Journal of Algebraic Systems

Vol. 11, No. 2, (2024), pp 1-12

NEW MAJORIZATION FOR BOUNDED LINEAR OPERATORS IN HILBERT SPACES

F. GORJIZADEH AND N. EFTEKHARI*

Abstract

This work aims to introduce and investigate a preordering in $B(\mathcal{H})$, the Banach space of all bounded linear operators defined on a complex Hilbert space \mathcal{H}. It is called strong majorization and denoted by $S \prec_{s} T$, for $S, T \in B(\mathcal{H})$. The strong majorization follows the majorization considered by Barnes, but not vice versa. If $S \prec_{s} T$, then S inherits some properties of T. The strong majorization will be extended for the d-tuples of operators in $B(\mathcal{H})^{d}$ and is called joint strong majorization denoted by $S \prec_{j s} T$, for $S, T \in B(\mathcal{H})^{d}$. We show that some properties of strong majorization are satisfied for joint strong majorization.

1. Introduction

Let $B(\mathcal{H})$ denote the Banach space of all bounded linear operators defined on a complex Hilbert space $(\mathcal{H},\langle\cdot, \cdot\rangle)$. The numerical radius and the Crowford number of $T \in B(\mathcal{H})$, respectively are defined by

$$
w(T)=\sup \{|\langle T x, x\rangle|: x \in \mathcal{H},\|x\|=1\}
$$

and

$$
c(T)=\inf \{|\langle T x, x\rangle|: x \in \mathcal{H},\|x\|=1\}
$$

It is well known that

$$
\begin{equation*}
\frac{1}{2}\|T\| \leq w(T) \leq\|T\| \tag{1.1}
\end{equation*}
$$

DOI: 10.22044/JAS.2022.11318.1564.
MSC(2010): Primary: 47A12; Secondary: 47A30, 47L30.
Keywords: Strong majorization; Hilbert space; Positive operator.
Received: 21 October 2021, Accepted: 26 September 2022.

* Corresponding author.
where $\|T\|$ is the usual operator norm.
In [7], Zamani et al. obtained the following lemma.
Lemma 1.1. [7, Lemma 2.7] Let $T \in B(\mathcal{H})$. Then for all $x \in \mathcal{H}$ with $\|x\|=1$, we have

$$
\begin{equation*}
\|T\|^{2}+c^{2}(T) \leq\|T x\|^{2}+|\langle T x, x\rangle|^{2} \leq 4 w^{2}(T) \tag{1.2}
\end{equation*}
$$

For $T \in B(\mathcal{H})$, we denote $R(T)$ for the range of T and $N(T)$ for the null space of T, its adjoint is denoted by T^{*}.
An operator $T \in B(\mathcal{H})$ is said to be positive if $\langle T x, x\rangle \geq 0$, for all $x \in \mathcal{H}$.
For Banach spaces X and Y, we denote the Banach space of all bounded linear operators $T: X \rightarrow Y$, by $B(X, Y)$.
In [1], Barnes considered the following majorization.
Definition 1.2. [1] Let $T \in B(X, Y)$ and $S \in B(X, Z)$. Then T majorizes S and denoted by $S \prec_{B} T$ if there exists $M>0$ such that for all $x \in \mathcal{H}$, we have

$$
\|S x\| \leq M\|T x\|
$$

In [1], Barnes obtained the following proposition.
Proposition 1.3. [1, Proposition 3] Let $T \in B(X, Y)$, and $S \in B(X, Z)$. Then the following statements are equivalent.
(1) $S \prec_{B} T$.
(2) There exists $V \in B(\overline{R(T)}, Z)$ such that $S=V T$.
(3) Whenever $\left\{x_{n}\right\} \subseteq X$ with $\left\|T x_{n}\right\| \rightarrow 0$, then $\left\|S x_{n}\right\| \rightarrow 0$.

In [5], Douglas proved the next proposition.
Proposition 1.4. [5] Let $S, T \in B(\mathcal{H})$. Then the following three conditions are equivalent.
(1) $R(S) \subseteq R(T)$.
(2) $S^{*} \prec_{B} T^{*}$.
(3) $S=T U$ for some $U \in B(\mathcal{H})$.

For more details about numerical radius, norm equalities and majorization, we refer the reader to $[2,3,4,6,7]$.

We organize this paper as follows. In the next section, we introduce a preorder relation in $B(\mathcal{H})$, which is called strong majorization and denoted by \prec_{s}. Some properties of strong majorization are investigated and we show that strong majorization follows majorization considered by Barnes, but not vice versa. We prove that if $S \prec_{s} T$, then S inherits some properties of T. In Section 3 we extend the strong majorization for the d-tuples of operators in $B(\mathcal{H})^{d}$ and is called joint
strong majorization denoted by $S \prec_{j s} T$, for $S, T \in B(\mathcal{H})^{d}$. We show that some properties of strong majorization are satisfied for joint strong majorization.

