N : M) \ (see \ for \ example [5]). \ For \ an \ integral \ domain \ R, \ we \ say \ that \ R \ is \ of \ finite \ character, \ if \ every \ nonzero \ element \ of \ R \ is \ contained \ but \ in \ a \ finite \ number \ of \ maximal \ ideals.

In a Prüfer domain of finite character, Fuchs and Mosteig [7] established the decomposition of an ideal as (shortest) intersections of a finite number of quasi-primary ideals. In particular, they proved that every nonzero ideal I in a Prüfer domain of finite character is a finite intersection of quasi-primary ideals with incomparable radicals, and the components in such a decomposition are uniquely determined by I (see [7, Theorem 5.6]). In Section 1, some results on quasi-primary and classical quasi-primary submodules are given. For instance, it is shown that if R is a domain, then for each R-module M, every classical quasi-primary submodule of M is a quasi-primary submodule if and only if every proper ideal of R is (classical) quasi-primary, if and only if, the set of prime ideals, Spec(R), is a chain (see Proposition 1.5). In Section 2, we generalize some main results of [7] to modules over a Prüfer domain of finite character. In particular, we prove that over a Prüfer domain of finite character, every submodule N of a module M such that (N : M) \neq (0), can be shown as an (minimal) intersection of finite number of (classical) quasi-primary submodules (see Theorem 2.7). Also we prove that the components in the decomposition of N.
into quasi-primary submodules are uniquely determined by N (see Theorem 2.10). If M is also a multiplication module, such decomposition into quasi-primary submodules exists for every nonzero submodule of M (see Theorem 2.11).

2. Some results on (classical) quasi-primary submodules

We begin this section with two Propositions 1.1 and 1.2, which give many examples of classical primary submodules; so many examples of classical quasi-primary submodules; that are not primary submodules.

Proposition 2.1. Let R be an integral domain and \mathcal{P} be a nonzero prime ideal of R. Let for a nonempty set I, $Q = \oplus_{i \in I} A_i$ be a submodule of a free R-module $F = \oplus_{i \in I} R$ such that for every $i \in I$, $A_i = (0)$ or A_i is a \mathcal{P}-primary ideal of R. If the set $\Gamma := \{ A_i \mid i \in I \text{ and } A_i \text{ is a } \mathcal{P}\text{-primary ideal of } R \}$ is a finite set, then Q is a classical primary submodule of F. In addition, if $Q \neq (0)$ and for some $i \in I$, $A_i = (0)$, then Q is not a primary submodule of F.

Proof. Let $r, s \in R$ and N be a submodule of F such that $rN \not\subseteq Q$ and $rsN \subseteq Q$. Then there is $y = \{y_i\}_{i \in I} \subseteq N$ such that $ry \not\subseteq Q$. We can assume that r and s are nonzero; so $rs \neq 0$, because R is an integral domain. Since $rsy \in Q$, $rsy_i \in A_i$, for every $i \in I$. But $ry \not\subseteq Q$, so there is an $i_0 \in I$ that $ry_{i_0} \not\in A_{i_0}$. Clearly A_{i_0} is nonzero, so A_{i_0} is a \mathcal{P}-primary ideal of R. Now since $rsy_{i_0} \in A_{i_0}$ and $ry_{i_0} \not\in A_{i_0}$, we conclude that $s \in \sqrt{A_{i_0}} = \mathcal{P}$. Evidently for every $z = \{z_i\}_{i \in I} \subseteq N$, if $A_j = 0$, for some $j \in I$, then $z_j = 0$, so since the set Γ is finite, there is a positive integer k such that $s^kN \subseteq Q$; on the other word, Q is a classical primary submodule of F.

Now, suppose that $Q \neq (0)$ and for some $i \in I$, $A_i = (0)$. So there are $i_1, i_2 \in I$ such that $A_{i_1} \neq (0)$ and $A_{i_2} = (0)$. Set $f = \{f_i\}_{i \in I}$ where $f_{i_1} = 1$ and for every $i \in I \setminus \{i_1\}$, $f_i = 0$. Evidently $f \not\subseteq Q$ and for every nonzero element $p \in \mathcal{P}$, there is a positive integer k that $p^k f \in Q$. Now if for a positive integer l, $(p^k)^lF \subseteq Q$, then $p^{lk} \in A_{i_2} = (0)$, i.e., $p^{lk} = 0$. But R is an integral domain, so $p = 0$, a contradiction. On the other word, Q is not a primary submodule of F. □

