Journal of Algebraic Systems Vol. 11, No. 2, (2024), pp 1-12

NEW MAJORIZATION FOR BOUNDED LINEAR OPERATORS IN HILBERT SPACES

F. GORJIZADEH AND N. EFTEKHARI*

ABSTRACT. This work aims to introduce and investigate a preordering in $B(\mathcal{H})$, the Banach space of all bounded linear operators defined on a complex Hilbert space \mathcal{H} . It is called strong majorization and denoted by $S \prec_s T$, for $S, T \in B(\mathcal{H})$. The strong majorization follows the majorization considered by Barnes, but not vice versa. If $S \prec_s T$, then S inherits some properties of T. The strong majorization will be extended for the d-tuples of operators in $B(\mathcal{H})^d$ and is called joint strong majorization denoted by $S \prec_{js} T$, for $S, T \in B(\mathcal{H})^d$. We show that some properties of strong majorization are satisfied for joint strong majorization.

1. INTRODUCTION

Let $B(\mathcal{H})$ denote the Banach space of all bounded linear operators defined on a complex Hilbert space $(\mathcal{H}, \langle \cdot, \cdot \rangle)$. The numerical radius and the Crowford number of $T \in B(\mathcal{H})$, respectively are defined by

$$w(T) = \sup\{|\langle Tx, x \rangle| : x \in \mathcal{H}, \|x\| = 1\},\$$

and

$$c(T) = \inf\{|\langle Tx, x\rangle|: x \in \mathcal{H}, \|x\| = 1\}.$$

It is well known that

$$\frac{1}{2} \|T\| \le w(T) \le \|T\|, \tag{1.1}$$

Keywords: Strong majorization; Hilbert space; Positive operator.

DOI: 10.22044/JAS.2022.11318.1564.

MSC(2010): Primary: 47A12; Secondary: 47A30, 47L30.

Received: 21 October 2021, Accepted: 26 September 2022.

^{*}Corresponding author.

where ||T|| is the usual operator norm.

In [7], Zamani et al. obtained the following lemma.

Lemma 1.1. [7, Lemma 2.7] Let $T \in B(\mathcal{H})$. Then for all $x \in \mathcal{H}$ with ||x|| = 1, we have

$$||T||^{2} + c^{2}(T) \le ||Tx||^{2} + |\langle Tx, x \rangle|^{2} \le 4w^{2}(T).$$
(1.2)

For $T \in B(\mathcal{H})$, we denote R(T) for the range of T and N(T) for the null space of T, its adjoint is denoted by T^* .

An operator $T \in B(\mathcal{H})$ is said to be positive if $\langle Tx, x \rangle \geq 0$, for all $x \in \mathcal{H}$.

For Banach spaces X and Y, we denote the Banach space of all bounded linear operators $T: X \to Y$, by B(X, Y).

In [1], Barnes considered the following majorization.

Definition 1.2. [1] Let $T \in B(X,Y)$ and $S \in B(X,Z)$. Then T majorizes S and denoted by $S \prec_B T$ if there exists M > 0 such that for all $x \in \mathcal{H}$, we have

$$||Sx|| \le M ||Tx||.$$

In [1], Barnes obtained the following proposition.

Proposition 1.3. [1, Proposition 3] Let $T \in B(X,Y)$, and $S \in B(X,Z)$. Then the following statements are equivalent.

- (1) $S \prec_B T$.
- (2) There exists $V \in B(R(T), Z)$ such that S = VT.
- (3) Whenever $\{x_n\} \subseteq X$ with $||Tx_n|| \to 0$, then $||Sx_n|| \to 0$.

In [5], Douglas proved the next proposition.

Proposition 1.4. [5] Let $S, T \in B(\mathcal{H})$. Then the following three conditions are equivalent.

(1) $R(S) \subseteq R(T)$. (2) $S^* \prec_B T^*$. (3) S = TU for some $U \in B(\mathcal{H})$.

For more details about numerical radius, norm equalities and majorization, we refer the reader to [2, 3, 4, 6, 7].