2. Strong majorization

In this section, we introduce a preordering on $B(\mathcal{H})$, we call it, strong majorization and consider some properties of it.

Definition 2.1. Let $S, T \in B(\mathcal{H})$. We say that T strong majorizes S and denoted by $S \prec_{s} T$ if there exists $M>0$ such that for all $x \in \mathcal{H}$,

$$
\begin{equation*}
|\langle S x, x\rangle| \leq M|\langle T x, x\rangle| . \tag{2.1}
\end{equation*}
$$

Clearly, strong majorization is a preordering relation on $B(\mathcal{H})$, i.e., it is reflexive and transitive. Obviously, $S \prec_{s} T$ if and only if $S^{*} \prec_{s} T^{*}$. By taking the supremum over $x \in \mathcal{H}$ with $\|x\|=1$ in (2.1), we get

$$
\begin{equation*}
w(S) \leq M w(T) \tag{2.2}
\end{equation*}
$$

Proposition 2.2. Let $S, T \in B(\mathcal{H})$. If $S \prec_{s} T$, then $S \prec_{B} T$.
Proof. By assumption, there exists $M>0$ such that for all $x \in \mathcal{H}$, we have (2.1). The inequalities (1.1) and (2.2) follow that

$$
0 \leq w(S) \leq M w(T) \leq M\|T\|
$$

so

$$
\begin{equation*}
4 w^{2}(S) \leq 4 M^{2}\|T\|^{2} \tag{2.3}
\end{equation*}
$$

On the other hand, (1.2) concludes the following inequalities for $x \in \mathcal{H}$ with $\|x\|=1$,

$$
\|S x\|^{2} \leq\|S x\|^{2}+|\langle S x, x\rangle|^{2} \leq 4 w^{2}(S)
$$

and

$$
\begin{aligned}
4 M^{2}\|T\|^{2} & \leq 4 M^{2}\left(\|T\|^{2}+c^{2}(T)\right) \\
& \leq 4 M^{2}\left(\|T x\|^{2}+|\langle T x, x\rangle|^{2}\right) \\
& \leq 4 M^{2}\left(\|T x\|^{2}+\|T x\|^{2}\|x\|^{2}\right) \\
& \leq 8 M^{2}\|T x\|^{2} .
\end{aligned}
$$

The above inequalities and (2.3) follow that

$$
\|S x\|^{2} \leq 8 M^{2}\|T x\|^{2}
$$

so for all $x \in \mathcal{H}$

$$
\begin{equation*}
\|S x\| \leq \sqrt{8} M\|T x\| \tag{2.4}
\end{equation*}
$$

Therefore $S \prec_{B} T$.

The inequality (2.4) concludes that $N(T) \subseteq N(S)$. Also, by taking the supremum in (2.4) over $x \in \mathcal{H}$ with $\|x\|=1$, it follows that

$$
\|S\| \leq \sqrt{8} M\|T\|
$$

Remark 2.3. Let $S, T \in B(\mathcal{H})$ be such that $S=a T$, for some $a \in \mathbb{C} \backslash\{0\}$. Clearly, $T \prec_{s} S$ and $S \prec_{s} T$, but for $a \neq 1$, we have $S \neq T$, i.e., in general the strong majorization is not a partial ordering.

Now we obtain nontrivial example of (2.1).

Example 2.4. Let

$$
\mathcal{H}=\ell_{2}=\left\{x=\left(x_{n}\right): \sum_{n=1}^{\infty}\left|x_{n}\right|^{2}<\infty\right\}
$$

be the Hilbert space with the inner product $\langle x, y\rangle=\sum_{n=1}^{\infty} x_{n} \overline{y_{n}}$, where $x=\left(x_{n}\right)$ and $y=\left(y_{n}\right)$ are in ℓ_{2}. Suppose that $S, T \in B(\mathcal{H})$ are defined by

$$
S x=\left(0,0, x_{3}, x_{4}, \ldots\right), \text { and } T x=\left(0, x_{2}, x_{3}, \ldots\right), \text { for } x=\left(x_{n}\right) \in \mathcal{H} .
$$

Hence for $x=\left(x_{n}\right) \in \ell_{2}$, we have

$$
\begin{aligned}
& \langle S x, x\rangle=\left|x_{3}\right|^{2}+\left|x_{4}\right|^{2}+\cdots, \\
& \langle T x, x\rangle=\left|x_{2}\right|^{2}+\left|x_{3}\right|^{2}+\left|x_{4}\right|^{2}+\cdots .
\end{aligned}
$$

Clearly

$$
|\langle S x, x\rangle| \leq|\langle T x, x\rangle|,
$$

and so $S \prec_{s} T$.
The next example obtains in general the inverse of Proposition 2.2 is not correct.

