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NEW MAJORIZATION FOR BOUNDED LINEAR
OPERATORS IN HILBERT SPACES

F. GORJIZADEH AND N. EFTEKHARI∗

Abstract. This work aims to introduce and investigate a
preordering in B(H), the Banach space of all bounded linear
operators defined on a complex Hilbert space H. It is called strong
majorization and denoted by S ≺s T, for S, T ∈ B(H). The strong
majorization follows the majorization considered by Barnes, but
not vice versa. If S ≺s T, then S inherits some properties of
T. The strong majorization will be extended for the d-tuples of
operators in B(H)d and is called joint strong majorization denoted
by S ≺js T, for S, T ∈ B(H)d. We show that some properties of
strong majorization are satisfied for joint strong majorization.

1. Introduction

Let B(H) denote the Banach space of all bounded linear operators
defined on a complex Hilbert space (H, ⟨·, ·⟩). The numerical radius
and the Crowford number of T ∈ B(H), respectively are defined by

w(T ) = sup{|⟨Tx, x⟩| : x ∈ H, ∥x∥ = 1},
and

c(T ) = inf{|⟨Tx, x⟩| : x ∈ H, ∥x∥ = 1}.
It is well known that

1

2
∥T∥ ≤ w(T ) ≤ ∥T∥, (1.1)
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where ∥T∥ is the usual operator norm.
In [7], Zamani et al. obtained the following lemma.

Lemma 1.1. [7, Lemma 2.7] Let T ∈ B(H). Then for all x ∈ H with
∥x∥ = 1, we have

∥T∥2 + c2(T ) ≤ ∥Tx∥2 + |⟨Tx, x⟩|2 ≤ 4w2(T ). (1.2)
For T ∈ B(H), we denote R(T ) for the range of T and N(T ) for the

null space of T, its adjoint is denoted by T ∗.
An operator T ∈ B(H) is said to be positive if ⟨Tx, x⟩ ≥ 0, for all
x ∈ H.
For Banach spaces X and Y, we denote the Banach space of all bounded
linear operators T : X → Y, by B(X,Y ).
In [1], Barnes considered the following majorization.
Definition 1.2. [1] Let T ∈ B(X,Y ) and S ∈ B(X,Z). Then T
majorizes S and denoted by S ≺B T if there exists M > 0 such that
for all x ∈ H, we have

∥Sx∥ ≤ M∥Tx∥.

In [1], Barnes obtained the following proposition.
Proposition 1.3. [1, Proposition 3] Let T ∈ B(X,Y ), and
S ∈ B(X,Z). Then the following statements are equivalent.

(1) S ≺B T.

(2) There exists V ∈ B(R(T ), Z) such that S = V T.
(3) Whenever {xn} ⊆ X with ∥Txn∥ → 0, then ∥Sxn∥ → 0.

In [5], Douglas proved the next proposition.
Proposition 1.4. [5] Let S, T ∈ B(H). Then the following three
conditions are equivalent.

(1) R(S) ⊆ R(T ).
(2) S∗ ≺B T ∗.
(3) S = TU for some U ∈ B(H).

For more details about numerical radius, norm equalities and
majorization, we refer the reader to [2, 3, 4, 6, 7].

We organize this paper as follows. In the next section, we intro-
duce a preorder relation in B(H), which is called strong majorization
and denoted by ≺s . Some properties of strong majorization are in-
vestigated and we show that strong majorization follows majorization
considered by Barnes, but not vice versa. We prove that if S ≺s T,
then S inherits some properties of T. In Section 3 we extend the strong
majorization for the d-tuples of operators in B(H)d and is called joint
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strong majorization denoted by S ≺js T, for S, T ∈ B(H)d. We show
that some properties of strong majorization are satisfied for joint strong
majorization.

2. Strong majorization

In this section, we introduce a preordering on B(H), we call it, strong
majorization and consider some properties of it.

Definition 2.1. Let S, T ∈ B(H). We say that T strong majorizes S
and denoted by S ≺s T if there exists M > 0 such that for all x ∈ H,

|⟨Sx, x⟩| ≤ M |⟨Tx, x⟩|. (2.1)

Clearly, strong majorization is a preordering relation on B(H), i.e.,
it is reflexive and transitive. Obviously, S ≺s T if and only if S∗ ≺s T

∗.
By taking the supremum over x ∈ H with ∥x∥ = 1 in (2.1), we get

w(S) ≤ Mw(T ). (2.2)

Proposition 2.2. Let S, T ∈ B(H). If S ≺s T, then S ≺B T.

Proof. By assumption, there exists M > 0 such that for all x ∈ H, we
have (2.1). The inequalities (1.1) and (2.2) follow that

0 ≤ w(S) ≤ Mw(T ) ≤ M∥T∥,
so

4w2(S) ≤ 4M2∥T∥2. (2.3)
On the other hand, (1.2) concludes the following inequalities for x ∈ H
with ∥x∥ = 1,

∥Sx∥2 ≤ ∥Sx∥2 + |⟨Sx, x⟩|2 ≤ 4w2(S),

and
4M2∥T∥2 ≤ 4M2(∥T∥2 + c2(T ))

≤ 4M2(∥Tx∥2 + |⟨Tx, x⟩|2)
≤ 4M2(∥Tx∥2 + ∥Tx∥2∥x∥2)
≤ 8M2∥Tx∥2.