We organize this paper as follows. In the next section, we introduce a preorder relation in $B(\mathcal{H})$, which is called strong majorization and denoted by \prec_s . Some properties of strong majorization are investigated and we show that strong majorization follows majorization considered by Barnes, but not vice versa. We prove that if $S \prec_s T$, then S inherits some properties of T. In Section 3 we extend the strong majorization for the d-tuples of operators in $B(\mathcal{H})^d$ and is called joint

 $\mathbf{2}$

strong majorization denoted by $S \prec_{js} T$, for $S, T \in B(\mathcal{H})^d$. We show that some properties of strong majorization are satisfied for joint strong majorization.

2. Strong majorization

In this section, we introduce a preordering on $B(\mathcal{H})$, we call it, strong majorization and consider some properties of it.

Definition 2.1. Let $S, T \in B(\mathcal{H})$. We say that T strong majorizes S and denoted by $S \prec_s T$ if there exists M > 0 such that for all $x \in \mathcal{H}$,

$$|\langle Sx, x \rangle| \le M |\langle Tx, x \rangle|. \tag{2.1}$$

Clearly, strong majorization is a preordering relation on $B(\mathcal{H})$, i.e., it is reflexive and transitive. Obviously, $S \prec_s T$ if and only if $S^* \prec_s T^*$. By taking the supremum over $x \in \mathcal{H}$ with ||x|| = 1 in (2.1), we get

$$w(S) \le Mw(T). \tag{2.2}$$

Proposition 2.2. Let $S, T \in B(\mathcal{H})$. If $S \prec_s T$, then $S \prec_B T$.

Proof. By assumption, there exists M > 0 such that for all $x \in \mathcal{H}$, we have (2.1). The inequalities (1.1) and (2.2) follow that

$$0 \le w(S) \le Mw(T) \le M \|T\|,$$

 \mathbf{SO}

$$4w^2(S) \le 4M^2 ||T||^2. \tag{2.3}$$

On the other hand, (1.2) concludes the following inequalities for $x \in \mathcal{H}$ with ||x|| = 1,

$$||Sx||^{2} \le ||Sx||^{2} + |\langle Sx, x \rangle|^{2} \le 4w^{2}(S),$$

and

$$4M^{2}||T||^{2} \leq 4M^{2}(||T||^{2} + c^{2}(T))$$

$$\leq 4M^{2}(||Tx||^{2} + |\langle Tx, x \rangle|^{2})$$

$$\leq 4M^{2}(||Tx||^{2} + ||Tx||^{2}||x||^{2})$$

$$\leq 8M^{2}||Tx||^{2}.$$

The above inequalities and (2.3) follow that

$$||Sx||^2 \le 8M^2 ||Tx||^2,$$

so for all $x \in \mathcal{H}$

$$\|Sx\| \le \sqrt{8}M\|Tx\|. \tag{2.4}$$

Therefore $S \prec_B T$.

The inequality (2.4) concludes that $N(T) \subseteq N(S)$. Also, by taking the supremum in (2.4) over $x \in \mathcal{H}$ with ||x|| = 1, it follows that

 $\|S\| \le \sqrt{8}M\|T\|.$

Remark 2.3. Let $S,T \in B(\mathcal{H})$ be such that S = aT, for some $a \in \mathbb{C} \setminus \{0\}$. Clearly, $T \prec_s S$ and $S \prec_s T$, but for $a \neq 1$, we have $S \neq T$, i.e., in general the strong majorization is not a partial ordering.

Now we obtain nontrivial example of (2.1).

Example 2.4. Let

$$\mathcal{H} = \ell_2 = \{x = (x_n) : \sum_{n=1}^{\infty} |x_n|^2 < \infty\}$$

be the Hilbert space with the inner product $\langle x, y \rangle = \sum_{n=1}^{\infty} x_n \bar{y_n}$, where $x = (x_n)$ and $y = (y_n)$ are in ℓ_2 . Suppose that $S, T \in B(\mathcal{H})$ are defined by

 $Sx = (0, 0, x_3, x_4, \ldots)$, and $Tx = (0, x_2, x_3, \ldots)$, for $x = (x_n) \in \mathcal{H}$. Hence for $x = (x_n) \in \ell_2$, we have

$$\langle Sx, x \rangle = |x_3|^2 + |x_4|^2 + \cdots,$$

 $\langle Tx, x \rangle = |x_2|^2 + |x_3|^2 + |x_4|^2 + \cdots.$

Clearly

$$|\langle Sx, x \rangle| \le |\langle Tx, x \rangle|,$$

and so $S \prec_s T$.

The next example obtains in general the inverse of Proposition 2.2 is not correct.

Example 2.5. Let $n \in \mathbb{N} \setminus \{2\}$ be even and $\mathcal{H} = \mathbb{C}^n$ be a Hilbert space with inner product $\langle x, y \rangle = \sum_{i=1}^n x_i \bar{y}_i$, for $x = (x_1, x_2, \ldots, x_n)$, $y = (y_1, y_2, \ldots, y_n) \in \mathbb{C}^n$. Let S be the right shift operator on \mathcal{H} defined by $Sx = (0, x_1, x_2, \ldots, x_{n-1})$. Thus

$$||Sx||^{2} = \langle Sx, Sx \rangle = |x_{1}|^{2} + |x_{2}|^{2} + \dots + |x_{n-1}|^{2}, \qquad (2.5)$$

$$\langle Sx, x \rangle = \bar{x_2}x_1 + \bar{x_3}x_2 + \dots + \bar{x_n}x_{n-1}.$$
 (2.6)

Let T be the operator on \mathcal{H} defined by the block diagonal $n \times n$ matrix

$$T = \begin{bmatrix} 0 & 1 & 0 & 0 & \cdots & \cdots \\ 1 & 0 & 0 & 0 & \cdots & \cdots \\ 0 & 0 & 1 & 0 & \cdots & \cdots \\ 0 & 0 & 1 & 0 & \cdots & \cdots \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & 0 & \cdots & 1 & 0 \end{bmatrix}$$

For $x = (x_1, \ldots, x_n) \in \mathbb{C}^n$, it follows that

$$Tx = (x_2, x_1, x_4, x_3, \dots, x_n, x_{n-1}),$$

and

$$||Tx||^{2} = \langle Tx, Tx \rangle = |x_{1}|^{2} + |x_{2}|^{2} + \dots + |x_{n}|^{2}, \qquad (2.7)$$

$$\langle Tx, x \rangle = \bar{x_{1}}x_{2} + \bar{x_{2}}x_{1} + \bar{x_{3}}x_{4} + \bar{x_{4}}x_{3} + \dots + \bar{x_{n-1}}x_{n} + \bar{x_{n}}x_{n-1}. \qquad (2.8)$$

The relations (2.5) and (2.7) follow that for all $x \in \mathbb{C}^n$, we have

$$\|Sx\| \le \|Tx\|,$$

that is $S \prec_B T$. But for $x = (0, 1, 1, 0, \dots, 0) \in \mathbb{C}^n$, the relations (2.6) and (2.8) follow that

$$\langle Sx, x \rangle = 1, \qquad \langle Tx, x \rangle = 0,$$

and so $S \not\prec_s T$.

Proposition 2.6. Let $S, T \in B(\mathcal{H})$. If $S \prec_s T$, then the following statements hold.

- (i) There exists $V \in B(R(T), \mathcal{H})$ such that S = VT.
- (ii) Whenever $\{x_n\} \subseteq \mathcal{H}$ with $||Tx_n|| \to 0$, then $||Sx_n|| \to 0$.

Proof. Propositions 2.2 and 1.3 follow the assertions.

Theorem 2.7. Let $S,T \in B(\mathcal{H})$. If $S \prec_s T$, then the following statements are true.

- (i) If $S_1, S_2 \in B(\mathcal{H})$ and $\alpha_1, \alpha_2 \in \mathbb{C} \setminus \{0\}$ such that $S_1 \prec_s T$, $S_2 \prec_s T$, then $\alpha_1 S_1 + \alpha_2 S_2 \prec_s T$.
- (ii) If T is self-adjoint, then $Re(S) \prec_s T$, $Im(S) \prec_s T$, where $Re(S) = \frac{S+S^*}{2}$ and $Im(S) = \frac{S-S^*}{2i}$.

(iii)
$$R(S^*) \subseteq R(T^*)$$
 and $R(S) \subseteq R(T)$.

Proof. (i) By assumption, there exist two positive numbers M_1, M_2 such that for all $x \in \mathcal{H}$

$$\begin{aligned} |\langle (\alpha_1 S_1 + \alpha_2 S_2) x, x \rangle| &\leq |\alpha_1| |\langle S_1 x, x \rangle| + |\alpha_2| |\langle S_2 x, x \rangle| \\ &\leq (|\alpha_1|M_1 + |\alpha_2|M_2) |\langle Tx, x \rangle|, \end{aligned}$$

that is $\alpha_1 S_1 + \alpha_2 S_2 \prec_s T$.