Example 2.5. Let $n \in \mathbb{N} \backslash\{2\}$ be even and $\mathcal{H}=\mathbb{C}^{n}$ be a Hilbert space with inner product $\langle x, y\rangle=\sum_{i=1}^{n} x_{i} \bar{y}_{i}$, for $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right) \in \mathbb{C}^{n}$. Let S be the right shift operator on \mathcal{H} defined by $S x=\left(0, x_{1}, x_{2}, \ldots, x_{n-1}\right)$. Thus

$$
\begin{align*}
\|S x\|^{2} & =\langle S x, S x\rangle=\left|x_{1}\right|^{2}+\left|x_{2}\right|^{2}+\cdots+\left|x_{n-1}\right|^{2}, \tag{2.5}\\
\langle S x, x\rangle & =\overline{x_{2}} x_{1}+\overline{x_{3}} x_{2}+\cdots+\overline{x_{n}} x_{n-1} . \tag{2.6}
\end{align*}
$$

Let T be the operator on \mathcal{H} defined by the block diagonal $n \times n$ matrix

$$
T=\left[\begin{array}{cccccc}
0 & 1 & 0 & 0 & \cdots & \cdots \\
1 & 0 & 0 & 0 & \cdots & \cdots \\
0 & 0 & 0 & 1 & \cdots & \cdots \\
0 & 0 & 1 & 0 & \cdots & \cdots \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 0 & 1 \\
0 & 0 & 0 & \cdots & 1 & 0
\end{array}\right] .
$$

For $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{C}^{n}$, it follows that

$$
T x=\left(x_{2}, x_{1}, x_{4}, x_{3}, \ldots, x_{n}, x_{n-1}\right),
$$

and

$$
\begin{align*}
\|T x\|^{2} & =\langle T x, T x\rangle=\left|x_{1}\right|^{2}+\left|x_{2}\right|^{2}+\cdots+\left|x_{n}\right|^{2}, \tag{2.7}\\
\langle T x, x\rangle & =\overline{x_{1}} x_{2}+\overline{x_{2}} x_{1}+\overline{x_{3}} x_{4}+\overline{x_{4}} x_{3}+\cdots+\overline{x_{n-1}} x_{n}+\overline{x_{n}} x_{n-1} . \tag{2.8}
\end{align*}
$$

The relations (2.5) and (2.7) follow that for all $x \in \mathbb{C}^{n}$, we have

$$
\|S x\| \leq\|T x\|
$$

that is $S \prec_{B} T$. But for $x=(0,1,1,0, \ldots, 0) \in \mathbb{C}^{n}$, the relations (2.6) and (2.8) follow that

$$
\langle S x, x\rangle=1, \quad\langle T x, x\rangle=0
$$

and so $S \nprec_{s} T$.
Proposition 2.6. Let $S, T \in B(\mathcal{H})$. If $S \prec_{s} T$, then the following statements hold.
(i) There exists $V \in B(\overline{R(T)}, \mathcal{H})$ such that $S=V T$.
(ii) Whenever $\left\{x_{n}\right\} \subseteq \mathcal{H}$ with $\left\|T x_{n}\right\| \rightarrow 0$, then $\left\|S x_{n}\right\| \rightarrow 0$.

Proof. Propositions 2.2 and 1.3 follow the assertions.
Theorem 2.7. Let $S, T \in B(\mathcal{H})$. If $S \prec_{s} T$, then the following statements are true.
(i) If $S_{1}, S_{2} \in B(\mathcal{H})$ and $\alpha_{1}, \alpha_{2} \in \mathbb{C} \backslash\{0\}$ such that $S_{1} \prec_{s} T$, $S_{2} \prec_{s} T$, then $\alpha_{1} S_{1}+\alpha_{2} S_{2} \prec_{s} T$.
(ii) If T is self-adjoint, then $\operatorname{Re}(S) \prec_{s} T, \operatorname{Im}(S) \prec_{s} T$, where $\operatorname{Re}(S)=\frac{S+S^{*}}{2}$ and $\operatorname{Im}(S)=\frac{S-S^{*}}{2 i}$.
(iii) $R\left(S^{*}\right) \subseteq R\left(T^{*}\right)$ and $R(S) \subseteq R(T)$.

Proof. (i) By assumption, there exist two positive numbers M_{1}, M_{2} such that for all $x \in \mathcal{H}$

$$
\begin{aligned}
\left|\left\langle\left(\alpha_{1} S_{1}+\alpha_{2} S_{2}\right) x, x\right\rangle\right| & \leq\left|\alpha_{1}\right|\left|\left\langle S_{1} x, x\right\rangle\right|+\left|\alpha_{2}\right|\left|\left\langle S_{2} x, x\right\rangle\right| \\
& \leq\left(\left|\alpha_{1}\right| M_{1}+\left|\alpha_{2}\right| M_{2}\right)|\langle T x, x\rangle|
\end{aligned}
$$

that is $\alpha_{1} S_{1}+\alpha_{2} S_{2} \prec_{s} T$.
(ii) Since $S \prec_{s} T$ follows $S^{*} \prec_{s} T^{*}$, and by hypothesis $T=T^{*}$, we have $S^{*} \prec_{s} T$. Now the assertions follow by part (i).
(iii) According to Propositions 1.4, 1.3 and 2.2 and since $S \prec_{s} T$ if and only if $S^{*} \prec_{s} T^{*}$, the assumption concludes $R\left(S^{*}\right) \subseteq R\left(T^{*}\right)$ and $R(S) \subseteq R(T)$.

Theorem 2.8. Let $S, R, T \in B(\mathcal{H})$. If $S \prec_{s} T$, then
(i) $T^{*} S \prec_{s} T^{*} T$ and $S^{*} T \prec_{s} T^{*} T$,
(ii) $S^{*} S \prec_{s} T^{*} T$,
(iii) $R^{*} S R \prec_{s} R^{*} T R$,
(iv) $T^{*} S \pm S^{*} T \prec_{s} T^{*} T$.

Proof. (i) Since $S \prec_{s} T$ implies $S \prec_{B} T$, so there exists $M>0$ such that for all $x \in \mathcal{H}$,

$$
\begin{aligned}
\left|\left\langle T^{*} S x, x\right\rangle\right| & =|\langle S x, T x\rangle| \\
& \leq\|S x\|\|T x\| \\
& \leq M\|T x\|^{2} \\
& =M|\langle T x, T x\rangle| \\
& =M\left|\left\langle T^{*} T x, x\right\rangle\right| .
\end{aligned}
$$

That is $T^{*} S \prec_{s} T^{*} T$.
As $S \prec_{s} T$ implies $S^{*} \prec_{s} T^{*}$, so $T^{*} S \prec_{s} T^{*} T$ follows that $S^{*} T \prec_{s} T^{*} T$.
(ii) As $S \prec_{s} T$ follows $S \prec_{B} T$, so there is $M>0$ such that for all $x \in \mathcal{H}$,

$$
\begin{aligned}
\left|\left\langle S^{*} S x, x\right\rangle\right| & =|\langle S x, S x\rangle| \\
& =\|S x\|^{2} \\
& \leq M\|T x\|^{2} \\
& =M|\langle T x, T x\rangle| \\
& =M\left|\left\langle T^{*} T x, x\right\rangle\right| .
\end{aligned}
$$

That is $S^{*} S \prec_{s} T^{*} T$.
(iii) Since $S \prec_{s} T$, there exists $M>0$ such that for all $x \in \mathcal{H}$,

$$
\begin{aligned}
\left|\left\langle R^{*} S R x, x\right\rangle\right| & =|\langle S R x, R x\rangle| \\
& \leq M|\langle T R x, R x\rangle| \\
& =M\left|\left\langle R^{*} T R x, x\right\rangle\right|
\end{aligned}
$$

(iv) Part (i) and Theorem 2.7 imply the assertion.

Theorem 2.9. Let $S, T \in B(\mathcal{H})$ such that $S \prec_{s} T$ and M be a subspace of \mathcal{H}. If $T M \subseteq M^{\perp}$, then $S M \subseteq M^{\perp}$.

Proof. By assumption, there exists $N>0$ such that for all $x \in \mathcal{H}$,

$$
\begin{equation*}
|\langle S x, x\rangle| \leq N|\langle T x, x\rangle| . \tag{2.9}
\end{equation*}
$$

By hypothesis $x \in M$ implies that $T x \in M^{\perp}$. Assume that $x \in M$, so $\langle T x, x\rangle=0$, thus (2.9) implies that $\langle S x, x\rangle=0$, that is $S x \in M^{\perp}$. Therefore $S M \subseteq M^{\perp}$.

Theorem 2.10. Let $S, T \in B(\mathcal{H})$ and $S \prec_{s} T$. If S and T are both self-adjoint, then $S^{n} \prec_{s} T^{n}$, where $n=2^{m}$, for all $m \in \mathbb{N}$.

Proof. We proceed by induction. For $m=1$, according to part (ii) of Theorem 2.8, we have

$$
S^{*} S \prec_{s} T^{*} T .
$$

Since by hypothesis $S^{*}=S$ and $T^{*}=T$, it follows that $S^{2} \prec_{s} T^{2}$.
Now suppose that for $n=2^{m}$ and $m \in \mathbb{N}$, we have $S^{n} \prec_{s} T^{n}$. Again we use part (ii) of Theorem 2.8 to conclude that

$$
\left(S^{n}\right)^{*} S^{n} \prec_{s}\left(T^{n}\right)^{*} T^{n}
$$

since $S^{*}=S$ and $T^{*}=T$, we get $S^{2 n} \prec_{s} T^{2 n}$. Thus the result holds for $2 n=2^{m+1}$. This completes the induction.

For $T \in B(\mathcal{H})$, the Davis-Wielandt radius of T is defined by

$$
d w(T)=\sup \left\{\sqrt{|\langle T x, x\rangle|^{2}+\|T x\|^{4}}: x \in \mathcal{H},\|x\|=1\right\} .
$$

The total cosine of T is defined by

$$
|\cos | T=\inf \left\{\frac{|\langle T x, x\rangle|}{\|T x\|\|x\|}: x \in \mathcal{H}, T x \neq 0, x \neq 0\right\}
$$

These concepts will be used in the next theorem.
Theorem 2.11. Suppose that $S, T \in B(\mathcal{H})$ and $S \prec_{s} T$, i.e., there exists $M>0$ such that for all $x \in \mathcal{H}$,

$$
\begin{equation*}
|\langle S x, x\rangle| \leq M|\langle T x, x\rangle| . \tag{2.10}
\end{equation*}
$$

Then the following statements hold.
(i) For all $x \in \mathcal{H}, \sqrt{|\langle S x, x\rangle|^{2}+\|S x\|^{4}} \leq N \sqrt{|\langle T x, x\rangle|^{2}+\|T x\|^{4}}$, and so $d w(S) \leq N d w(T)$, for some $N>0$.
(ii) $|\cos | S \leq \sqrt{8} M^{2}|\cos | T$.
(iii) $c(S) \leq M c(T)$.

Proof. (i) By Proposition 2.2, for all $x \in \mathcal{H}$, we have $\|S x\| \leq \sqrt{8} M\|T x\|$ and so

$$
\begin{equation*}
\|S x\|^{4} \leq 64 M^{4}\|T x\|^{4} \tag{2.11}
\end{equation*}
$$

Also, (2.10) follows that

$$
\begin{equation*}
|\langle S x, x\rangle|^{2} \leq M^{2}|\langle T x, x\rangle|^{2} \tag{2.12}
\end{equation*}
$$

The relations (2.11) and (2.12) conclude that for some $N>0$, we have

$$
\sqrt{|\langle S x, x\rangle|^{2}+\|S x\|^{4}} \leq N \sqrt{|\langle T x, x\rangle|^{2}+\|T x\|^{4}}
$$

By taking the supremum over $x \in \mathcal{H}$ such that $\|x\|=1$, we get

$$
d w(S) \leq N d w(T)
$$

(ii) The hypothesis implies that for all $x \in \mathcal{H}$ with $S x \neq 0, x \neq 0$,

$$
\frac{|\langle S x, x\rangle|}{\|S x\|\|x\|} \leq M \frac{|\langle T x, x\rangle|}{\|S x\|\|x\|},
$$

and so by taking the infimum over $x \in \mathcal{H}$ with $S x \neq 0, x \neq 0$, we have

$$
\begin{aligned}
|\cos | S=\inf \frac{|\langle S x, x\rangle|}{\|S x\|\|x\|} & \leq M \inf \frac{|\langle T x, x\rangle|}{\|S x\|\|x\|} \\
& =M \sup \frac{\|S x\|\|x\|}{|\langle T x, x\rangle|} \\
& \leq \sqrt{8} M^{2} \sup \frac{\|T x\|\|x\|}{|\langle T x, x\rangle|} \\
& =\sqrt{8} M^{2} \inf \frac{|\langle T x, x\rangle|}{\|T x\|\|x\|} \\
& =\sqrt{8} M^{2}|\cos | T
\end{aligned}
$$

In (2.10), if for some $x \in \mathcal{H}$, we have $\langle T x, x\rangle=0$, then $\langle S x, x\rangle=0$, and so $|\cos | S=0=|\cos | T$. Therefore in the above inequalities, we assume that for all $x \in \mathcal{H}$, we have $\langle S x, x\rangle \neq 0$.
(iii) The relation (2.10) follows part (iii).