Proposition 2.2. Let \mathcal{P} be a prime ideal of an integral domain R and Q be a \mathcal{P}-primary ideal of R. Let $Q = Q\{x_i\}_{i \in I}$, for a nonempty set I, be a submodule of free R-module $F = \oplus_{i \in I} R$ such that for an $j \in I$, x_j is a unit of R. Then Q is a classical primary submodule of F. In addition, if Q is nonzero and I has at least two elements, then Q is not a primary submodule of F.\[\]
Proof. Let \(k \) be a positive integer, and let \(x \) be a unit of \(R \), for an \(j \in I \). Let \(r, s \in R \) and \(N \) be a submodule of \(F \) that \(rsN \subseteq Q \) and \(rN \nsubseteq Q \); so there is \(y = \{y_i\}_{i \in I} \in N \) such that \(rsy \in Q \) and \(ry \notin Q \). We can assume that \(r \) and \(s \) are nonzero; so \(rs \neq 0 \), because \(R \) is an integral domain. Then for every \(i \in I \), \(rsy_i = qx_i \), that \(q \in Q \); especially, \(rsy_j = qx_j \). Since \(x_j \) is a unit of \(R \), \(rsy_jx_j^{-1}x_i = qx_i \), and since \(rsy_i = qx_i \), \(rsy_jx_j^{-1}x_i = rsy_i \). Therefore \(y_i = y_jx_j^{-1}x_i \), because \(R \) is an integral domain. Then \(y = \{y_jx_j^{-1}x_i\}_{i \in I} = y_jx_j^{-1}x \). Thus for every \(z \in N \setminus Q \), there is \(x \in R \) such that \(z = xz \). On the other hand, since \(ry \notin Q \), then \(ry_jx_j^{-1} \notin Q \), so \(ry_j \notin Q \). Also, since \(rsy_j = qx_j \), and \(Q \) is a \(\mathcal{P} \)-primary ideal of \(R \), \(s \in \mathcal{P} \), i.e., \(s^k \in Q \) for some \(k \in \mathbb{N} \). Then for every \(z \in N \setminus Q \), \(s^kz = s^krx \in Q \), so \(s^kN \subseteq Q \). Thus \(Q \) is a classical primary submodule of \(R \).

Now suppose that \(Q \) is nonzero and \(I \) has at least two elements. Evidently, there exists a subset \(J = \{i_1, \ldots, i_t\} \), where \(t \geq 2 \) and \(i_1 < i_2 < \cdots < i_t \), of \(I \) such that for every \(i \in I \setminus J \), \(x_i = 0 \). Let \(e = \{e_i\}_{i \in I} \) such that for every \(i \in J, e_i = 1 \), and for every \(i \in I \setminus J, e_i = 0 \). Also let \(f = \{f_i\}_{i \in I} \) such that \(f_{i_1} = 1 \) and for every \(i \in I \setminus \{i_1\}, f_i = 0 \). Obviously, \(x \notin Q \) and for every nonzero \(q \in Q \), \(qx \notin Q \). Now if for a positive integer \(k \), \(q^kF \subseteq Q \), then \(q^k e \in Q \), so \(q^k e = qx \) for some \(q \in Q \). Then for every \(i \in J \), \(q^k = q^kx_i \), therefore \(q^kx_i = q^kx_j \). Since \(R \) is an integral domain and \(q \neq 0 \), \(x_i = x_j \) for every \(i \in J \), so \(x = xje \). On the other hand, \(q^k f = q_2x \), for some \(q_2 \in Q \). Then \(q^k f = q_2x \), so \(q^k f = q^k f_{i_2} \), i.e., \(q^k = 0 \). Now since \(R \) is an integral domain we conclude that \(q = 0 \), a contradiction. Therefore \(Q \) is not a primary submodule of \(F \). \(\square \)

Proposition 2.3. Let \(\mathcal{P} \) be a prime ideal of an integral domain \(R \) and \(Q \) be a \(\mathcal{P} \)-primary ideal of \(R \). Let \(F = \bigoplus_{i=1}^n R \) and \(x = (x_1, x_2, \ldots, x_n) \in F \) such that for some \(i, 1 \leq i \leq n \), \(x_i \) is invertible. If \(Q = Qx \), then \(Q \) is a classical primary submodule of \(F \). In addition, if \(Q \) is nonzero and \(n \geq 2 \), then \(Q \) is not a primary submodule of \(F \).

Proof. Set \(x = \{x_i\}_{i \in I} \), and let \(x_j \) be a unit of \(R \), for an \(j \in I \). Let \(r, s \in R \) and \(N \) be a submodule of \(F \) that \(rsN \subseteq Q \) and \(rN \nsubseteq Q \); so there is \(y = \{y_i\}_{i \in I} \in N \) such that \(rsy \in Q \) and \(ry \notin Q \). We can assume that \(r \) and \(s \) are nonzero; so \(rs \neq 0 \), because \(R \) is an integral domain. Then for every \(i \in I \), \(rsy_i = qx_i \), that \(q \in Q \); especially, \(rsy_j = qx_j \). Since \(x_j \) is a unit of \(R \), \(rsy_jx_j^{-1}x_i = qx_i \), and since \(rsy_i = qx_i \), \(rsy_jx_j^{-1}x_i = rsy_i \). Therefore \(y_i = y_jx_j^{-1}x_i \), because \(R \) is an integral domain. Then \(y = \{y_jx_j^{-1}x_i\}_{i \in I} = y_jx_j^{-1}x \). Thus for every \(z \in N \setminus Q \), there is \(z \in R \) such that \(z = rzx \). On the other hand, since \(ry \notin Q \),
then \(ry_j x_j^{-1} \notin \mathcal{Q} \), so \(ry_j \notin \mathcal{Q} \). Also, since \(rsy_j = qx_j \in \mathcal{Q} \), and \(\mathcal{Q} \) is a \(\mathcal{P} \)-primary ideal of \(R \), \(s \in \mathcal{P} \), i.e., \(s^k \in \mathcal{Q} \) for some \(k \in \mathbb{N} \). Then for every \(z \in \mathbb{N}\backslash \mathcal{Q} \), \(s^k z = s^k r x \in \mathcal{Q} \), so \(s^k \mathcal{N} \subseteq \mathcal{Q} \). Thus \(\mathcal{Q} \) is a classical primary submodule of \(R \).

Now suppose that \(\mathcal{Q} \) is nonzero and \(I \) has at least two elements. Evidently, there exists a subset \(J = \{ i_1, \ldots, i_t \} \), where \(t \geq 2 \) and \(i_1 < i_2 < \cdots < i_t \), of \(I \) such that for every \(i \in I \backslash J \), \(x_i = 0 \). Let \(e = \{ e_i \}_{i \in I} \) such that for every \(i \in J, e_i = 1 \), and for every \(i \in I \backslash J, e_i = 0 \). Also let \(f = \{ f_i \}_{i \in I} \) such that \(f_{i_1} = 1 \) and for every \(i \in I \backslash \{ i_1 \}, f_i = 0 \). Obviously, \(x \notin \mathcal{Q} \) and for every nonzero \(q \in \mathcal{Q}, q x \in \mathcal{Q} \). Now if for a positive integer \(k, q^k F \subseteq \mathcal{Q} \), then \(q^k e \in \mathcal{Q} \), so \(q^k e = q_1 x \) for some \(q_1 \in \mathcal{Q} \). Then for every \(i \in J, q^k = q_1 x_i \), therefore \(q_1 x_i = q_1 x_1 \). Since \(R \) is an integral domain and \(q \neq 0 \), \(x_i = x_j \) for every \(i \in J \), so \(x = x j e \).

On the other hand, \(q^k f = q_2 x \), for some \(q_2 \in \mathcal{Q} \). Then \(q^k f = q_2 x j e \), so \(q^k f_{i_1} = q^k f_{i_2} \), i.e., \(q^k = 0 \). Now since \(R \) is an integral domain we conclude that \(q = 0 \), a contradiction. Therefore \(\mathcal{Q} \) is not a primary submodule of \(F \).

\[\square \]

Even in a ring \(R \), the classical quasi-primary ideals and primary ideals are not the same, see the following example.

Example 2.4.

(a): Let \(R \) be valuation domain. It is easy to see that every ideal of \(R \) is a quasi-primary ideal (see for example [8, Theorem 5.10]). Then every ideal of \(R \) is a classical quasi-primary ideal by [4, Proposition 1.3]. Since every ideal of \(R \) need not to be a primary ideal, then there are non-primary ideals of \(R \) that are classical quasi-primary.

(b): Let \(R \) be an integral domain and \(\mathcal{I} \) be a valuation ideal of \(R \) (an ideal \(\mathcal{I} \) of integral domain \(R \) with quotient filed \(K \) is a valuation ideal if there is a valuation ring \(V \) of \(K \) containing \(R \) such that \(\mathcal{I} = \mathcal{J} \cap R \) for some ideal \(\mathcal{J} \) of \(V \)). By [8, Exercise V13-page 122], every valuation ideal of \(R \) is a (classical) quasi-primary ideal, but there are valuation ideals of \(R \) that are not primary ideals. For example, if \(K \) is a filed and \(\mathcal{I} \) is the ideal generated by \(x^2 \) and \(y^2 \) in \(K[x, y] \), for indeterminates \(x \) and \(y \), then \(\mathcal{I} \) is a (classical) quasi-primary ideal that is not a primary ideal.

Following [3, 4], we call an \(R \)-module \(M \) (quasi) primary compatible if its (quasi) primary and its classical (quasi) primary submodules are the same. A ring \(R \) is said to be (quasi) primary compatible if every
R-module is (quasi) primary compatible. Some results about quasi-primary compatible rings were proved in [4]; for example it was shown that if $\dim(R) = 0$, then R is a quasi-primary compatible ring, and if R is a Noetherian quasi-primary compatible ring, then $\dim(R) \leq 1$. In the sequel of this section, we will prove some other results about quasi-primary compatible rings.

The next proposition gives some equivalent conditions for a ring that is a quasi-primary compatible ring:

Proposition 2.5. Let R be an integral domain. Then the following statements are equivalent:

1. $\text{Spec}(R)$ is a chain of prime ideals;
2. Every proper ideal of R is quasi-primary;
3. Every proper ideal of R is classical quasi-primary;
4. R is a quasi-primary compatible ring.

Proof. (1) \Rightarrow (2) Let \mathcal{I} be a proper ideal of R. It is well-known that $\sqrt{\mathcal{I}} = \bigcap_{P \in \text{Var}(\mathcal{I})} P$; where $\text{Var}(\mathcal{I}) = \{P \in \text{Spec}(R) | \mathcal{I} \subseteq P\}$ (see for example [2, Proposition 1.14]). Since $\text{Spec}(R)$ is a chain, $\sqrt{\mathcal{I}} = P_0$ for some $P_0 \in \text{Var}(\mathcal{I})$; on the other word, \mathcal{I} is a quasi-primary ideal of R.

(2) \Rightarrow (3) follows from [4, Proposition 2.3].

(3) \Rightarrow (4) is evident.

(4) \Rightarrow (1) follows from [4, Proposition 2.11]. □

Corollary 2.6. Let R be a quasi-primary compatible ring. Then for every $P \in \text{Spec}(R)$, $\text{Spec}(R/P)$ is a chain of prime ideals.

Proof. Evidently, every factor ring of a quasi-primary compatible ring is quasi-primary compatible. Then for every $P \in \text{Spec}(R)$, R/P is a quasi-primary compatible integral domain; therefore $\text{Spec}(R/P)$ is a chain of prime ideals by Proposition 1.5. □

Lemma 2.7. Let R be an integral domain. If R is a quasi-primary compatible ring, then any two prime elements of R are associated.

Proof. It is clear from the definition of a prime element, for $p \in R$, pR is a nonzero prime ideal of R if and only if p is a prime element of R. Now assume that $p_1, p_2 \in R$ are prime elements. Since by Propositions 2.5, $\text{Spec}(R)$ is a chain, $p_1 R \subseteq p_2 R$ or $p_2 R \subseteq p_1 R$. It follows that $p_1 R = p_2 R$, i.e., p_1 and p_2 are associated. □

Theorem 2.8. Let R be a unique factorization domain. Then R is quasi-primary compatible if and only if R is a field.
Proof. By Lemma 2.7, any two prime elements of R are associated. Now if R is not a field, then $\dim(R) \geq 1$ and there is a prime element p of R. Since R is an unique factorization domain, every nonzero non-unit element $r \in R$, is a finite multiple of prime elements; then $r = up^k$, for some unit $u \in R$, and some positive integer k. Now, if we define $\theta(r) = k$, for every nonzero element $r = up^k$ of R, then it is easy to check that θ is an Euclidean valuation. Then R is an Euclidean domain; so, R is a principal ideal domain. Since $\dim(R) = 1$, R has one nonzero prime ideal P; so any nonzero ideal of R is of the form P^k, for some positive integer k. Thus every ideal of R is a primary ideal. This implies that R is a primary compatible ring, so by [4, Theorem 1.14], $\dim(R) = 0$, a contradiction. Therefore R is a field. The converse is clear. □

3. Decomposition into quasi-primary submodules

The decomposition into classical quasi-primary submodules in Noetherian modules was introduced in detail in [4]. The purpose of this section is to investigate decomposition of submodules into quasi-primary submodules in non-Noetherian modules over a Prüfer domain.

Definition 3.1. Let R be a commutative ring and N be a proper submodule of an R-module M. A quasi-primary (resp., classical quasi-primary) decomposition of N is an expression $N = \bigcap_{i=1}^n Q_i$, where each Q_i is a quasi-primary (resp., classical quasi-primary) submodule of M (see also [4, Definition 2.6]). The decomposition is called reduced if it satisfies the following two conditions:

(1) no $Q_{i_1} \cap \cdots \cap Q_{i_t}$ is a quasi-primary (resp., classical quasi-primary) submodule, where $\{i_1, \ldots, i_t\} \subseteq \{1, \ldots, n\}$ for $t \geq 2$ with $i_1 < i_2 < \cdots < i_t$.

(2) for each j, $Q_j \nsubseteq \bigcap_{i \neq j} Q_i$.

Corresponding to the above definition, by the definition of (classical) quasi-primary submodules, we have a list of prime ideals $\sqrt{(Q_1 : M)}, \ldots, \sqrt{(Q_n : M)}$. Among reduced quasi-primary (resp., classical quasi-primary) decompositions, any one that has the least number of distinct primes will be called minimal.

Let R be a commutative ring, N a non-zero submodule of an R-module M, $N_P = N \otimes_R R_P$ the localization of N by a maximal ideal P and $N_P := f^{-1}(N_P)$, that $f : M \rightarrow M_P$ is the canonical map with $f(m) = m/1$, for every $m \in M$. First of all note that $N = \bigcap_{P \in \operatorname{Max}(R)} N_P$, that $\operatorname{Max}(R)$ is the set of maximal ideals of R. Because it is evident that $N \subseteq \bigcap_{P \in \operatorname{Max}(R)} N_P$. Now if $m \in \bigcap_{P \in \operatorname{Max}(R)} N_P$,
then $m/1 \in N_{\mathcal{P}}$ for every $\mathcal{P} \in \text{Max}(R)$, so there is an $s_\mathcal{P} \in R \setminus \mathcal{P}$ such that $s_\mathcal{P}m \in N$. Suppose \mathcal{I} is the ideal generated by all such $s_\mathcal{P}$. If $\mathcal{I} \neq R$, then there is a maximal ideal \mathcal{P}_0 of R such that $\mathcal{I} \subseteq \mathcal{P}_0$, therefore $s_\mathcal{P}_0 \in \mathcal{P}_0$, that is contradicts with choosing $s_\mathcal{P}_0$. Then $\mathcal{I} = R$, so for some positive integer k, there are $r_j \in R$, $1 \leq j \leq k$, such that $1 = \sum_{j=1}^k r_j s_\mathcal{P}_j$. Therefore $m = \sum_{j=1}^k r_j s_\mathcal{P}_j m \in N$, this implies that $\bigcap_{\mathcal{P} \in \text{Max}(R)} N(\mathcal{P}) \subseteq N$. Thus $N = \bigcap_{\mathcal{P} \in \text{Max}(R)} N(\mathcal{P})$.

Over an integral domain of finite character, the number of proper components of this intersection can be finite, but for proving this fact, first note the following lemma:

Lemma 3.2. Let \mathcal{P} be a maximal ideal of a commutative ring R and N be a submodule of an R-module M. Then the following statements hold:

1. $M_\mathcal{P} = N_\mathcal{P}$ if and only if $(N : m) \not\subseteq \mathcal{P}$ for every $m \in M$.
2. If R is an integral domain of finite character and M/N is torsion, then N is a finite intersection of submodules of the form $N(\mathcal{P})$, for maximal ideals \mathcal{P} of R.

Proof. (1) Set $S = R \setminus \mathcal{P}$. Clearly, $M_\mathcal{P} = N_\mathcal{P}$ if and only if for every $m \in M$, there exists $s \in S$ such that $sm \in N$, i.e., $s \in (N : m)$. On the other word, $M_\mathcal{P} = N_\mathcal{P}$ if and only if for every $m \in M$, $S \cap (N : m) \neq \emptyset$, i.e., $(N : m) \not\subseteq \mathcal{P}$.

(2) Since R is of finite character and $(N : M) \neq (0)$, there are a finite number of maximal ideals of R, say $\mathcal{P}_1, \ldots, \mathcal{P}_k$, containing $(N : M)$. Obviously for every $m \in M$, $(N : M) \subseteq (N : m)$, so for every $\mathcal{P} \in \text{Max}(R) \setminus \{\mathcal{P}_1, \ldots, \mathcal{P}_k\}$, $(N : m) \not\subseteq \mathcal{P}$. Then by (1), for every $\mathcal{P} \in \text{Max}(R) \setminus \{\mathcal{P}_1, \ldots, \mathcal{P}_k\}$, $M_\mathcal{P} = N_\mathcal{P}$. Therefore $N = \bigcap_{i=1}^k N(\mathcal{P}_i)$. \square

Lemma 3.3. Let S be a multiplicatively closed subset of a commutative ring R. Let M be an R-module, and Q be a (classical) quasi-primary submodule of R_S-module M_S. Then $Q \cap M$ is a (classical) quasi-primary submodule of M.

Proof. Let Q be a classical quasi-primary submodule of R_S-module M_S. Suppose N is a submodule of M such that $N \not\subseteq Q \cap M$ and $abN \subseteq Q \cap M$ for some $a, b \in R$. Then $\frac{ab}{1} N_S \subseteq (Q \cap M)_S = Q$. Since Q is a classical quasi-primary submodule, $\frac{a^k}{1} N_S \subseteq Q$ or $\frac{b^k}{1} N_S \subseteq Q$ for some positive integer k. Then $a^k N \subseteq (\frac{a^k}{1} N_S) \cap M \subseteq Q \cap M$ or $b^k N \subseteq (\frac{b^k}{1} N_S) \cap M \subseteq Q \cap M$. Consequently, $Q \cap M$ is a classical quasi-primary submodule of M.
Let for every $i, 1 \leq i \leq n$, P_i be a prime ideal of a ring R, Q_i be a submodule of an R-module M, and $Q = Q_1 \cap Q_2 \cap \cdots \cap Q_n$. For each submodule N of M and each $i, 1 \leq i \leq n$, set $P_{i,N} = \sqrt{(Q_i : N)}$. Then the following statements hold:

1. If for every $i, 1 \leq i \leq n$, Q_i is a classical P_i-quasi-primary submodule, then Q is a classical quasi-primary submodule if and only if the set $\{P_{1,N}, \ldots, P_{n,N}\}$ has the least element (with respect to the relation \subseteq) for every submodule N of M.

2. If for every $i, 1 \leq i \leq n$, Q_i is a P_i-quasi-primary submodule, then Q is a quasi-primary submodule if and only if the set $\{P_1, \ldots, P_n\}$ has the least element (with respect to the relation \subseteq).

Proof. We only prove (1), the proof of (2) is similar.

(1) For every submodule N of M, set $P_N = \sqrt{(Q_1 \cap Q_2 \cap \cdots \cap Q_n : N)}$. Clearly, $P_N = P_{1,N} \cap P_{2,N} \cap \cdots \cap P_{n,N}$. By [4, Lemma 1.3(2)], $Q_1 \cap Q_2 \cap \cdots \cap Q_n$ is a classical quasi-primary submodule if and only if for every submodule N of M such that $N \not\subseteq Q_1 \cap Q_2 \cap \cdots \cap Q_n$, P_N is a prime ideal of R, i.e., $P_N = P_{j,N}$ for some $j, 1 \leq j \leq n$. But if for a submodule N of M, $N \subseteq Q_1 \cap Q_2 \cap \cdots \cap Q_n$, then $P_N = P_{i,N} = R$ for every $i, 1 \leq i \leq n$. Thus $Q_1 \cap Q_2 \cap \cdots \cap Q_n$ is a classical quasi-primary submodule if and only if for every submodule N of M, there exists an $j, 1 \leq j \leq n$, such that $P_N = P_{j,N}$. On the other words, $Q_1 \cap Q_2 \cap \cdots \cap Q_n$ is a classical quasi-primary submodule if and only if the set $\{P_{1,N}, \ldots, P_{n,N}\}$ has the least element (with respect to the relation \subseteq).

By using the fact that every classical quasi-primary submodule is a quasi-primary submodule, we can get the following corollary:

Corollary 3.5. Let for every $i, 1 \leq i \leq n$, P_i be a prime ideal of a ring R, Q_i be a P_i-quasi-primary submodule of an R-module M, and $Q = Q_1 \cap Q_2 \cap \cdots \cap Q_n$. If Q is a classical quasi-primary submodule, then the set $\{P_1, \ldots, P_n\}$ has the least element (with respect to the relation \subseteq).

The following example shows that the converse of Corollary 3.5 is not necessarily true (even if the decomposition $Q = Q_1 \cap Q_2 \cap \cdots \cap Q_n$ is a minimal primary decomposition).

Example 3.6. (see [3, Example 2.2]). Let $R = \mathbb{Z}$, $M = \mathbb{Z}_2 \oplus \mathbb{Z}_3 \oplus \mathbb{Z}$, $Q_1 = \mathbb{Z}_2 \oplus \mathbb{Z}_3 \oplus (0)$, $Q_2 = \mathbb{Z}_2 \oplus (0) \oplus \mathbb{Z}$, and $Q_3 = (0) \oplus \mathbb{Z}_3 \oplus \mathbb{Z}$. Clearly,
\[Q_1, Q_2, \text{ and } Q_3 \text{ are primary submodules of } M \text{ with } \sqrt{(Q_1 : M)} = (0), \]
\[\sqrt{(Q_2 : M)} = 3\mathbb{Z}, \text{ and } \sqrt{(Q_3 : M)} = 2\mathbb{Z}. \] On the other hand, \((0) = Q_1 \cap Q_2 \cap Q_3\) is a (minimal) primary decomposition of \((0)\). Now, the set \(\{(0), 2\mathbb{Z}, 3\mathbb{Z}\}\) has the least element (with respect to the relation \(\subseteq\)), but \((0)\) is not a classical quasi-primary submodule of \(M\).

Let \(R\) be a Prüfer domain of finite character and \(N\) be a proper submodule of an \(R\)-module \(M\) such that \((N : M) \neq (0)\). In the next theorem, the existence of a minimal classical quasi-primary decomposition of \(N\) are proved.

Theorem 3.7. Let \(R\) be a Prüfer domain of finite character and \(N\) be a proper submodule of an \(R\)-module \(M\) such that \((N : M) \neq (0)\). Then \(N\) has a minimal classical quasi-primary decomposition. In particular \(N\) has a minimal quasi-primary decomposition.

Proof. It is well-known that every proper ideal in a valuation domain is a quasi-primary ideal (see for example [8]). Then by [4, Proposition 1.3], \(N\) is a classical quasi-primary submodule of \(M\). Therefore by Lemmas 3.2 and 3.3, we obtain a decomposition of \(N\) as \(N = \bigcap_{i=1}^{k'} Q_i\), where each \(Q_i, 1 \leq i \leq k'\), is a classical quasi-primary submodule of \(M\). If \(Q_0 := Q_{i_1} \cap Q_{i_2} \cap \cdots \cap Q_{i_t}\) is a classical quasi-primary submodule of \(M\), where \(\{i_1, \cdots, i_t\} \subseteq \{1, \cdots, k'\}\) for \(t \geq 2\) with \(i_1 < i_2 < \cdots < i_t\), then we can replace \(Q_{i_1} \cap Q_{i_2} \cap \cdots \cap Q_{i_t}\) with the single component \(Q_0\). Now by using this argument, we can get the decomposition \(N = Q_1 \cap Q_2 \cap \cdots \cap Q_n\), such that no \(Q_{i_1} \cap \cdots \cap Q_{i_t}\) is a classical quasi-primary submodule, where \(\{i_1, \cdots, i_t\} \subseteq \{1, \cdots, n\}\) for \(t \geq 2\) with \(i_1 < i_2 < \cdots < i_t\). If there is some \(j, 1 \leq j \leq n\) such that \(Q_j \supseteq \bigcap_{i \neq j} Q_i\), then we can exclude the \(Q_j\) from the decomposition \(N = Q_1 \cap Q_2 \cap \cdots \cap Q_n\). By using this argument, we can get the decomposition \(N = Q_1 \cap Q_2 \cap \cdots \cap Q_k\) such that no component is abundant, so the decomposition is reduced. Obviously, among such reduced decompositions, we can get a minimal classical quasi-primary decomposition of \(N\). \(\Box\)

Recall that any two incomparable primary ideals of a Prüfer domain are co-maximal (see for example [8, page 131]). Also by [7, Lemma 5.5], any two quasi-primary ideals with incomparable radicals of a prüfer domain are co-maximal. The next lemma proves a similar result for quasi-primary submodules.