(ii) Since $S \prec_s T$ follows $S^* \prec_s T^*$, and by hypothesis $T = T^*$, we have $S^* \prec_s T$. Now the assertions follow by part (i).

(iii) According to Propositions 1.4, 1.3 and 2.2 and since $S \prec_s T$ if and only if $S^* \prec_s T^*$, the assumption concludes $R(S^*) \subseteq R(T^*)$ and $R(S) \subseteq R(T)$.

Theorem 2.8. Let $S, R, T \in B(\mathcal{H})$. If $S \prec_s T$, then

(i) $T^*S \prec_s T^*T$ and $S^*T \prec_s T^*T$, (ii) $S^*S \prec_s T^*T$, (iii) $R^*SR \prec_s R^*TR$, (iv) $T^*S \pm S^*T \prec_s T^*T$.

Proof. (i) Since $S \prec_s T$ implies $S \prec_B T$, so there exists M > 0 such that for all $x \in \mathcal{H}$,

$$\begin{split} |\langle T^*Sx, x \rangle| &= |\langle Sx, Tx \rangle| \\ &\leq \|Sx\| \|Tx\| \\ &\leq M \|Tx\|^2 \\ &= M |\langle Tx, Tx \rangle| \\ &= M |\langle T^*Tx, x \rangle|. \end{split}$$

That is $T^*S \prec_s T^*T$.

As $S \prec_s T$ implies $S^* \prec_s T^*$, so $T^*S \prec_s T^*T$ follows that $S^*T \prec_s T^*T$. (ii) As $S \prec_s T$ follows $S \prec_B T$, so there is M > 0 such that for all $x \in \mathcal{H}$,

$$\begin{split} |\langle S^*Sx, x \rangle| &= |\langle Sx, Sx \rangle| \\ &= \|Sx\|^2 \\ &\leq M \|Tx\|^2 \\ &= M |\langle Tx, Tx \rangle| \\ &= M |\langle T^*Tx, x \rangle|. \end{split}$$

That is $S^*S \prec_s T^*T$.

(iii) Since $S \prec_s T$, there exists M > 0 such that for all $x \in \mathcal{H}$,

$$\begin{aligned} |\langle R^*SRx, x \rangle| &= |\langle SRx, Rx \rangle| \\ &\leq M |\langle TRx, Rx \rangle| \\ &= M |\langle R^*TRx, x \rangle|. \end{aligned}$$

(iv) Part (i) and Theorem 2.7 imply the assertion.

Theorem 2.9. Let $S, T \in B(\mathcal{H})$ such that $S \prec_s T$ and M be a subspace of \mathcal{H} . If $TM \subseteq M^{\perp}$, then $SM \subseteq M^{\perp}$.

Proof. By assumption, there exists N > 0 such that for all $x \in \mathcal{H}$,

$$|\langle Sx, x \rangle| \le N |\langle Tx, x \rangle|. \tag{2.9}$$

By hypothesis $x \in M$ implies that $Tx \in M^{\perp}$. Assume that $x \in M$, so $\langle Tx, x \rangle = 0$, thus (2.9) implies that $\langle Sx, x \rangle = 0$, that is $Sx \in M^{\perp}$. Therefore $SM \subseteq M^{\perp}$.

6

Theorem 2.10. Let $S, T \in B(\mathcal{H})$ and $S \prec_s T$. If S and T are both self-adjoint, then $S^n \prec_s T^n$, where $n = 2^m$, for all $m \in \mathbb{N}$.

Proof. We proceed by induction. For m = 1, according to part (ii) of Theorem 2.8, we have

$$S^*S \prec_s T^*T.$$

Since by hypothesis $S^* = S$ and $T^* = T$, it follows that $S^2 \prec_s T^2$. Now suppose that for $n = 2^m$ and $m \in \mathbb{N}$, we have $S^n \prec_s T^n$. Again we use part (ii) of Theorem 2.8 to conclude that

$$(S^n)^*S^n \prec_s (T^n)^*T^n,$$

since $S^* = S$ and $T^* = T$, we get $S^{2n} \prec_s T^{2n}$. Thus the result holds for $2n = 2^{m+1}$. This completes the induction.

For $T \in B(\mathcal{H})$, the Davis-Wielandt radius of T is defined by

$$dw(T) = \sup\left\{\sqrt{|\langle Tx, x \rangle|^2 + ||Tx||^4} : x \in \mathcal{H}, ||x|| = 1\right\}.$$

The total cosine of T is defined by

$$|\cos|T = \inf\left\{\frac{|\langle Tx, x\rangle|}{\|Tx\| \|x\|} : x \in \mathcal{H}, \ Tx \neq 0, \ x \neq 0\right\}.$$

These concepts will be used in the next theorem.

Theorem 2.11. Suppose that $S, T \in B(\mathcal{H})$ and $S \prec_s T$, *i.e.*, there exists M > 0 such that for all $x \in \mathcal{H}$,

$$|\langle Sx, x \rangle| \le M |\langle Tx, x \rangle|. \tag{2.10}$$

Then the following statements hold.

- (i) For all $x \in \mathcal{H}$, $\sqrt{|\langle Sx, x \rangle|^2 + ||Sx||^4} \le N\sqrt{|\langle Tx, x \rangle|^2 + ||Tx||^4}$, and so $dw(S) \le N dw(T)$, for some N > 0.
- (ii) $|\cos|S \le \sqrt{8M^2}|\cos|T$.
- (iii) $c(S) \leq M c(T)$.

Proof. (i) By Proposition 2.2, for all $x \in \mathcal{H}$, we have $||Sx|| \leq \sqrt{8}M||Tx||$ and so

$$||Sx||^4 \le 64M^4 ||Tx||^4. \tag{2.11}$$

Also, (2.10) follows that

$$|\langle Sx, x \rangle|^2 \le M^2 |\langle Tx, x \rangle|^2.$$
(2.12)

The relations (2.11) and (2.12) conclude that for some N > 0, we have

$$\sqrt{|\langle Sx, x \rangle|^2 + ||Sx||^4} \le N\sqrt{|\langle Tx, x \rangle|^2 + ||Tx||^4}.$$

By taking the supremum over $x \in \mathcal{H}$ such that ||x|| = 1, we get

$$dw(S) \le N \ dw(T).$$

(ii) The hypothesis implies that for all $x \in \mathcal{H}$ with $Sx \neq 0, x \neq 0$,

$$\frac{|\langle Sx, x\rangle|}{\|Sx\| \|x\|} \le M \frac{|\langle Tx, x\rangle|}{\|Sx\| \|x\|},$$

and so by taking the infimum over $x \in \mathcal{H}$ with $Sx \neq 0, x \neq 0$, we have

$$|\cos|S = \inf \frac{|\langle Sx, x \rangle|}{||Sx|| ||x||} \le M \inf \frac{|\langle Tx, x \rangle|}{||Sx|| ||x||}$$
$$= M \sup \frac{||Sx|| ||x||}{|\langle Tx, x \rangle|}$$
$$\le \sqrt{8}M^2 \sup \frac{||Tx|| ||x||}{|\langle Tx, x \rangle|}$$
$$= \sqrt{8}M^2 \inf \frac{|\langle Tx, x \rangle|}{||Tx|| ||x||}$$
$$= \sqrt{8}M^2 |\cos|T.$$

In (2.10), if for some $x \in \mathcal{H}$, we have $\langle Tx, x \rangle = 0$, then $\langle Sx, x \rangle = 0$, and so $|\cos|S| = 0 = |\cos|T$. Therefore in the above inequalities, we assume that for all $x \in \mathcal{H}$, we have $\langle Sx, x \rangle \neq 0$.

(iii) The relation (2.10) follows part (iii).

Let M be a closed subspace of \mathcal{H} . If there exists a closed subspace N of \mathcal{H} with $\mathcal{H} = M \oplus N$, then M is called complemented.

By Proposition 2.2, $S \prec_s T$ follows $S \prec_B T$, and so the following three proposition hold by [1, Theorem 13, Proposition 6, Proposition 5].

Proposition 2.12. Let $S,T \in B(\mathcal{H})$ and $S \prec_s T$. If R(T) is complemented, then there exists $V \in B(\mathcal{H})$ such that S = VT.

Proof. By Proposition 2.2 and [1, Theorem 13], the assertion follows.

If $S, T \in B(\mathcal{H})$ and $S \prec_s T$, then S inherits some properties of T. Proposition 2.2 and [1, Proposition 6] follow the next proposition.

Proposition 2.13. Let $S, T \in B(\mathcal{H})$ and $S \prec_s T$. Then the following statements are true.

- (i) If T is a compact operator, then S is so.
- (ii) If T is a weakly compact operator, then S is so.
- (iii) If T is a strictly singular operator, then S is so.

For $T \in B(\mathcal{H})$, $r(T) = \lim_{n \to \infty} ||T^n||^{\frac{1}{n}}$ is the spectral radius of T.

Proposition 2.14. Let $S, T \in B(\mathcal{H})$, and $S \prec_s T$, *i.e.*, there exists M > 0 such that for all $x \in \mathcal{H}$,

$$|\langle Sx, x \rangle| \le M |\langle Tx, x \rangle|.$$

Then the following statements hold.

- (i) If N(T) = N(S) and R(S) is closed, then R(T) is closed.
- (ii) If TS = ST, then for all $n \in \mathbb{N}$, $S^n \prec_B T^n$ and $r(S) \leq \sqrt{8}M r(T)$ and so if T is quasinilpotent, then S is so.

Proof. By Proposition 2.2, there exists M > 0 such that for all $x \in \mathcal{H}$,

$$\|Sx\| \le \sqrt{8M} \|Tx\|.$$

Now [1, Proposition 5] implies (i) and (ii).

3. Joint strong majorization

This section deals with the extend of strong majorization for the d-tuples of operators in $B(\mathcal{H})^d$, as follows.

Definition 3.1. Let $S = (S_1, \ldots, S_d), T = (T_1, \ldots, T_d) \in B(\mathcal{H})^d$ be two d-tuples of operators. We say that T joint strong majorizes S and denoted by $S \prec_{js} T$, if there exists M > 0 such that for all $1 \leq i \leq d$ and all $x \in \mathcal{H}$,

$$|\langle S_i x, x \rangle| \le M |\langle T_i x, x \rangle|.$$

That is $S \prec_{js} T$ if and only if $S_i \prec_s T_i$ for all $1 \leq i \leq d$.

Clearly, the above inequality follows that

$$\left(\sum_{i=1}^{d} |\langle S_i x, x \rangle|^2\right)^{\frac{1}{2}} \le M\left(\sum_{i=1}^{d} |\langle T_i x, x \rangle|^2\right)^{\frac{1}{2}}.$$
 (3.1)

Let $S^* = (S_1^*, \ldots, S_d^*) \in B(\mathcal{H})^d$ be the adjoint operator of a d-tuples $S = (S_1, \ldots, S_d)$ in $B(\mathcal{H})^d$. Clearly, $S \prec_{js} T$ if and only if $S^* \prec_{js} T^*$. We say that S is self-adjoint if $S^* = S$.

In 1981, M. Chō et al. introduced the joint operator norm and the joint numerical radius for a d-tuples $T = (T_1, \ldots, T_d)$ of operators defined on \mathcal{H} , respectively as follows [4],

$$||T|| := \sup\left\{\left(\sum_{i=1}^{d} ||T_ix||^2\right)^{\frac{1}{2}} : x \in \mathcal{H}, ||x|| = 1\right\},\$$

and

$$w(T) = \sup\left\{\left(\sum_{i=1}^{d} |\langle T_i x, x \rangle|^2\right)^{\frac{1}{2}} : x \in \mathcal{H}, \|x\| = 1\right\}.$$

For a d-tuples $T = (T_1, \ldots, T_d) \in B(\mathcal{H})^d$, the Davis-Wielandt radius and the Crawford number of T, respectively defined by

$$dw(T) = \sup\left\{\sqrt{\sum_{i=1}^{d} |\langle T_i x, x \rangle|^2 + \left(\sum_{i=1}^{d} ||T_i x||^2\right)^2} : x \in \mathcal{H}, ||x|| = 1\right\},\$$

and

$$c(T) = \inf\left\{ \left(\sum_{i=1}^{d} |\langle T_i x, x \rangle|^2 \right)^{\frac{1}{2}} : x \in \mathcal{H}, \|x\| = 1 \right\}.$$

The total cosine of T is defined by

$$|\cos|T = \inf\left\{\frac{\left(\sum_{i=1}^{d} |\langle T_i x, x \rangle|^2\right)^{\frac{1}{2}}}{\left(\sum_{i=1}^{d} \|T_i x\|^2\right)^{\frac{1}{2}} \|x\|} : x \in \mathcal{H}, \ x \neq 0, \ \sum_{i=1}^{d} \|T_i x\|^2 \neq 0\right\}.$$

Proposition 2.2, Theorem 2.11 and (3.1) follow the next theorem for two d-tuples of operators.

Theorem 3.2. Let $S = (S_1, \ldots, S_d), T = (T_1, \ldots, T_d) \in B(\mathcal{H})^d$ be two *d*-tuples of operators and $S \prec_{js} T$, *i.e.*, there exists M > 0 such that for all $x \in \mathcal{H}$, and $1 \leq i \leq d$ we have

$$|\langle S_i x, x \rangle| \le M |\langle T_i x, x \rangle|.$$

Then the following statements hold.

(i) For all
$$x \in \mathcal{H}$$
,

$$\sqrt{\sum_{i=1}^{d} |\langle S_i x, x \rangle|^2 + \left(\sum_{i=1}^{d} ||S_i x||^2\right)^2} \le N \sqrt{\sum_{i=1}^{d} |\langle T_i x, x \rangle|^2 + \left(\sum_{i=1}^{d} ||T_i x||^2\right)^2}$$
and so $dw(S) \le N \ dw(T)$, for some $N > 0$.
(ii) $|\cos|S \le \sqrt{8}M^2 |\cos|T$.
(iii) $c(S) \le M \ c(T)$.
(iv) $w(S) \le Mw(T)$.
(v) $||S|| \le \sqrt{8}M||T||$.

Let $S = (S_1, \ldots, S_d), T = (T_1, \ldots, T_d) \in B(\mathcal{H})^d$ be two d-tuples of operators. We consider ST by $ST = (S_1T_1, \ldots, S_dT_d)$.

Theorem 3.3. Let $S = (S_1, \ldots, S_d), T = (T_1, \ldots, T_d) \in B(\mathcal{H})^d$ be two d-tuples of operators such that $S \prec_{js} T$ and $\bigcap_{i=1}^d \overline{R(T_i)} \neq \{0\}$. Then there exists a d-tuples V in $B\left(\bigcap_{i=1}^d \overline{R(T_i)}, \mathcal{H}\right)^d$ such that S = VT.

Proof. Since $S \prec_{js} T$ implies that $S_i \prec_s T_i$, for all $1 \leq i \leq d$, so by Proposition 2.6, there are $V_i \in B(\overline{R(T_i)}, \mathcal{H})$ such that $S_i = V_i T_i$. Thus

$$S = VT$$
 and $V = (V_1, \dots, V_d) \in B\left(\bigcap_{i=1}^{n} \overline{R(T_i)}, \mathcal{H}\right)$.

Theorems 2.7 and 2.8 are satisfied for the d-tuples of operators as follows.

Proposition 3.4. Let $\alpha, \beta \in \mathbb{C} \setminus \{0\}$ and $S, R, T \in B(\mathcal{H})^d$. If $S \prec_{js} T$, $R \prec_{js} T$, then $\alpha S + \beta R \prec_{js} T$.

Proof. Let

$$S = (S_1, \dots, S_d), R = (R_1, \dots, R_d), T = (T_1, \dots, T_d) \in B(\mathcal{H})^d.$$

As $S \prec_{js} T$ and $R \prec_{js} T$ conclude that $S_i \prec_s T_i$ and $R_i \prec_s T_i$, for all $1 \leq i \leq d$, so by Theorem 2.7, we have $\alpha S_i + \beta R_i \prec_s T_i$, for all $1 \leq i \leq d$. Therefore $\alpha S + \beta R \prec_{js} T$.

Theorem 3.5. Let $S, R, T \in B(\mathcal{H})^d$, and $S \prec_{is} T$. Then

- (i) $T^*S \prec_{is} T^*T$ and $S^*T \prec_{is} T^*T$,
- (ii) $S^*S \prec_{js} T^*T$,
- (iii) $R^*SR \prec_{js} R^*TR$,
- (iv) $T^*S \pm S^*T \prec_{is} T^*T$.

Proof. Since $S \prec_{js} T$ implies that $S_i \prec_s T_i$, for all $1 \le i \le d$, the proof follows by Theorem 2.8 and Proposition 3.4.

Theorem 3.6. Let $S = (S_1, \ldots, S_d), T = (T_1, \ldots, T_d) \in B(\mathcal{H})^d$ be two self-adjoint d-tuples of operators and $S \prec_{js} T$. Then $S^n \prec_{js} T^n$, where $n = 2^m$, for all $m \in \mathbb{N}$.

Proof. It follows by Theorem 2.10.

4. CONCLUSION

We define a preordering in $B(\mathcal{H})$ and call it strong majorization which is stronger than majorization considered by Barnes. Thus all results that Barnes proved, are satisfied for strong majorization. In Example 2.5, we show that $S \prec_B T$ but $S \not\prec_s T$. One can find some conditions on S, T that Barnes's majorization implies strong

GORJIZADEH AND EFTEKHARI

majorization, also find the properties of strong majorization that aren't inherited from Barnes's majorization.

Acknowledgments

The authors would like to thank Shahrekord University. Also, the authors would like to gratitude to the referees for their valuable comments.

References

- 1. B. A. Barnes, Majorization, Range inclusion, and factorization for bounded linear operators, *Proc. Amer. Math. Soc.*, **133**(1) (2004), 155–162.
- M. Barraa and M. Boumazgour, Inner derivations and norm equality, Proc. Amer. Math. Soc., 130(2) (2002), 471–476.
- R. Bhatia and P. Šemrl, Orthogonality of matrices and some distance problems, Linear Algebra Appl., 287(1-3) (1999), 77–85.
- M. Chō and M. Takaguchi, Boundary points of joint numerical ranges, *Pacific J. Math.*, 95(1) (1981), 27–35.
- R. Douglas, On majorization, factorization, and range inclusion of operators on Hilbert space, Proc. Amer. Math. Soc., 17 (1966), 413–415.
- M. S. Moslehian and A. Zamani, Seminorm and numerical radius inequalities of operators in semi-Hilbertian spaces, *Linear Algebra Appl.*, 591 (2020), 299–321.
- A. Zamani, M. S. Moslehian, M-T Chien, and H. Nakazato, Norm-parallelism and the Davis-Wieladnt radius of Hilbert space operators, *Linear Multilinear Algebra*, 67(11) (2019), 2147–2158.

Farzaneh Gorjizadeh

Department of Pure Mathematics, University of Shahrekord, P.O. Box 115, Shahrekord, Iran.

Email: Gorjizadeh@stu.sku.ac.ir

Noha Eftekhari

Department of Pure Mathematics, University of Shahrekord, P.O. Box 115, Shahrekord, Iran.

Email: eftekhari-n@sku.ac.ir

Journal of Algebraic Systems

NEW MAJORIZATION FOR BOUNDED LINEAR OPERATORS IN HILBERT SPACES

F. GORJIZADEH AND N. EFTEKHARI

احاطهسازی جدید برای عملگرهای خطی کراندار در فضاهای هیلبرت

فرزانه گرجی زاده و نها افتخاری

^{۱,۲} دانشکده علوم ریاضی، دانشگاه شهرکرد، شهرکرد، ایران

در این مقاله میخواهیم پیش ترتیبی در $B(\mathcal{H})$ فضای باناخ تمام عملگرهای خطی و کراندار تعریف شده بر فضای هیلبرت مختلط \mathcal{H} معرفی و بررسی کنیم. آنرا احاطهسازی قوی مینامیم و برای $(\mathcal{H}, B) \in S, T \in B(\mathcal{H})$ بهصورت $T \leq s < T$ نمایش میدهیم. احاطهسازی قوی، احاطهسازی بارنز را نتیجه میدهد، ولی عکس آن برقرار نیست. هرگاه $T \leq s < T$ آنگاه برخی از ویژگیهای T به عملگر Z به ارث میرسد. احاطهسازی قوی را برای D تایی از عملگرها در فضای $B(\mathcal{H})^d$ توسیع میدهیم و آنرا احاطهسازی قوی توام مینامیم و برای $D(\mathcal{H})^d \in S, T \in S$ نمایش میدهیم. نشان میدهیم که برخی از ویژگیهای احاطهسازی قوی برای احاطهسازی قوی توام برقرار است.

كلمات كليدى: احاطهسازى قوى، فضاى هيلبرت، عملگر مثبت.