The above inequalities and (2.3) follow that
∥Sx∥2 ≤ 8M2∥Tx∥2,

so for all x ∈ H
∥Sx∥ ≤

√
8M∥Tx∥. (2.4)

Therefore S ≺B T. □
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The inequality (2.4) concludes that N(T ) ⊆ N(S). Also, by taking
the supremum in (2.4) over x ∈ H with ∥x∥ = 1, it follows that

∥S∥ ≤
√
8M∥T∥.

Remark 2.3. Let S, T ∈ B(H) be such that S = aT, for some
a ∈ C \ {0}. Clearly, T ≺s S and S ≺s T, but for a ̸= 1, we have
S ̸= T, i.e., in general the strong majorization is not a partial ordering.

Now we obtain nontrivial example of (2.1).
Example 2.4. Let

H = ℓ2 = {x = (xn) :
∑∞

n=1 |xn|2 < ∞}
be the Hilbert space with the inner product ⟨x, y⟩ =

∑∞
n=1 xnȳn, where

x = (xn) and y = (yn) are in ℓ2. Suppose that S, T ∈ B(H) are defined
by
Sx = (0, 0, x3, x4, . . .), and Tx = (0, x2, x3, . . .), for x = (xn) ∈ H.

Hence for x = (xn) ∈ ℓ2, we have
⟨Sx, x⟩ = |x3|2 + |x4|2 + · · · ,
⟨Tx, x⟩ = |x2|2 + |x3|2 + |x4|2 + · · · .

Clearly
|⟨Sx, x⟩| ≤ |⟨Tx, x⟩|,

and so S ≺s T.

The next example obtains in general the inverse of Proposition 2.2
is not correct.
Example 2.5. Let n ∈ N \ {2} be even and H = Cn be a Hilbert
space with inner product ⟨x, y⟩ =

n∑
i=1

xiȳi, for x = (x1, x2, . . . , xn),

y = (y1, y2, . . . , yn) ∈ Cn. Let S be the right shift operator on H
defined by Sx = (0, x1, x2, . . . , xn−1). Thus

∥Sx∥2 = ⟨Sx, Sx⟩ = |x1|2 + |x2|2 + · · ·+ |xn−1|2, (2.5)
⟨Sx, x⟩ = x̄2x1 + x̄3x2 + · · ·+ x̄n xn−1. (2.6)

Let T be the operator on H defined by the block diagonal n×n matrix

T =



0 1 0 0 · · · · · ·
1 0 0 0 · · · · · ·
0 0 0 1 · · · · · ·
0 0 1 0 · · · · · ·
... ... ... . . . ... ...
0 0 0 · · · 0 1
0 0 0 · · · 1 0


.
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For x = (x1, . . . , xn) ∈ Cn, it follows that
Tx = (x2, x1, x4, x3, . . . , xn, xn−1),

and
∥Tx∥2 = ⟨Tx, Tx⟩ = |x1|2 + |x2|2 + · · ·+ |xn|2, (2.7)
⟨Tx, x⟩ = x̄1x2 + x̄2x1 + x̄3x4 + x̄4x3 + · · ·+ xn−1 xn + xn xn−1.

(2.8)
The relations (2.5) and (2.7) follow that for all x ∈ Cn, we have

∥Sx∥ ≤ ∥Tx∥,
that is S ≺B T. But for x = (0, 1, 1, 0, . . . , 0) ∈ Cn, the relations (2.6)
and (2.8) follow that

⟨Sx, x⟩ = 1, ⟨Tx, x⟩ = 0,

and so S ̸≺s T.

Proposition 2.6. Let S, T ∈ B(H). If S ≺s T, then the following
statements hold.

(i) There exists V ∈ B(R(T ),H) such that S = V T.
(ii) Whenever {xn} ⊆ H with ∥Txn∥ → 0, then ∥Sxn∥ → 0.

Proof. Propositions 2.2 and 1.3 follow the assertions. □
Theorem 2.7. Let S, T ∈ B(H). If S ≺s T, then the following
statements are true.

(i) If S1, S2 ∈ B(H) and α1, α2 ∈ C \ {0} such that S1 ≺s T,
S2 ≺s T, then α1S1 + α2S2 ≺s T.

(ii) If T is self-adjoint, then Re(S) ≺s T, Im(S) ≺s T, where
Re(S) = S+S∗

2
and Im(S) = S−S∗

2i
.

(iii) R(S∗) ⊆ R(T ∗) and R(S) ⊆ R(T ).

Proof. (i) By assumption, there exist two positive numbers M1,M2 such
that for all x ∈ H

|⟨(α1S1 + α2S2)x, x⟩| ≤ |α1||⟨S1x, x⟩|+ |α2||⟨S2x, x⟩|
≤ (|α1|M1 + |α2|M2)|⟨Tx, x⟩|,

that is α1S1 + α2S2 ≺s T.
(ii) Since S ≺s T follows S∗ ≺s T ∗, and by hypothesis T = T ∗, we

have S∗ ≺s T. Now the assertions follow by part (i).
(iii) According to Propositions 1.4, 1.3 and 2.2 and since S ≺s T if

and only if S∗ ≺s T ∗, the assumption concludes R(S∗) ⊆ R(T ∗) and
R(S) ⊆ R(T ). □
Theorem 2.8. Let S,R, T ∈ B(H). If S ≺s T, then
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(i) T ∗S ≺s T
∗T and S∗T ≺s T

∗T,
(ii) S∗S ≺s T

∗T,
(iii) R∗SR ≺s R

∗TR,
(iv) T ∗S ± S∗T ≺s T

∗T.

Proof. (i) Since S ