Journal of Algebraic Systems Vol. 10, No. 2, (2023), pp 259-283

ON HOMOLOGICAL CLASSIFICATION OF MONOIDS BY CONDITION (PWP_{sc}) OF RIGHT ACTS

H. MOHAMMADZADEH SAANY* AND L. NOURI

ABSTRACT. In this paper, we introduce Condition (PWP_{sc}) as a generalization of Condition (PWP_E) of acts over monoids, and we observe that Condition (PWP_{sc}) does not imply Condition (PWP_E) . In general, we show that Condition (PWP_{sc}) implies the property of being principally weakly flat, and that in left *PSF* monoids, the converse of this implication is also true. Moreover, we present some general properties and a homological classification of monoids by comparing Condition (PWP_{sc}) with some other properties. Finally, we describe left *PSF* monoids for which S_S^I satisfies Condition (PWP_{sc}) for any nonempty set *I*.

1. INTRODUCTION

Throughout this paper, we use S to denote a monoid. We refer the reader to [5, 7] for basic definitions and terminology related to semigroups and acts over monoids, and to [1, 8, 9] for definitions and results on flatness properties which are used in the paper.

A right S-act A_S satisfies Condition (P) if for all $a, a' \in A_S$ and $s, s' \in S$, as = a's' implies the existence of $a'' \in A_S$ and $u, v \in S$ such that a = a''u, a' = a''v and us = vs'. Many papers have been devoted to the investigation of this property. In 1987, Normak [10] studied Condition (P). According to the results obtained in [10], Condition

DOI: 10.22044/JAS.2022.11070.1548.

MSC(2010): Primary: 20M30; Secondary: 20M50.

Keywords: S-act; Condition (PWP_{sc}) ; Flatness.

Received: 7 August 2021, Accepted: 11 February 2022.

^{*}Corresponding author.

(P) strictly implies flatness, and pullback flatness strictly implies this condition.

A right S-act A_S is said to satisfy Condition (E) if as = as', with $a \in A_S$ and $s, s' \in S$, implies the existence of $a' \in A_S$ and $u \in S$ such that a = a'u and us = us'. It satisfies Condition (E') if for all $a \in A_S$ and $s, s', z \in S$, as = as' and sz = s'z imply the existence of $a' \in A_S$ and $u \in S$ such that a = a'u and us = us'. It is obvious that Condition (E) implies Condition (E').

We say that A_S satisfies Condition (PWP) if as = a's, for $a, a' \in A_S$ and $s \in S$, implies the existence of $a'' \in A_S$ and $u, v \in S$ such that a = a''u, a' = a''v and us = vs. A right S-act A_S satisfies Condition (P') if for all $a, a' \in A_S$ and $s, t, z \in S$, as = at and sz = tz imply the existence of $a'' \in A_S$ and $u, v \in S$ such that a = a''u, a' = a''vand us = vt. It is obvious that Condition (P) implies Condition (P'), but Condition (P') does not imply Condition (P). See [2] for further details. Also, we say that A_S satisfies Condition (EP) if for all $a \in A_S$ and $s, t \in S$, as = at implies the existence of $a' \in A_S$ and $u, v \in S$ such that a = a'u = a'v and us = vt.

 A_S satisfies Condition (E'P) if for all $a \in A_S$ and $s, t, z \in S$, as = atand sz = tz imply the existence of $a' \in A_S$ and $u, v \in S$ such that a = a'u = a'v and us = vt. A_S satisfies Condition (PWP_E) if as = a's, with $a, a' \in A_S$ and $s \in S$, implies the existence of $a'' \in A_S$ and $u, v, e^2 = e, f^2 = f \in S$ such that ae = a''ue, a'f = a''vf, es = s = fs, and us = vs.

A monoid S is called left PP if every principal left ideal of S is projective, or equivalently, for every $s \in S$ there exists an idempotent e of S such that $ker\rho_s = ker\rho_e$. The monoid S is said to be left PSF if every principal left ideal of S is strongly flat, or equivalently, it satisfies Condition (E). Therefore, S is left PSF if and only if as = bsfor $a, b, s \in S$ implies the existence of $u \in S$ such that au = bu and us = s. We say that S is left PCP (see [4]) (or left P(P); see [14]) if every principal left ideal of S satisfies Condition (P). It can be easily checked that a monoid S is left P(P) if and only if as = bs for $a, b, s \in S$ implies the existence of $u, v \in S$ such that au = bv and us = vs = s. The monoid S is called weakly left P(P) if the equalities as = bs and xb = yb imply the existence of $r \in S$ such that xar = yar and rs = s.

The above definitions and [14, Proposition 2.2] show that left $PP \Rightarrow \text{left } PSF \Rightarrow \text{left } PCP \Rightarrow \text{weakly left } P(P)$. But, as shown in [7, 14], the converses of these implications are not true in general.

261

2. General Properties

In this section, we introduce Condition (PWP_{sc}) and present some of its general properties. Also, we provide characterizations of a monoid S in terms of Condition (PWP_{sc}) of right S-acts.

Definition 2.1. Let S be a monoid, and let A_S be a right S-act. We say that A_S satisfies Condition (PWP_{sc}) if as = a's, with $a, a' \in A_S$ and $s \in S$, implies the existence of $a'' \in A_S$ and $u, v, r, r' \in S$ such that ar = a''ur, a'r' = a''vr', rs = s = r's and us = vs.

In the following diagram, we see the relation between Condition (PWP_{sc}) and the properties already studied.

Here, the abbreviations stand for the following properties of S-acts. PWKF=principal weak kernel flatness, PWF=principal weak flatness, TF=being torsion-free, \Re -TF=being \Re -torsion free.

In Theorem 2.2, all statements are easy consequences of the definition.

Theorem 2.2. The following statements are true.

- (1) Θ_S and S_S satisfy Condition (PWP_{sc}).
- (2) If A_S satisfies Condition (PWP_E) , it also satisfies Condition (PWP_{sc}) .
- (3) For an idempotent monoid, Condition (PWP_E) and Condition (PWP_{sc}) are equivalent.
- (4) Let $A_S = \prod_{i \in I} A_i$, where each A_i is a right S-act. If A_S satisfies Condition (PWP_{sc}), then so does every A_i .
- (5) If $A_S = \prod_{i \in I} A_i$, where each A_i is a right S-act, then A_S satisfies Condition (PWP_{sc}) if and only if A_i satisfies Condition (PWP_{sc}) for every $i \in I$.
- (6) If $\{B_i \mid i \in I\}$ is a chain of subacts of A_S and every B_i , $i \in I$, satisfies Condition (PWP_{sc}), then $\bigcup_{i \in I} B_i$ satisfies the condition.
- (7) If A_S satisfies Condition $(PWP_{sc})^{i\in I}$, then every retract of A_S satisfies Condition (PWP_{sc}) .

In the following example, we show that Condition (PWP_{sc}) does not imply Condition (PWP_E) . Note that for a proper right ideal I of S, A(I) stands for the amalgamated coproduct of two copies of S over I.

Example 2.3. Let $S_1 = \{a^i | i \in \mathbb{N}, a^i a^j = a^{ij}\},\$

 $S_2 = \{b^i | i \in \mathbb{N}, b^i b^j = b^{ij}\}, S_3 = \{d^i | i \in \mathbb{N} \setminus \{1\}, d^i d^j = d^{ij}\},$

 (I, \leq) be a totally ordered set which has neither the maximum nor the minimum element, and $S_4 = \{h_i^m | i \in I, m \in \mathbb{N}\}$ such that

$$h_i^m h_j^n = \begin{cases} h_j^n & i < j \\ h_i^{m+n} & i = j. \end{cases}$$

Let $T = S_1 \cup S_2 \cup S_3 \cup S_4$ such that

$$a^{n}b^{m} = b^{m}a^{n} = a^{n}d^{m} = d^{m}a^{n} = b^{m}d^{n} = d^{n}b^{m} = b^{mn},$$

 $a^n h_i^m = h_i^m a^n = b^n = b^n h_i^m = h_i^m b^n$ and $d^n h_i^m = h_i^m d^n = d^n$. It is clear that T is a semigroup. Let $S = T^1$ and $J = S_2$. Obviously, A(J)satisfies Condition (PWP_{sc}). Now, we show that A(J) does not satisfy Condition (PWP_E). Since

$$(a^2, x)d^3 = (b^6, z) = (a^2, y)d^3,$$

and e = 1 is the only idempotent such that $ed^3 = d^3$, there must be $a'' \in A(J)$ and $u, v \in S$ such that $(a^2, x) = a''u$, $(a^2, y) = a''v$ and $ud^3 = vd^3$. Now, note that $(a^2, x) = a''u$ implies a'' = (1, x) and $u = a^2$, or $a'' = (a^2, x)$ and u = 1. But in either case, $(a^2, y) \neq a''v$ for every $v \in S$.

Theorem 2.4. If the right S-act A_S satisfies Condition (PWP_{sc}), then A_S is principally weakly flat.

Proof. Suppose that A satisfies Condition (PWP_{sc}) . Also, assume that as = a's for $a, a' \in A$ and $s \in S$. Then, there exist $a'' \in A$ and $u, v, r, r' \in S$ such that ar = a''ur, a'r' = a''vr', rs = s = r's and us = vs. Thus,

$$a \otimes s = a \otimes rs = ar \otimes s = a''ur \otimes s = a'' \otimes urs = a'' \otimes us$$

in $A \otimes Ss$. Similarly, $a' \otimes s = a'' \otimes vs$ in $A \otimes Ss$. Now, us = vs implies $a \otimes s = a' \otimes s$ in $A \otimes Ss$, and so, by [7, Lemma 3.10.1], A_S is principally weakly flat.

If S is a left PSF monoid, then the converse of Theorem 2.4 is true. This is the content of the following theorem.

Theorem 2.5. For a left PSF monoid S, the right S-act A_S is principally weakly flat if and only if A_S satisfies Condition (PWP_{sc}).

Proof. Let as = a's, for $a, a' \in A$ and $s \in S$. By our assumption, there exist $n \in \mathbb{N}, a_1, \ldots, a_n \in A$, and $s_1, t_1, \ldots, s_n, t_n \in S$ such that

$$a = a_1 s_1$$

$$a_1 t_1 = a_2 s_2 \quad s_1 s = t_1 s$$

$$a_2 t_2 = a_3 s_3 \quad s_2 s = t_2 s$$

$$\vdots \qquad \vdots$$

$$a_n t_n = a' \qquad s_n s = t_n s.$$

Since S is left PSF, $s_1s = t_1s$ implies the existence of $v_1 \in S$ such that $v_1s = s$ and $s_1v_1 = t_1v_1$. Then, $s_2v_1s = t_2v_1s$ implies the existence of $v_2 \in S$ such that $v_2s = s$ and $s_2v_1v_2 = t_2v_1v_2$. If $v' = v_1v_2$, then

$$vs = v_1v_2s = s, \ s_1v = s_1v_1v_2 = t_1v_1v_2 = t_1v, \ s_2v = t_2v.$$

Continuing this procedure, there exists $u' \in S$ such that u's = s and $s_iu' = t_iu'$, for $1 \leq i \leq n$. Let u = v = 1, r = r' = u' and a'' = a'. Then,

$$ar = au' = (a_1s_1)u' = a_1(s_1u') = a_1(t_1u')$$

 $= (a_1t_1)u' = \dots = (a_nt_n)u' = a'u' = a''ur.$

Also, a'r' = a''vr', rs = r's = s, us = vs. So, A_S satisfies Condition (PWP_{sc}) , as required.

Theorem 2.6. Let S be a left PP monoid. Then for every right S-act,

 $(PWP_E) \Leftrightarrow (PWP_{sc}) \Leftrightarrow principally weakly flat.$

Proof. This is a direct consequence of Theorem 2.2, Theorem 2.4 and [3, Theorem 2.5].

Theorem 2.7. For a monoid S, the following statements are true.

- (1) For every right S-act, Condition $(PWP) \Rightarrow$ Condition $(PWP_E) \Rightarrow$ Condition $(PWP_{sc}) \Rightarrow$ principally weakly flat \Rightarrow torsion-free.
- (2) If S is left PSF, then for every right S-act, Condition $(PWP) \Rightarrow$ Condition $(PWP_E) \Rightarrow$ Condition $(PWP_{sc}) \Leftrightarrow$ principally weakly flat \Rightarrow torsion-free.
- (3) If S is left PP, then for every right S-act, Condition $(PWP) \Rightarrow$ Condition $(PWP_E) \Leftrightarrow$ Condition $(PWP_{sc}) \Leftrightarrow$ principally weakly flat \Rightarrow torsion-free.
- (4) If S is left almost regular, then for every right S-act, Condition $(PWP) \Rightarrow$ Condition $(PWP_E) \Leftrightarrow$ Condition $(PWP_{sc}) \Leftrightarrow$ principally weakly flat \Leftrightarrow torsion-free.
- (5) If S is right cancellative, then for every right S-act, Condition $(PWP) \Leftrightarrow$ Condition $(PWP_E) \Leftrightarrow$ Condition $(PWP_{sc}) \Leftrightarrow$ principally weakly flat \Leftrightarrow torsion-free.

Proof. (1) This is obvious, by the definitions of Condition (PWP) and Condition (PWP_E) , Theorem 2.2(2), Theorem 2.4 and [7, Proposition 3.10.3].

(2) This easily follows from (1) and Theorem 2.5.

(3) This is obvious by (1) and Theorem 2.6.

(4) The statement immediately follows from (1), Theorem 2.6 and [7, Theorem 4.6.5].

(5) Every right cancellative monoid is left almost regular. Thus, Condition $(PWP_E) \Leftrightarrow$ Condition $(PWP_{sc}) \Leftrightarrow$ principally weakly flat \Leftrightarrow torsion-free, by (4). Since S is right cancellative, we obtain $E(S) = \{1\}$, and so Conditions (PWP) and (PWP_E) are equivalent.

In what follows, we use Condition (PWP_{sc}) to find several equivalent formulations of the regularity of a monoid S.

Theorem 2.8. The following statements are equivalent.

- (1) All right S-acts satisfy Condition (PWP_{sc}) .
- (2) All finitely generated right S-acts satisfy Condition (PWP_{sc}) .
- (3) All cyclic right S-acts satisfy Condition (PWP_{sc}) .
- (4) All monocyclic right S-acts satisfy Condition (PWP_{sc}) .
- (5) All monocyclic right S-acts of the form $S/\rho(s, s^2)$ $(s \in S)$ satisfy Condition (PWP_{sc}) .
- (6) All right Rees factor S-acts satisfy Condition (PWP_{sc}) .
- (7) All right Rees factor S-acts of the form S/sS ($s \in S$) satisfy Condition (PWP_{sc}).
- (8) S is regular.

Proof. Implications $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (5)$ and $(3) \Rightarrow (6) \Rightarrow (7)$ are obvious.

 $(5) \Rightarrow (8)$ All monocyclic right S-acts of the form $S/\rho(s, s^2)$ $(s \in S)$ are principally weakly flat, by the assumption and Theorem 2.7(1). Thus, by [7, Theorem 4.6.6], S is regular.

 $(7) \Rightarrow (8)$ All right Rees factor S-acts of the form S/sS ($s \in S$) are principally weakly flat, by Theorem 2.7(1) and the assumption. Thus, by [7, Theorem 4.6.6], S is regular.

 $(8) \Rightarrow (1)$ All right *S*-acts are principally weakly flat, by [7, Theorem 4.6.6]. Since every regular monoid is left *PP*, all right *S*-acts satisfy Condition (*PWP_{sc}*), by Theorem 2.6.

Theorem 2.9. The following statements are equivalent.

- (1) All right S-acts satisfy Condition (PWP_{sc}) .
- Every right S-act satisfying Condition (E'P) also satisfies Condition (PWP_{sc}).
- (3) Every right S-act satisfying Condition (E') also satisfies Condition (PWP_{sc}).
- (4) Every right S-act satisfying Condition (EP) also satisfies Condition (PWP_{sc}).
- (5) Every right S-act satisfying Condition (E) also satisfies Condition (PWP_{sc}) .
- (6) S is regular.

Proof. Implications $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (5)$ and $(2) \Rightarrow (4) \Rightarrow (5)$ are obvious.

(5) \Rightarrow (6). Let $s \in S$. If sS = S, then there exists $x \in S$ such that sx = 1. Thus sxs = s and so, s is a regular element of S. Let $sS \neq S$. Put

$$A_S = A(sS) = \{(l, x) \mid l \in S \setminus sS\} \dot{\cup} sS\dot{\cup}\{(t, y) \mid t \in S \setminus sS\}.$$

It is obvious that $B_S = \{(l, x) | l \in S \setminus sS\} \cup sS$ and

$$C_S = \{(t, y) | t \in S \setminus sS\} \dot{\cup} sS$$

are subacts of A isomorphic to S. Since S satisfies Condition (E), B_S and C_S satisfy Condition (E), and so, A_S satisfies Condition (E). Hence, by the assumption, A_S satisfies Condition (PWP_{sc}) . Since (1,x)s = (1,y)s, there exist $a \in A_S$ and $u, v, r, r' \in S$ such that (1,x)r = aur, (1,y)r' = avr, rs = s = r's and us = vs. Now, (1,x)r = aur and (1,y)r' = avr' imply that either $r \in sS$ or $r' \in sS$. If $r \in sS$, then there exists $s' \in S$ such that r = ss', and so, s = rs = ss's. Thus, s is a regular element of S. Similarly, $r' \in sS$ implies that s is a regular element of S, that is, S is regular.

 $(6) \Rightarrow (1)$ The proof is straightforward by Theorem 2.8.

Notice that if $sS \neq S$ for some $s \in S$, then $A(sS) = (1, x)S \cup (1, y)S$. So, Theorem 2.9 is also valid for finitely generated right S-acts as well as for right S-acts generated by exactly two elements.

Theorem 2.10. The following statements are equivalent.

- (1) All right S-acts satisfy Condition (PWP_{sc}) .
- (2) All generator right S-acts satisfy Condition (PWP_{sc}) .
- (3) All finitely generated generator right S-acts satisfy Condition (PWP_{sc}).
- (4) All generator right S-acts generated by at most three elements satisfy Condition (PWP_{sc}) .
- (5) If A_S is any generator right S-act, then $S \times A_S$ satisfies Condition (PWP_{sc}).
- (6) If A_S is any finitely generated generator right S-act, then $S \times A_S$ satisfies Condition (PWP_{sc}).
- (7) If A_S is any generator right S-act generated by at most three elements, then $S \times A_S$ satisfies Condition (PWP_{sc}).
- (8) If A_S is any right S-act, then $S \times A_S$ satisfies Condition (PWP_{sc}).
- (9) If A_S is any finitely generated right S-act, then $S \times A_S$ satisfies Condition (PWP_{sc}).
- (10) If A_S is any right S-act generated by at most two elements, then $S \times A_S$ satisfies Condition (PWP_{sc}).

- (11) The right S-act A_S satisfies Condition (PWP_{sc}) if $Hom(A_S, S_S) \neq \emptyset.$
- (12) The finitely generated right S-act A_S satisfies Condition (PWP_{sc}) if $Hom(A_S, S_S) \neq \emptyset$.
- (13) The right S-act A_S generated by at most two elements satisfies Condition (PWP_{sc}) if Hom(A_S, S_S) $\neq \emptyset$.
- (14) S is regular.

Proof. Implications $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4)$, $(1) \Rightarrow (5) \Rightarrow (6) \Rightarrow (7)$, $(8) \Rightarrow (9) \Rightarrow (10)$ and $(1) \Rightarrow (11) \Rightarrow (12) \Rightarrow (13)$ are obvious.

- (1) \Leftrightarrow (14) This follows from Theorem 2.8.
- $(2) \Rightarrow (8)$ Let A_S be a right S-act. Since

$$\begin{cases} \pi: S \times A_S \to S_S \\ (s,a) \mapsto s \end{cases}$$

is an epimorphism, the right S-act $S \times A_S$ is a generator, and so satisfies Condition (PWP_{sc}) .

 $(10) \Rightarrow (1)$ Let A_S be an arbitrary right S-act, and as = a's, for $a, a' \in A_S$ and $s \in S$. Let $A_S^* = aS \cup a'S$. Then A_S^* is a subact of A_S which is generated by at most two elements, and so by the assumption, the right S-act $S \times A_S^*$ satisfies Condition (PWP_{sc}) . Hence,

$$(1,a)s = (1,a')s$$

implies the existence of $(w, a'') \in S \times A_S^*$ and $u, v, r, r' \in S$ such that (1, a)r = (w, a'')ur, (1, a')r' = (w, a'')vr', rs = s = r's, and us = vs. Thus, ar = a''ur, a'r' = a''vr', rs = s = r's, and us = vs, that is, A_S satisfies Condition (PWP_{sc}) .

 $(13) \Rightarrow (2)$ Let A_S be a generator right S-act, and as = a's, for $a, a' \in A_S$ and $s \in S$. Let $A_S^* = aS \cup a'S$. Then A_S^* is a subact of A_S which is generated by at most two elements. Since A_S is a generator, there exists an epimorphism $\pi : A_S \to S_S$, that is, $\pi|_{A_S^*} : A_S^* \to S_S$ is an S-homomorphism, in the sense that $Hom(A_S^*, S_S) \neq \emptyset$. So, by the assumption, A_S^* satisfies condition (PWP_{sc}) . Now, the equality as = a's in A_S^* implies the existence of $a'' \in A_S^* \subseteq A_S$ and $u, v, r, r' \in S$ such that ar = a''ur, a'r' = a''vr', rs = s = r's, and us = vs. Hence, A_S satisfies Condition (PWP_{sc}) .

 $(7) \Rightarrow (2)$ Let A_S be a generator right S-act and as = a's, for $s \in S$ and $a, a' \in A_S$. Since A_S is a generator, there exists an epimorphism $\pi : A_S \to S_S$. Let $\pi(z) = 1$. Put $A_S^* = aS \cup a'S \cup zS$. Then, A_S^* is a subact of A_S generated by at most three elements. Obviously, $\pi|_{A_S^*} : A_S^* \to S_S$ is an epimorphism and so, A_S^* is a generator. Thus, by the assumption, $S \times A_S^*$ satisfies Condition (PWP_{sc}) . Now, as = a's implies that (1, a)s = (1, a')s in $S \times A_S^*$, and so by the definition, there exist $(w, a'') \in S \times A_S^*$ and $u, v, r, r' \in S$ such that (1, a)r = (w, a'')ur, (1, a')r' = (w, a'')vr', rs = s = r's and us = vs. Thus, ar = a''ur, a'r' = a''vr', rs = s = r's and us = vs, that is, A_S satisfies Condition (PWP_{sc}) .

 $(4) \Rightarrow (2)$ Let A_S be a generator right S-act and as = a's, for $a, a' \in A_S$ and $s \in S$. Since A_S is a generator, there exists an epimorphism $\pi : A_S \to S_S$. Let $\pi(z) = 1$ and $A_S^* = aS \cup a'S \cup zS$. Obviously, A_S^* is a subact of A_S generated by at most three elements, and $\pi|_{A_S^*} : A_S^* \to S_S$ is an epimorphism. Thus A_S^* is a generator, and so by the assumption, A_S^* satisfies Condition (PWP_{sc}) . Hence, the equality as = a's in A_S^* implies the existence of $a'' \in A_S^* \subseteq A_S$ and $u, v, r, r' \in S$ such that ar = a''ur, a'r' = a''vr', rs = s = r's and us = vs. Therefore, A_S satisfies Condition (PWP_{sc}) , as required. \Box

Theorem 2.11. The following statements are equivalent.

- (1) All torsion-free right S-acts satisfy Condition (PWP_{sc}) .
- (2) All torsion-free finitely generated right S-acts satisfy Condition (PWP_{sc}) .
- (3) All torsion-free cyclic right S-acts satisfy Condition (PWP_{sc}) .
- (4) All torsion-free Rees factor right S-acts satisfy Condition (PWP_{sc}) .
- (5) S is left almost regular.

Proof. Implications $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4)$ are obvious.

 $(4) \Rightarrow (5)$ By Theorem 2.4 and by the assumption, all torsion-free Rees factor right S-acts are principally weakly flat. So, S is left almost regular, by [7, Theorem 4.6.5].

 $(5) \Rightarrow (1)$ By [3, Theorem 3.4], all torsion-free right *S*-acts satisfy Condition (PWP_E) . Thus, all torsion-free right *S*-acts satisfy Condition (PWP_{sc}) , by Theorem 2.2(2).

Recall from [16] that A_S is called \Re -torsion free, if for every $a, b \in A_S$ and any right cancellable $c \in S$, ac = bc and $a\Re b$ imply a = b, where \Re is Green's equivalence.

Theorem 2.12. The following statements are equivalent.

- (1) All right S-acts satisfy Condition (PWP_{sc}) .
- (2) All \mathfrak{R} -torsion free right S-acts satisfy Condition (PWP_{sc}).
- (3) All \mathfrak{R} -torsion free finitely generated right S-acts satisfy Condition (PWP_{sc}).

- (4) All \mathfrak{R} -torsion free right S-acts generated by at most two elements satisfy Condition (PWP_{sc}).
- (5) All \mathfrak{R} -torsion free right S-acts generated by exactly two elements satisfy Condition (PWP_{sc}).
- (6) S is regular.

Proof. Implications $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (5)$ are obvious.

 $(5) \Rightarrow (6)$ Let $s \in S$. If sS = S, then there exists $x \in S$ such that sx = 1. Thus sxs = s, and so s is regular. Let $sS \neq S$. Put

$$A_S = A(sS) = \{(l, x) \mid l \in S \setminus sS\} \cup sS \cup \{(t, y) \mid t \in S \setminus sS\}.$$

Then,

$$B_S = \{(l,x) | l \in S \setminus sS\} \dot{\cup} sS \cong S_S \cong \{(t,y) | t \in S \setminus sS\} \dot{\cup} sS = C_S$$

and

$$A_S = \langle (1, x), (1, y) \rangle = (1, x) S \cup (1, y) S = B_S \cup C_S.$$

By the proof of $(5) \Rightarrow (6)$ in Theorem 2.9, A_S is a right S-act that is generated by exactly two elements, namely, (1, x) and (1, y), and also satisfies Condition (E). Every right S-act satisfying Condition (E) is \mathfrak{R} -torsion free, by [16, Proposition 1.2]. Thus, A_S is \mathfrak{R} -torsion free. So, it satisfies Condition (PWP_{sc}) by the assumption. Hence, by the proof of $(5) \Rightarrow (6)$ in Theorem 2.9, s is regular. Therefore, S is regular, as required.

 $(6) \Rightarrow (1)$. This follows from Theorem 2.8.

We recall from [7] that the right S-act A_S is (strongly) faithful if for $s, t \in S$, the validity of as = at for (some) all $a \in A_S$ implies the equality s = t.

Notation 2.13. We use $C_l(C_r)$ to denote the set of all left (right) cancellable elements of S.

Lemma 2.14. [6, Lemma 3.7] The following statements are equivalent.

- (1) There exists at least one strongly faithful right S-act.
- (2) As an S-act, sS is strongly faithful, for every $s \in S$.
- (3) As an S-act, S_S is strongly faithful.
- (4) For every $s \in S$, $sS \subseteq C_l$.
- (5) S is left cancellative.

Theorem 2.15. The following statements are equivalent.

- (1) All strongly faithful right S-acts satisfy Condition (PWP_{sc}) .
- (2) All finitely generated strongly faithful right S-acts satisfy Condition (PWP_{sc}) .

- (3) All strongly faithful right S-acts generated by at most two elements satisfy Condition (PWP_{sc}) .
- (4) All strongly faithful right S-acts generated by exactly two elements satisfy Condition (PWP_{sc}) .
- (5) S is not left cancellative or it is a group.

Proof. Implications $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4)$ are obvious.

 $(4) \Rightarrow (5)$ Suppose that S is left cancellative, and that $s \in S$. If sS = S, then there exists $x \in S$ such that sx = 1. Since S is left cancellative, xs = 1, that is, s is left invertible. Now, let $sS \neq S$. Put

$$A_S = A(sS) = \{(l, x) \mid l \in S \setminus sS\} \dot{\cup} sS \dot{\cup} \{(t, y) \mid t \in S \setminus sS\}.$$

Then,

$$B_S = \{(l,x) | l \in S \setminus sS\} \dot{\cup} sS \cong S_S \cong \{(t,y) | t \in S \setminus sS\} \dot{\cup} sS = C_S$$

and

$$A_S = \langle (1, x), (1, y) \rangle = (1, x) S \cup (1, y) S = B_S \cup C_S.$$

Since S is left cancellative, Lemma 2.14 shows that S_S is strongly faithful. By the above isomorphisms, B_S and C_S are strongly faithful as subacts of A_S . So, A_S is strongly faithful. Since A_S is generated by exactly two elements, namely, (1, x) and (1, y), by the assumption, A_S satisfies Condition (PWP_{sc}) . By the proof of $(5) \Rightarrow (6)$ in Theorem 2.9, s is regular. Thus, there exists $x \in S$ such that sxs = s. Since S is left cancellative, xs = 1. Hence, every element in S has a left inverse and so, S is a group.

 $(5) \Rightarrow (1)$ If S is not left cancellative, then by Lemma 2.14, no strongly faithful right S-act exists. Thus, (1) is satisfied. If S is a group, then S is regular and so, (1) is satisfied by Theorem 2.8.

Theorem 2.16. The following statements are equivalent.

- (1) All right S-acts satisfy Condition (PWP_{sc}) .
- (2) All faithful right S-acts satisfy Condition (PWP_{sc}) .
- (3) All finitely generated faithful right S-acts satisfy Condition (PWP_{sc}) .
- (4) All faithful right S-acts generated by at most two elements satisfy Condition (PWP_{sc}) .
- (5) All faithful right S-acts generated by exactly two elements satisfy Condition (PWP_{sc}) .
- (6) S is regular.

Proof. Implications $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (5)$ are obvious.

 $(5) \Rightarrow (6)$ Let $s \in S$. If sS = S, then there exists $x \in S$ such that sx = 1. Thus sxs = s and so, s is regular. Now, let $sS \neq S$. Put

$$A_S = A(sS) = \{(l, x) \mid l \in S \setminus sS\} \dot{\cup} sS\dot{\cup} \{(t, y) \mid t \in S \setminus sS\}.$$

Then,

$$B_S = \{(l,x) | l \in S \setminus sS\} \dot{\cup} sS \cong S_S \cong \{(t,y) | t \in S \setminus sS\} \dot{\cup} sS = C_S$$

and

$$A_S = \langle (1, x), (1, y) \rangle = (1, x) S \cup (1, y) S = B_S \cup C_S.$$

Since S_S is faithful, B_S and C_S are faithful as subacts of A_S . So, A_S is faithful. Since A_S is generated by exactly two elements, namely, (1, x) and (1, y), by the assumption, A_S satisfies Condition (PWP_{sc}) . Using an argument similar to the one utilized in the proof of

 $(5) \Rightarrow (6)$ in Theorem 2.9, we conclude that s is regular. Therefore, S is regular, as required.

 $(6) \Rightarrow (1)$ This follows from Theorem 2.8.

For fixed elements $u, v \in S$, define a binary relation $P_{u,v}$ on S by

$$(x,y) \in P_{u,v} \Leftrightarrow ux = vy \ (x,y \in S).$$

Recall that an act is called *cofree* whenever it is isomorphic to the act $X^S = \{f | f \text{ is a mapping from } S \text{ into } X\}$, for some nonempty set X, where fs is defined by fs(t) = f(st) for $f \in X^S$ and $s, t \in S$.

Theorem 2.17. The following statements are equivalent.

- (1) All fg-weakly injective right S-acts satisfy Condition (PWP_{sc}) .
- (2) All weakly injective right S-acts satisfy Condition (PWP_{sc}) .
- (3) All injective right S-acts satisfy Condition (PWP_{sc}) .
- (4) All cofree right S-acts satisfy Condition (PWP_{sc}) .
- (5) For every $s \in S$, there exist $u, v, r, r' \in S$ such that rs = s = r's, us = vs, and the following conditions are satisfied.
 - (i) $P_{ur,vr'} \subseteq P_{r,s} \circ \ker \lambda_s \circ P_{s,r'}$.
 - (*ii*) ker $\lambda_u \cap (rS \times rS) \subseteq \Delta_S$.
 - (*iii*) ker $\lambda_v \cap (r'S \times r'S) \subseteq \Delta_S$.

Proof. Implications $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4)$ are obvious.

 $(4) \Rightarrow (5)$ Suppose that $s \in S$. Also, let S_1 and S_2 be two sets such that $|S_1| = |S_2| = |S|$. Assume that $\alpha : S \to S_1$ and

 $\beta: S \to S_2$

are bijections. Let $X = S/\ker \lambda_s \dot{\cup} S_1 \dot{\cup} S_2$. Define the mappings $f, g: S \to X$ by

$$f(x) = \begin{cases} [y]_{ker\lambda_s} & \text{if there exists } y \in S; \ x = sy \\ \alpha(x) & \text{if } x \in S \setminus sS \end{cases}$$

271

and

272

$$g(x) = \begin{cases} [y]_{ker\lambda_s} & \text{if there exists } y \in S; \ x = sy \\ \beta(x) & \text{if } x \in S \setminus sS. \end{cases}$$

If there exist $y_1, y_2 \in S$ such that $sy_1 = sy_2$, then $(y_1, y_2) \in \ker \lambda_s$, which implies that $f(sy_1) = f(sy_2)$. So, f is well-defined. Similarly, it follows that g is well-defined. The right S-act X^S is cofree and so, it satisfies Condition (PWP_{sc}) . According to our definition of f and g, fs = gs. Thus, there exist $u, v, r, r' \in S$ and a map $h : S \to X$ such that fr = hur, gr' = hvr', rs = s = r's and us = vs. Now, we show that the statements (i), (ii) and (iii) are true.

(i) Let
$$(l_1, l_2) \in P_{ur, vr'}, l_1, l_2 \in S$$
. Then $url_1 = vr'l_2$ and so,

$$f(rl_1) = (fr)(l_1) = (hur)(l_1) = h(url_1) = h(vr'l_2)$$

= (hvr')(l_2) = (gr')(l_2) = g(r'l_2).

Our definition of f and g gives us $y_1, y_2 \in S$ such that $rl_1 = sy_1$ and $r'l_2 = sy_2$. Thus,

$$[y_1]_{\ker\lambda_s} = f(rl_1) = g(r'l_2) = [y_2]_{\ker\lambda_s},$$

that is, $sy_1 = sy_2$. Now, $rl_1 = sy_1$, $sy_1 = sy_2$ and $sy_2 = r'l_2$ imply $(l_1, y_1) \in P_{r,s}$, $(y_1, y_2) \in \ker \lambda_s$ and $(y_2, l_2) \in P_{s,r'}$, respectively. Therefore, $(l_1, l_2) \in P_{r,s} \circ \ker \lambda_s \circ P_{s,r'}$. Thus $P_{ur,vr'} \subseteq P_{r,s} \circ \ker \lambda_s \circ P_{s,r'}$ and so, (i) is satisfied.

(*ii*) Let $(t_1, t_2) \in \ker \lambda_u \cap (rS \times rS)$, $t_1, t_2 \in S$. Then $ut_1 = ut_2$ and there exist $w_1, w_2 \in S$ such that $t_1 = rw_1$ and $t_2 = rw_2$. Thus

$$urw_1 = ut_1 = ut_2 = urw_2$$

which implies

$$f(rw_1) = (fr)(w_1) = (hur)(w_1) = h(urw_1) = h(urw_2)$$

= (hur)(w_2) = (fr)(w_2) = f(rw_2).

Having in mind the definition of f, we consider two cases as follows.

Case 1. If $rw_1, rw_2 \in S \setminus sS$, then $f(rw_1) = f(rw_2)$ implies

$$\alpha(rw_1) = \alpha(rw_2).$$

Thus, $t_1 = rw_1 = rw_2 = t_2$.

Case 2. If $rw_1, rw_2 \in sS$, then there exist $y_1, y_2 \in S$ such that $rw_1 = sy_1$ and $rw_2 = sy_2$. Thus

$$[y_1]_{\ker\lambda_s} = f(rw_1) = f(rw_2) = [y_2]_{\ker\lambda_s},$$

which implies $(y_1, y_2) \in \ker \lambda_s$. Hence

$$t_1 = rw_1 = sy_1 = sy_2 = rw_2 = t_2,$$

that is, ker $\lambda_u \cap (rS \times rS) \subseteq \Delta_S$, as required. The proof of *(iii)* is similar to that of *(ii)*.

 $(5) \Rightarrow (1)$ Suppose that A_S is fg-weakly injective, and that as = a's for $a, a' \in A_S$ and $s \in S$. By the assumption, there exist $u, v, r, r' \in S$ such that rs = s = r's, us = vs and statements (i), (ii), (iii) are true. Define a mapping $\varphi : urS \cup vr'S \rightarrow A_S$ by

$$\varphi(x) = \begin{cases} arp & \exists p \in S : x = urp \\ \\ a'r'q & \exists q \in S : x = vr'q \end{cases}$$

First, we show that φ is well-defined. If there exist $p, q \in S$ such that urp = vr'q, then $(p,q) \in P_{ur,vr'}$. By (i), there exist $y_1, y_2 \in S$ such that $(p, y_1) \in P_{r,s}, (y_1, y_2) \in \ker \lambda_s$ and $(y_2, q) \in P_{s,r'}$. Thus, $rp = sy_1$, $sy_1 = sy_2$ and $sy_2 = r'q$. Hence, $arp = asy_1 = a'sy_1 = a'sy_2 = a'r'q$.

If there exist $p_1, p_2 \in S$ such that $urp_1 = urp_2$, then

$$(rp_1, rp_2) \in \ker \lambda_u \cap (rS \times rS).$$

Now, by (*ii*), $rp_1 = rp_2$ and so $arp_1 = arp_2$. If there exist $q_1, q_2 \in S$ such that $vr'q_1 = vr'q_2$, then by (*iii*),

$$a'r'q_1 = a'r'q_2.$$

So, φ is well-defined. It is clear that φ is an S-homomorphism. Since A_S is fg-weakly injective, there exists an S-homomorphism $\psi: S_S \to A_S$ such that $\psi|_{urS \cup vr'S} = \varphi$. Put $a'' = \psi(1)$. Then

$$ar = \varphi(ur) = \psi(ur) = \psi(1)ur = a''ur$$

and $a'r' = \varphi(vr') = \psi(vr') = \psi(1)vr' = a''vr'$, that is, A_S satisfies Condition (PWP_{sc}) .

Lemma 2.18. The following statements are true.

(1) $(\forall s \in S)(P_{1,s} \circ \ker \lambda_s \circ P_{s,1} = (sS \times sS) \cap \Delta_S).$ (2) $(\forall u, v, s \in S)$ $[(us = vs, P_{u,v} \subseteq (sS \times sS) \cap \Delta_S) \Leftrightarrow (P_{u,v} = (sS \times sS) \cap \Delta_S)].$

Proof. (1) Let $s \in S$. For $l_1, l_2 \in S$,

$$\begin{split} [(l_1, l_2) \in P_{1,s} \circ \ker \lambda_s \circ P_{s,1}] & \Longleftrightarrow \quad [(\exists y_1, y_2 \in S)(l_1, y_1) \in P_{1,s}, \\ (y_1, y_2) \in \ker \lambda_s, (y_2, l_2) \in P_{s,1}] \\ & \longleftrightarrow \quad [(\exists y_1, y_2 \in S) \\ l_1 = sy_1 = sy_2 = l_2] \\ & \Longleftrightarrow \quad (l_1, l_2) \in (sS \times sS) \cap \Delta_S]. \end{split}$$

So, statement (1) is true.

(2) Let us = vs and $P_{u,v} \subseteq (sS \times sS) \cap \Delta_S$, for $u, v, s \in S$. Now, let $(l_1, l_2) \in (sS \times sS) \cap \Delta_S$. Then, there exist $y_1, y_2 \in S$ such that $sy_1 = l_1 = l_2 = sy_2$. Thus

$$ul_1 = usy_1 = vsy_1 = vsy_2 = vl_2,$$

which implies $(l_1, l_2) \in P_{u,v}$ and so, $(sS \times sS) \cap \Delta_S \subseteq P_{u,v}$. Therefore, $P_{u,v} = (sS \times sS) \cap \Delta_S$.

Conversely, suppose that

$$P_{u,v} = (sS \times sS) \cap \Delta_S.$$

Since $(s,s) \in (sS \times sS) \cap \Delta_S = P_{u,v}$, us = vs, statement (2) is also true.

Theorem 2.19. The following statements are equivalent.

- (1) All fq-weakly injective right S-acts satisfy Condition (PWP).
- (2) All weakly injective right S-acts satisfy Condition (PWP).
- (3) All injective right S-acts satisfy Condition (PWP).
- (4) All cofree right S-acts satisfy Condition (PWP).
- (5) For every $s \in S$, there exist $u, v \in S$ such that us = vs and $\ker \lambda_u = \ker \lambda_v = \Delta_S, P_{u,v} \subseteq P_{1,s} \circ \ker \lambda_s \circ P_{s,1}$.
- (6) For every $s \in S$, there exist $u, v \in S$ such that

 $\ker \lambda_u = \ker \lambda_v = \Delta_S, P_{u,v} = P_{1,s} \circ \ker \lambda_s \circ P_{s,1}.$

- (7) For every $s \in S$, there exist $u, v \in S$ such that us = vs and $\ker \lambda_u = \ker \lambda_v = \Delta_S, P_{u,v} \subseteq (sS \times sS) \cap \Delta_S$.
- (8) For every $s \in S$, there exist $u, v \in S$ such that

$$\ker \lambda_u = \ker \lambda_v = \Delta_S, P_{u,v} = (sS \times sS) \cap \Delta_S.$$

Proof. Letting r = r' = 1 in Theorem 2.17, we find that statements (1) - (5) are equivalent. Also, Lemma 2.18 shows that statements (5) - (8) are equivalent.

In the following theorems, we present classifications of monoids when Condition (PWP_{sc}) of acts implies other properties.

Theorem 2.20. The following statements are equivalent.

- (1) Any right S-act satisfying Condition (PWP_E) is a generator.
- (2) Any finitely generated right S-act satisfying Condition (PWP_E) is a generator.
- (3) Any cyclic right S-act satisfying Condition (PWP_E) is a generator.
- (4) Any Rees factor right S-act satisfying Condition (PWP_E) is a generator.

(5) $S = \{1\}.$

Proof. Implications $(5) \Rightarrow (1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4)$ are obvious.

(4) \Rightarrow (5) By [3, Theorem 2.2(2)], $\Theta_S \cong S/S_S$ satisfies Condition (PWP_E) . Hence, by the assumption, $\Theta_S \cong S/S_S$ is a generator. Then, there exists an epimorphism $\pi : \Theta_S \to S_S$, which implies $S = \{1\}$. \Box

Corollary 2.21. The following statements are equivalent.

- (1) Any right S-act satisfying Condition (PWP_{sc}) is a generator.
- (2) Any finitely generated right S-act satisfying Condition (PWP_{sc}) is a generator.
- (3) Any cyclic right S-act satisfying Condition (PWP_{sc}) is a generator.
- (4) Any right Rees factor act of S satisfying Condition (PWP_{sc}) is a generator.
- (5) $S = \{1\}.$

Proof. Implications $(5) \Rightarrow (1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4)$ are obvious.

 $(4) \Rightarrow (5)$ This follows from Theorem 2.2(2) and Theorem 2.20.

Corollary 2.22. The following statements are equivalent.

- (1) All right S-acts satisfying Condition (PWP_{sc}) are free.
- (2) Any right S-act satisfying Condition (PWP_{sc}) is a projective generator.
- (3) All finitely generated right S-acts satisfying Condition (PWP_{sc}) are free.
- (4) Any finitely generated right S-act satisfying Condition (PWP_{sc}) is a projective generator.
- (5) All cyclic right S-acts satisfying Condition (PWP_{sc}) are free.
- (6) Any cyclic right S-act satisfying Condition (PWP_{sc}) is a projective generator.
- (7) All right Rees factor S-acts satisfying Condition (PWP_{sc}) are free.
- (8) Any right Rees factor S-act satisfying Condition (PWP_{sc}) is a projective generator.
- (9) $S = \{1\}.$

Proof. Since free \Rightarrow projective generator \Rightarrow generator, the proof is straightforward by Corollary 2.21.

Recall from [7] that a right ideal K_S of S satisfies Condition (LU) if for every $k \in K_S$, there exists $l \in K_S$ such that lk = k.

Lemma 2.23. [6, Lemma 3.12] Let S be a monoid such that $S \neq C_r$. Then, the following statements are true.

- (1) $I = S \setminus C_r$ is a proper right ideal of S.
- (2) S/I $(I = S \setminus C_r)$ is a torsion-free right S-act.
- (3) If S is left PSF, then the right ideal $I = S \setminus C_r$ satisfies Condition (LU).

We recall from [12] that A_S is called *GP*-flat if for every $s \in S$ and $a, a' \in A_S, a \otimes s = a' \otimes s$ in $A_S \otimes S$ implies the existence of a natural number n such that $a \otimes s^n = a' \otimes s^n$ in $A_S \otimes Ss^n$. Also, we recall from [15] that an act A_S is called *strongly torsion-free* if for any $a, b \in A_S$ and any $s \in S$, the equality as = bs implies a = b.

Remark 2.24. Note that in Act-S, strongly torsion-free \Rightarrow Condition $(PWP) \Rightarrow$ Condition $(PWP_E) \Rightarrow$ Condition $(PWP_{sc}) \Rightarrow$ principally weakly flat. Hence, we can add Condition (PWP_{sc}) to [6, Lemma 3.13]. Also, by Theorem 2.5, the property (*) in [6, Theorem 3.14] can be considered as Condition (PWP_{sc}) .

We recall from [6] that the right S-act A_S satisfies Condition (PWP_{ssc}) if as = a's, for $a, a' \in A_S$ and $s \in S$, implies the existence of $r \in S$ such that ar = a'r and rs = s. It is easy to see that,

 $Condition(PWP_{ssc}) \Rightarrow Condition(PWP_{sc})$

Also, S_S satisfies Condition (PWP_{ssc}) if and only if S is left PSF (right semi-cancellative), by [6, Theorem 2.2].

Theorem 2.25. The following statements are equivalent.

- (1) All right S-acts satisfying Condition (PWP_{sc}) are principally weakly kernel flat and satisfy Condition (PWP_{ssc}) .
- (2) All right S-acts satisfying Condition (PWP_{sc}) are translation kernel flat and satisfy Condition (PWP_{ssc}) .
- (3) All right S-acts satisfying Condition (PWP_{sc}) satisfy Conditions (PWP) and (PWP_{ssc}).
- (4) All right S-acts satisfying Condition (PWP_{sc}) satisfy Conditions (P') and (PWP_{ssc}).
- (5) S is right cancellative.

Proof. Implications $(1) \Rightarrow (2) \Rightarrow (3)$ and $(4) \Rightarrow (3)$ are obvious.

(3) \Rightarrow (5) By Theorem 2.2(1), S_S satisfies Condition (PWP_{sc}) . Thus, by the assumption, S_S satisfies Condition (PWP_{ssc}) and so, S is left PSF. Also, by the assumption, all right S-acts satisfying Condition (PWP_{sc}) satisfy Condition (PWP). Thus, S is right cancellative, by [6, Theorem 3.14].

 $(5) \Rightarrow (4)$ All right S-acts satisfying Condition (PWP_{sc}) satisfy Condition (P'), by [6, Theorem 3.14]. Now, we show that all right

S-acts satisfying Condition (PWP_{sc}) satisfy Conditions (PWP_{ssc}) . Suppose that A_S satisfies Condition (PWP_{sc}) and as = a's, for $a, a' \in A_S$ and $s \in S$. Since A_S satisfies Condition (PWP_{sc}) , there exist $a'' \in A_S$ and $u, v, r, r' \in S$ such that ar = a''ur, a'r' = a''vr', rs = s = r's, and us = vs. Since S is right cancellative, r = r' = 1 and u = v. Hence a = a' and so, A_S satisfies Condition (PWP_{ssc}) .

 $(5) \Rightarrow (1)$. All right *S*-acts satisfying Condition (PWP_{sc}) are principally weakly kernel flat, by [6, Theorem 3.14]. Also, by the proof of $(5) \Rightarrow (4)$, all right *S*-acts satisfying Condition (PWP_{sc}) satisfy Condition (PWP_{ssc}) , and so, we are done.

Theorem 2.26. The following statements are equivalent.

- (1) All right S-acts satisfying Condition (PWP_E) are (strongly) faithful.
- (2) All finitely generated right S-acts satisfying Condition (PWP_E) are (strongly) faithful.
- (3) All cyclic right S-acts satisfying Condition (PWP_E) are (strongly) faithful.
- (4) All right Rees factor S-acts satisfying Condition (PWP_E) are (strongly) faithful.
- (5) $S = \{1\}.$

Proof. Implications $(5) \Rightarrow (1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4)$ are obvious.

 $(4) \Rightarrow (5)$ The right Rees factor $S/S_S \cong \Theta_S$ satisfies Condition (PWP_E) . Thus, by the assumption, Θ_S is (strongly) faithful. So, $S = \{1\}$.

Using an argument similar to the one utilized in the proof of the above theorem, we obtain the following result.

Theorem 2.27. The following statements are equivalent.

- (1) All right S-acts satisfying Condition (PWP_{sc}) are (strongly) faithful.
- (2) All finitely generated right S-acts satisfying Condition (PWP_{sc}) are (strongly) faithful.
- (3) All cyclic right S-acts satisfying Condition (PWP_{sc}) are (strongly) faithful.
- (4) All right Rees factor S-acts satisfying Condition (PWP_{sc}) are (strongly) faithful.
- (5) $S = \{1\}.$

Theorem 2.28. The following statements are equivalent.

(1) All right S-acts satisfying Condition (PWP_E) are strongly torsion-free.

- (2) All finitely generated right S-acts satisfying Condition (PWP_E) are strongly torsion-free.
- (3) All cyclic right S-acts satisfying Condition (PWP_E) are strongly torsion-free.
- (4) S is right cancellative.

Proof. Implications $(1) \Rightarrow (2) \Rightarrow (3)$ are obvious.

 $(3) \Rightarrow (4)$ The cyclic right S-act S_S satisfies Condition (PWP_E) , by [3, Theorem 2.2]. So, it is strongly torsion-free, by the assumption. Thus, S is right cancellative by [15, Proposition 2.1].

 $(4) \Rightarrow (1)$ This follows from Remark 2.24.

Theorem 2.29. The following statements are equivalent.

- (1) All right S-acts satisfying Condition (PWP_{sc}) are strongly torsion-free.
- (2) All finitely generated right S-acts satisfying Condition (PWP_{sc}) are strongly torsion-free.
- (3) All cyclic right S-acts satisfying Condition (PWP_{sc}) are strongly torsion-free.
- (4) S is right cancellative.

Proof. Implications $(1) \Rightarrow (2) \Rightarrow (3)$ are obvious.

 $(3) \Rightarrow (4)$ All cyclic right S-acts satisfying Condition (PWP_E) are strongly torsion-free, by Theorem 2.2(2). Thus, S is right cancellative by Theorem 2.28.

 $(4) \Rightarrow (1)$ This follows from Remark 2.24.

Theorem 2.30. The following statements are equivalent.

- All right S-acts satisfying Condition (PWP_{sc}) satisfy Condition (PWP_{ssc}).
- (2) All finitely generated right S-acts satisfying Condition (PWP_{sc}) satisfy Condition (PWP_{ssc}) .
- (3) All cyclic right S-acts satisfying Condition (PWP_{sc}) satisfy Condition (PWP_{ssc}).
- (4) All monocyclic right S-acts satisfying Condition (PWP_{sc}) satisfy Condition (PWP_{ssc}) .
- (5) S is left PSF.

Proof. Implications $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4)$ are obvious.

(4) \Rightarrow (5) The monocyclic right S-act $S_S \cong S/\Delta_S = S/\rho(s,s)$, $s \in S$, satisfies Condition (PWP_{sc}). So, it satisfies Condition (PWP_{ssc}). Thus, S is left PSF by [6, Theorem 2.2].

 $(5) \Rightarrow (1)$ Suppose that A_S satisfies Condition (PWP_{sc}) . Then, A_S is principally weakly flat by Theorem 2.4. So, A_S satisfies Condition (PWP_{ssc}) by [6, Theorem 2.8].

Theorem 2.31. The following statements are equivalent.

- (1) All right S-acts satisfying Condition (PWP_{sc}) are divisible.
- (2) All finitely generated right S-acts satisfying Condition (PWP_{sc}) are divisible.
- (3) All cyclic right S-acts satisfying Condition (PWP_{sc}) are divisible.
- (4) All monocyclic right S-acts satisfying Condition (PWP_{sc}) are divisible.
- (5) All right S-acts are divisible.
- (6) For every $c \in C_l$, Sc = S.

Proof. Implications $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4)$ are obvious.

(4) \Rightarrow (5) The monocyclic right *S*-act $S_S \cong S/ \Delta_S = S/\rho(s, s), s \in S$, satisfies Condition (*PWP*_{sc}). So, S_S is divisible, by the assumption. Hence, all right *S*-acts are divisible by [7, Proposition 4.2.2].

 $(5) \Rightarrow (6)$ Every left cancellable element of S is left invertible, by [7, Proposition 4.2.2]. So, Sc = S for every $c \in C_l$.

(6) \Rightarrow (1). All right *S*-acts are divisible, by [7, Proposition 4.2.2]. So, all right *S*-acts satisfying Condition (*PWP*_{sc}) are divisible.

Recall from [14] that for S, the Cartesian product $S \times S$, equipped with the right S-action (s,t)u = (su,tu), for $s,t,u \in S$, is called the *diagonal act* of S. It is denoted by D(S).

Theorem 2.32. The following statements are equivalent.

- (1) S is left PSF.
- (2) S is left P(P), and S_S^n satisfies Condition (PWP_{sc}) for every $n \in \mathbb{N}$.
- (3) S is weakly left P(P), and S_S^n satisfies Condition (PWP_{sc}) for every $n \in \mathbb{N}$.
- (4) S is left P(P) and D(S) satisfies Condition (PWP_{sc}).
- (5) S is weakly left P(P) and D(S) satisfies Condition (PWP_{sc}).

Proof. Implications $(2) \Rightarrow (3)$, $(4) \Rightarrow (5)$, $(2) \Rightarrow (4)$ and $(3) \Rightarrow (5)$ are obvious.

(1) \Rightarrow (2) Every left *PSF* monoid is left *P*(*P*). By [11, Corollary 2.16], S_S^n is principally weakly flat, for every $n \in \mathbb{N}$. So, Theorem 2.5 shows that S_S^n satisfies Condition (*PWP*_{sc}), for every $n \in \mathbb{N}$.

 $(5) \Rightarrow (1) D(S)$ is principally weakly flat, by Theorem 2.4. Thus, by [14, Theorem 2.5], S is left *PSF*.

Theorem 2.33. Let S be a commutative monoid. Then, the following statements are equivalent.

- (1) S is left PSF.
- (2) S_S^n satisfies Condition (PWP_{sc}), for every $n \in \mathbb{N}$.
- (3) D(S) satisfies Condition (PWP_{sc}).

Proof. Implication $(1) \Rightarrow (2)$ follows from Theorem 2.32. Implication $(2) \Rightarrow (3)$ is obvious.

 $(3) \Rightarrow (1)$ This follows from Theorem 2.4 and [14, Proposition 3.2].

In the following theorem, we present some conditions for a monoid which are equivalent to the property of being left PP.

Theorem 2.34. The following statements are equivalent.

- (1) S is left PP.
- (2) S is left PSF and the submonoid $[1]_{\ker \rho_s}$ of S, $s \in S$, contains a right zero.
- (3) S is left P(P) and the submonoid $[1]_{\ker \rho_s}$ of S, $s \in S$, contains a right zero.
- (4) S is left PSF and S_S^I satisfies Condition (PWP_{sc}), for any nonempty set I.
- (5) S is left PSF and $S_S^{S \times S}$ satisfies Condition (PWP_{sc}).
- (6) S is left P(P) and S_S^I satisfies Condition (PWP_{sc}) , for any nonempty set I.
- (7) S is left P(P) and $S_S^{S \times S}$ satisfies Condition (PWP_{sc}). (8) S is weakly left P(P) and S_S^I satisfies Condition (PWP_{sc}), for any nonempty set I.
- (9) S is weakly left P(P) and $S_S^{S \times S}$ satisfies Condition (PWP_{sc}) .

Proof. Implications (2) \Rightarrow (3), (4) \Rightarrow (5) \Rightarrow (7) \Rightarrow (9) and (4) \Rightarrow $(6) \Rightarrow (8) \Rightarrow (9)$ are obvious, because left $PSF \Rightarrow$ left $P(P) \Rightarrow$ weakly left P(P).

 $(1) \Rightarrow (2)$ It is clear that every left *PP* monoid is left *PSF*. Now, we show that $[1]_{\ker \rho_s}$, $s \in S$, contains a right zero. By the assumption, there exists $e \in E(S)$ such that ker $\rho_s = \ker \rho_e$. Now,

$$(1, e) \in \ker \rho_e = \ker \rho_s$$

and thus, $e \in [1]_{\ker \rho_s}$. If $t \in [1]_{\ker \rho_s}$, then $(1,t) \in \ker \rho_e$, which implies te = e, that is, e is a right zero of the submonoid $[1]_{\ker \rho_s}$.

 $(3) \Rightarrow (1)$ Let $s \in S$ and e be a right zero of $[1]_{\ker \rho_s}$. We claim that $\ker \rho_s = \ker \rho_e$. Let $(l_1, l_2) \in \ker \rho_e$. Since $e \in [1]_{\ker \rho_s}$, s = es. Thus,

$$l_1s = l_1es = l_2es = l_2s$$

and so, $(l_1, l_2) \in \ker \rho_s$. Hence, $\ker \rho_e \subseteq \ker \rho_s$. Now, let $(x, y) \in \ker \rho_s$. Since S is left P(P), there exist $u, v \in S$ such that s = us = vs and xu = yv. From s = us = vs we deduce that $(1, u), (1, v) \in \ker \rho_s$. So, $u, v \in [1]_{\ker \rho_s}$. Since e is a right zero of $[1]_{\ker \rho_s}$, ue = e and ve = e. Then, xu = yv implies that xe = xue = yve = ye, that is, $(x, y) \in \ker \rho_e$. Thus $\ker \rho_s = \ker \rho_e$, which implies that S is left PP.

 $(1) \Rightarrow (4)$ By [14, Corollary 2.6], S_S^I is principally weakly flat. Thus, by Theorem 2.6, S_S^I satisfies Condition (PWP_{sc}) for any nonempty set Ι.

(9) \Rightarrow (1) By Theorem 2.4, S is weakly left P(P) and $S_S^{S \times S}$ is principally weakly flat. So, for any nonempty set I, S_S^I is principally weakly flat by [13, Proposition 2.2.]. Thus, S is left PP, by [14, Corollary 2.6].

Now, we investigate the previous theorem for a commutative monoid S.

Theorem 2.35. Let S be a commutative monoid. Then, the following statements are equivalent.

- (1) S is left PP.
- (2) S_S^I satisfies Condition (PWP_{sc}), for any nonempty set I. (3) $S_S^{S \times S}$ satisfies Condition (PWP_{sc}).

Proof. $(1) \Rightarrow (2)$ The proof is straightforward by Theorem 2.34.

 $(2) \Rightarrow (3)$ This is obvious.

(3) \Rightarrow (1) By Theorem 2.4, $S_S^{S \times S}$ is principally weakly flat. So, for any nonempty set I, S_{S}^{I} is principally weakly flat, by [13, Proposition 2.2.]. Thus, S is left PP, by [14, Proposition 3.2].

We summarize our results in the commutative and non-commutative cases in Table 1.

Comparing the tables in the commutative and non-commutative cases, we find that for commutative monoids, the first condition is removed.

For non-commutative monoids				
First condition		Second condition		Equivalent condition
S is left $P(P)$		S_{S}^{n} satisfies Condition (PWP_{sc}), for every $n \in \mathbb{N}$	\Leftrightarrow	S is left PSF
S is weakly left $P(P)$		S_S^n satisfies Condition (PWP_{sc}), for every $n \in \mathbb{N}$	\iff	S is left PSF
S is left PSF		S_S^I satisfies Condition (PWP_{sc}), for every nonempty set I	\Leftrightarrow	S is left PP
S is left $P(P)$		S_S^I satisfies Condition (<i>PWPsc</i>), for every nonempty set <i>I</i>	\Leftrightarrow	S is left PP
S is weakly left $P(P)$		S_S^I satisfies Condition (PWP_{sc}), for every nonempty set I	\Leftrightarrow	S is left PP
For commutative monoids				
S is left PSF	\Leftrightarrow	S_{S}^{n} satisfies Condition (PWP_{sc}), for every $n \in \mathbb{N}$		
S is left PP	\Leftrightarrow	S_S^I satisfies Condition (<i>PWPsc</i>), for every nonempty set <i>I</i>		

TABLE 1. Classification of commutative and non-commutative monoids

Acknowledgments

The authors are grateful to the referees for their careful reading of the article, and for their helpful and valuable comments and suggestions.

References

- S. Bulman-Fleming, M. Kilp and V. Laan, Pullbacks and flatness properties of acts II, Comm. Algebra, 29(2) (2001), 851–878.
- A. Golchin and H. Mohammadzadeh, On Condition (P'), Semigroup Forum, 86 (2013), 413–430.
- A. Golchin and H. Mohammadzadeh, On Condition (PWP_E), Southeast Asian Bull. Math., 33 (2009), 245–256.
- A. Golchin, H. Mohammadzadeh and P. Rezaei, On Strongly (P)-Cyclic Acts, Czechoslovak Math. J., 59(134) (2009), 595–611.
- J. M. Howie, Fundamentals of Semigroup Theory, London Mathematical Society Monographs, Oxford University Press, London, 1995.
- P. Khamechi, H. Mohammadzadeh and L. Nouri, Classification of monoids by Condition (*PWP_{ssc}*) of right acts, *Categ. Gen. Algebr. Struct. Appl.*, **12** (2020), 175–197.
- M. Kilp, U. Knauer and A. Mikhalev, Monoids, Acts and Categories, Walter de Gruyter, Berlin, 2000.
- 8. V. Laan, Pullbacks and flatness properties of acts, Ph.D Thesis, Tartu, 1999.
- V. Laan, Pullbacks and flatness properties of acts I, Comm. Algebra, 29(2) (2001), 829–850.

- P. Normak, On equalizer-flat and pullback-flat acts, Semigroup Forum, 36 (1987), 293–313.
- L. Nouri, A. Golchin and H. Mohammadzadeh, On properties of product acts over monoids, *Comm. Algebra*, 43 (2015), 1854–1876.
- H. Qiao and C. Wei, On a generalization of principal weak flatness property, Semigroup Forum, 85 (2012), 147–159.
- M. Sedaghatjoo, R. Khosravi and M. Ershad, Principally weakly and weakly coherent monoids, *Comm. Algebra*, **37** (2009), 4281–4295.
- M. Sedaghatjoo, V. Laan and M. Ershad, Principal Weak Flatness and Regularity of Diagonal Acts, Comm. Algebra, 40 (2012), 4019–4030.
- A. Zare, A. Golchin and H. Mohammadzadeh, Strongly torsion free acts over monoids, Asian-Eur. J. Math., 6(3) (2013), 1–22.
- A. Zare, A. Golchin and H. Mohammadzadeh, *R*-torsion free acts over monoids, J. Sci. Islam. Repub. Iran, 24(3) (2013), 275–285.

Hossein Mohammadzadeh Saany

Department of Mathematics, University of Sistan and Baluchestan, Zahedan, Iran. Email: hmsdm@math.usb.ac.ir

Leila Nouri

Department of Mathematics, University of Sistan and Baluchestan, Zahedan, Iran. Email: leila_nouri@math.usb.ac.ir Journal of Algebraic Systems

ON HOMOLOGICAL CLASSIFICATION OF MONOIDS BY CONDITION (PWP_{sc}) OF RIGHT ACTS

H. MOHAMMADZADEH SAANY AND L. NOURI

دستهبندی همولوژیکی تکوارهها بر اساس شرط (PWP_{sc}) از سیستمهای راست

حسین محمدزادهثانی و لیلا نوری

^{۱,۲} دانشکده ریاضی، آمار و علوم کامپیوتر، دانشگاه سیستان و بلوچستان، زاهدان، ایران

در این مقاله شرط (PWP_{sc}) را به عنوان تعمیمی از شرط (PWP_E) سیستمها روی تکوارهها معرفی میکنیم و مشاهده میکنیم که شرط (PWP_{sc}) ، شرط (PWP_E) را نتیجه نمیدهد. به طور کلی نشان میدهیم که شرط (PWP_{sc}) ، خاصیت به طور اساسی ضعیف هموار را نتیجه میدهد و اینکه در تکوارههای PSF چپ، عکس این نتیجهگیری نیز همواره درست است. به علاوه، بعضی از خواص کلی و یک دستهبندی از تکوارهها را با مقایسه شرط (PWP_{sc}) با ویژگیهای دیگر ارائه میدهیم. در پایان، تکوارههای PSF چپ را برای وقتی که S_{s}^{I} ، برای هر مجموعه ناتهی I، در شرط (PWP_{sc}) صدق کند توصیف میکنیم.

کلمات کلیدی: S-سیستم، شرط (PWP_{sc})، همواری.