Lemma 3.8. Let \(R\) be a Prüfer domain, \(Q_1\) and \(Q_2\) be two quasi-primary submodules of an \(R\)-module \(M\), and \(N\) be a submodule of \(M\) such that \(Q_1 + Q_2 \subseteq N\). If \(\sqrt{(Q_1 : N)}\) and \(\sqrt{(Q_2 : N)}\) are incomparable,
then $Q_1 + Q_2 = N$. In particular, any two quasi-primary submodules of M with incomparable radicals are co-maximal.

Proof. It suffices to prove that $(Q_1 + Q_2 : N) = R$. We can assume that $N \not\subseteq Q_1$ and $N \not\subseteq Q_2$, so $\sqrt{(Q_1 : N)}$ and $\sqrt{(Q_2 : N)}$ are prime ideals of R. Since R is a Prüfer domain, $\sqrt{(Q_1 : N)} + \sqrt{(Q_2 : N)} = R$. Finally, because $\sqrt{(Q_1 : N)} + \sqrt{(Q_2 : N)} \subseteq \sqrt{(Q_1 + Q_2 : N)}$, we conclude that $(Q_1 + Q_2 : N) = R$. □

One can easily see that a proper submodule N of an R-module M has a minimal quasi-primary decomposition if N can be shown as an intersection of finite number of quasi-primary submodules with pairwise incomparable radicals where no component can be omitted. So by Theorem 3.7 and Lemma 3.8, we can get the following corollary:

Corollary 3.9. Let R be a Prüfer domain of finite character and N be a submodule of an R-module M such that $(N : M) \neq (0)$. Then N can be shown as an intersection of finite number of co-maximal submodules of M.

The next theorem proves uniqueness of the decomposition of submodules into quasi-primary submodules of modules over a Prüfer domain of finite character.

Theorem 3.10. [Uniqueness Theorem]. Let R be a Prüfer domain of finite character, $\mathcal{P}_i, 1 \leq i \leq k$, be prime ideals of R, and N be a submodule of an R-module M. If $N = \bigcap_{i=1}^{k} Q_i$ is a minimal decomposition of N to \mathcal{P}_i-quasi-primary submodules $Q_i, 1 \leq i \leq k$, then k is independent of any such decompositions of N and

$$\{\mathcal{P}_1, ..., \mathcal{P}_k\} = \text{Min}(N : M).$$

Proof. First note that $\sqrt{(N : M)} = \bigcap_{i=1}^{k} \sqrt{(Q_i : M)} = \bigcap_{i=1}^{k} \mathcal{P}_i$. Since \mathcal{P}_i's are incomparable prime ideals, then \mathcal{P}_i's are minimal prime ideals of the ideal $(N : M)$ and so $\{\mathcal{P}_1, ..., \mathcal{P}_k\} = \text{Min}(N : M)$. On the other word, k and the set $\{\mathcal{P}_1, ..., \mathcal{P}_k\}$ are independent of any such decompositions of N. □

Theorem 3.11. Let R be a Prüfer domain of finite character and M be a multiplication R-module. Then every nonzero submodule N of M is the intersection of finite number of quasi-primary submodules with pairwise incomparable radicals, uniquely determined by N.

Proof. Since M is a multiplication module, $N = (N : M)M$; so, $(N : M) \neq (0)$. Then the result follows form Theorems 3.7 and 3.11 (compare with [1, Theorem 3.4]). □
Acknowledgments

The research of the first author was in part supported by a grant from IPM (No. 92130413).

REFERENCES

Mahmood Behboodi
Department of Mathematical Sciences, Isfahan University of Technology, P.O.Box 84156-83111, Isfahan, Iran, and
School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O.Box 19395-5746, Tehran, Iran.
Email: mbehbood@cc.iut.ac.ir

Reza Jahani-Nezhad
Department of Mathematics, Faculty of Science, University of Kashan, Kashan, Iran.
Email: jahanian@kashanu.ac.ir

Mohammad Hasan Naderi
Department of Mathematics, Faculty of Science, University of Qom, Qom, Iran.
Email: mh.naderi@qom.ac.ir