Let M be a closed subspace of \mathcal{H}. If there exists a closed subspace N of \mathcal{H} with $\mathcal{H}=M \oplus N$, then M is called complemented.
By Proposition 2.2, $S \prec_{s} T$ follows $S \prec_{B} T$, and so the following three proposition hold by [1, Theorem 13, Proposition 6, Proposition 5].

Proposition 2.12. Let $S, T \in B(\mathcal{H})$ and $S \prec_{s} T$. If $\overline{R(T)}$ is complemented, then there exists $V \in B(\mathcal{H})$ such that $S=V T$.

Proof. By Proposition 2.2 and [1, Theorem 13], the assertion follows.

If $S, T \in B(\mathcal{H})$ and $S \prec_{s} T$, then S inherits some properties of T. Proposition 2.2 and [1, Proposition 6] follow the next proposition.

Proposition 2.13. Let $S, T \in B(\mathcal{H})$ and $S \prec_{s} T$. Then the following statements are true.
(i) If T is a compact operator, then S is so.
(ii) If T is a weakly compact operator, then S is so.
(iii) If T is a strictly singular operator, then S is so.

For $T \in B(\mathcal{H}), r(T)=\lim _{n \rightarrow \infty}\left\|T^{n}\right\|^{\frac{1}{n}}$ is the spectral radius of T.

Proposition 2.14. Let $S, T \in B(\mathcal{H})$, and $S \prec_{s} T$, i.e., there exists $M>0$ such that for all $x \in \mathcal{H}$,

$$
|\langle S x, x\rangle| \leq M|\langle T x, x\rangle| .
$$

Then the following statements hold.
(i) If $N(T)=N(S)$ and $R(S)$ is closed, then $R(T)$ is closed.
(ii) If $T S=S T$, then for all $n \in \mathbb{N}, S^{n} \prec_{B} T^{n}$ and $r(S) \leq \sqrt{8} M r(T)$ and so if T is quasinilpotent, then S is so.

Proof. By Proposition 2.2, there exists $M>0$ such that for all $x \in \mathcal{H}$,

$$
\|S x\| \leq \sqrt{8} M\|T x\| .
$$

Now [1, Proposition 5] implies (i) and (ii).

3. Joint strong majorization

This section deals with the extend of strong majorization for the d-tuples of operators in $B(\mathcal{H})^{d}$, as follows.

Definition 3.1. Let $S=\left(S_{1}, \ldots, S_{d}\right), T=\left(T_{1}, \ldots, T_{d}\right) \in B(\mathcal{H})^{d}$ be two d-tuples of operators. We say that T joint strong majorizes S and denoted by $S \prec_{j s} T$, if there exists $M>0$ such that for all $1 \leq i \leq d$ and all $x \in \mathcal{H}$,

$$
\left|\left\langle S_{i} x, x\right\rangle\right| \leq M\left|\left\langle T_{i} x, x\right\rangle\right| .
$$

That is $S \prec_{j s} T$ if and only if $S_{i} \prec_{s} T_{i}$ for all $1 \leq i \leq d$.
Clearly, the above inequality follows that

$$
\begin{equation*}
\left(\sum_{i=1}^{d}\left|\left\langle S_{i} x, x\right\rangle\right|^{2}\right)^{\frac{1}{2}} \leq M\left(\sum_{i=1}^{d}\left|\left\langle T_{i} x, x\right\rangle\right|^{2}\right)^{\frac{1}{2}} \tag{3.1}
\end{equation*}
$$

Let $S^{*}=\left(S_{1}^{*}, \ldots, S_{d}^{*}\right) \in B(\mathcal{H})^{d}$ be the adjoint operator of a d-tuples $S=\left(S_{1}, \ldots, S_{d}\right)$ in $B(\mathcal{H})^{d}$. Clearly, $S \prec_{j s} T$ if and only if $S^{*} \prec_{j s} T^{*}$. We say that S is self-adjoint if $S^{*}=S$.
In 1981, M. Chō et al. introduced the joint operator norm and the joint numerical radius for a d-tuples $T=\left(T_{1}, \ldots, T_{d}\right)$ of operators defined on \mathcal{H}, respectively as follows [4],

$$
\|T\|:=\sup \left\{\left(\sum_{i=1}^{d}\left\|T_{i} x\right\|^{2}\right)^{\frac{1}{2}}: x \in \mathcal{H},\|x\|=1\right\}
$$

and

$$
w(T)=\sup \left\{\left(\sum_{i=1}^{d}\left|\left\langle T_{i} x, x\right\rangle\right|^{2}\right)^{\frac{1}{2}}: x \in \mathcal{H},\|x\|=1\right\} .
$$

For a d-tuples $T=\left(T_{1}, \ldots, T_{d}\right) \in B(\mathcal{H})^{d}$, the Davis-Wielandt radius and the Crawford number of T, respectively defined by

$$
d w(T)=\sup \left\{\sqrt{\sum_{i=1}^{d}\left|\left\langle T_{i} x, x\right\rangle\right|^{2}+\left(\sum_{i=1}^{d}\left\|T_{i} x\right\|^{2}\right)^{2}}: x \in \mathcal{H},\|x\|=1\right\}
$$

and

$$
c(T)=\inf \left\{\left(\sum_{i=1}^{d}\left|\left\langle T_{i} x, x\right\rangle\right|^{2}\right)^{\frac{1}{2}}: x \in \mathcal{H},\|x\|=1\right\} .
$$

The total cosine of T is defined by

$$
|\cos | T=\inf \left\{\frac{\left(\sum_{i=1}^{d}\left|\left\langle T_{i} x, x\right\rangle\right|^{2}\right)^{\frac{1}{2}}}{\left(\sum_{i=1}^{d}\left\|T_{i} x\right\|^{2}\right)^{\frac{1}{2}}\|x\|}: x \in \mathcal{H}, x \neq 0, \sum_{i=1}^{d}\left\|T_{i} x\right\|^{2} \neq 0\right\} .
$$

Proposition 2.2, Theorem 2.11 and (3.1) follow the next theorem for two d-tuples of operators.
Theorem 3.2. Let $S=\left(S_{1}, \ldots, S_{d}\right), T=\left(T_{1}, \ldots, T_{d}\right) \in B(\mathcal{H})^{d}$ be two d-tuples of operators and $S \prec_{j s} T$, i.e., there exists $M>0$ such that for all $x \in \mathcal{H}$, and $1 \leq i \leq d$ we have

$$
\left|\left\langle S_{i} x, x\right\rangle\right| \leq M\left|\left\langle T_{i} x, x\right\rangle\right| .
$$

Then the following statements hold.
(i) For all $x \in \mathcal{H}$,

$$
\begin{aligned}
& \sqrt{\sum_{i=1}^{d}\left|\left\langle S_{i} x, x\right\rangle\right|^{2}+\left(\sum_{i=1}^{d}\left\|S_{i} x\right\|^{2}\right)^{2}} \leq N \sqrt{\sum_{i=1}^{d}\left|\left\langle T_{i} x, x\right\rangle\right|^{2}+\left(\sum_{i=1}^{d}\left\|T_{i} x\right\|^{2}\right)^{2}} \\
& \text { and so } d w(S) \leq N d w(T), \text { for some } N>0
\end{aligned}
$$

(ii) $|\cos | S \leq \sqrt{8} M^{2}|\cos | T$.
(iii) $c(S) \leq M c(T)$.
(iv) $w(S) \leq M w(T)$.
(v) $\|S\| \leq \sqrt{8} M\|T\|$.

Let $S=\left(S_{1}, \ldots, S_{d}\right), T=\left(T_{1}, \ldots, T_{d}\right) \in B(\mathcal{H})^{d}$ be two d-tuples of operators. We consider $S T$ by $S T=\left(S_{1} T_{1}, \ldots, S_{d} T_{d}\right)$.

Theorem 3.3. Let $S=\left(S_{1}, \ldots, S_{d}\right), T=\left(T_{1}, \ldots, T_{d}\right) \in B(\mathcal{H})^{d}$ be two d-tuples of operators such that $S \prec_{j s} T$ and $\bigcap_{i=1}^{d} \overline{R\left(T_{i}\right)} \neq\{0\}$. Then there exists a d-tuples V in $B\left(\bigcap_{i=1}^{d} \overline{R\left(T_{i}\right)}, \mathcal{H}\right)^{d}$ such that $S=V T$.

Proof. Since $S \prec_{j s} T$ implies that $S_{i} \prec_{s} T_{i}$, for all $1 \leq i \leq d$, so by Proposition 2.6, there are $V_{i} \in B\left(\overline{R\left(T_{i}\right)}, \mathcal{H}\right)$ such that $S_{i}=V_{i} T_{i}$. Thus $S=V T$ and $V=\left(V_{1}, \ldots, V_{d}\right) \in B\left(\bigcap_{i=1}^{d} \overline{R\left(T_{i}\right)}, \mathcal{H}\right)^{d}$.

Theorems 2.7 and 2.8 are satisfied for the d-tuples of operators as follows.

Proposition 3.4. Let $\alpha, \beta \in \mathbb{C} \backslash\{0\}$ and $S, R, T \in B(\mathcal{H})^{d}$. If $S \prec_{j s} T$, $R \prec_{j s} T$, then $\alpha S+\beta R \prec_{j s} T$.
Proof. Let

$$
S=\left(S_{1}, \ldots, S_{d}\right), R=\left(R_{1}, \ldots, R_{d}\right), T=\left(T_{1}, \ldots, T_{d}\right) \in B(\mathcal{H})^{d} .
$$

As $S \prec_{j s} T$ and $R \prec_{j s} T$ conclude that $S_{i} \prec_{s} T_{i}$ and $R_{i} \prec_{s} T_{i}$, for all $1 \leq i \leq d$, so by Theorem 2.7, we have $\alpha S_{i}+\beta R_{i} \prec_{s} T_{i}$, for all $1 \leq i \leq d$. Therefore $\alpha S+\beta R \prec_{j s} T$.
Theorem 3.5. Let $S, R, T \in B(\mathcal{H})^{d}$, and $S \prec_{j s} T$. Then
(i) $T^{*} S \prec_{j s} T^{*} T$ and $S^{*} T \prec_{j s} T^{*} T$,
(ii) $S^{*} S \prec_{j s} T^{*} T$,
(iii) $R^{*} S R \prec_{j s} R^{*} T R$,
(iv) $T^{*} S \pm S^{*} T \prec_{j s} T^{*} T$.

Proof. Since $S \prec_{j s} T$ implies that $S_{i} \prec_{s} T_{i}$, for all $1 \leq i \leq d$, the proof follows by Theorem 2.8 and Proposition 3.4.

Theorem 3.6. Let $S=\left(S_{1}, \ldots, S_{d}\right), T=\left(T_{1}, \ldots, T_{d}\right) \in B(\mathcal{H})^{d}$ be two self-adjoint d-tuples of operators and $S \prec_{j s} T$. Then $S^{n} \prec_{j s} T^{n}$, where $n=2^{m}$, for all $m \in \mathbb{N}$.

Proof. It follows by Theorem 2.10.

4. Conclusion

We define a preordering in $B(\mathcal{H})$ and call it strong majorization which is stronger than majorization considered by Barnes. Thus all results that Barnes proved, are satisfied for strong majorization. In Example 2.5, we show that $S \prec_{B} T$ but $S \not_{s} T$. One can find some conditions on S, T that Barnes's majorization implies strong
majorization, also find the properties of strong majorization that aren't inherited from Barnes's majorization.

Acknowledgments

The authors would like to thank Shahrekord University. Also, the authors would like to gratitude to the referees for their valuable comments.

References

1. B. A. Barnes, Majorization, Range inclusion, and factorization for bounded linear operators, Proc. Amer. Math. Soc., 133(1) (2004), 155-162.
2. M. Barraa and M. Boumazgour, Inner derivations and norm equality, Proc. Amer. Math. Soc., 130(2) (2002), 471-476.
3. R. Bhatia and P. Šemrl, Orthogonality of matrices and some distance problems, Linear Algebra Appl., 287(1-3) (1999), 77-85.
4. M. Chō and M. Takaguchi, Boundary points of joint numerical ranges, Pacific J. Math., 95(1) (1981), 27-35.
5. R. Douglas, On majorization, factorization, and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc., 17 (1966), 413-415.
6. M. S. Moslehian and A. Zamani, Seminorm and numerical radius inequalities of operators in semi-Hilbertian spaces, Linear Algebra Appl., 591 (2020), 299-321.
7. A. Zamani, M. S. Moslehian, M-T Chien, and H. Nakazato, Norm-parallelism and the Davis-Wieladnt radius of Hilbert space operators, Linear Multilinear Algebra, 67(11) (2019), 2147-2158.

Farzaneh Gorjizadeh

Department of Pure Mathematics, University of Shahrekord, P.O. Box 115, Shahrekord, Iran.
Email: Gorjizadeh@stu.sku.ac.ir

Noha Eftekhari

Department of Pure Mathematics, University of Shahrekord, P.O. Box 115, Shahrekord, Iran.
Email: eftekhari-n@sku.ac.ir

Journal of Algebraic Systems

NEW MAJORIZATION FOR BOUNDED LINEAR OPERATORS IN HILBERT SPACES

F．GORJIZADEH AND N．EFTEKHARI

$$
\begin{aligned}
& \text { احاطهسازى جديد براى عملگرهاى خطى كراندار در فضاهاى هيلبرت } \\
& \text { فرزانه گرجى زاده’ و نها افتخارى` } \\
& \text { 「, 「ادانشكده علوم رياضى، دانشگاه شهركرد، شهركرد، ايران }
\end{aligned}
$$

در اين مقاله مى خواهيم پيش ترتيبى در B（H）فضاى بانا
 بهصورت آن برقرار نيست．هرگاه

 احاطهسازى قوى براى احاطهسازى قوى توام برقرار است．

كلمات كليدى：احاطهسازى قوى، فضاى هيلبرت، عملگر مثبت．

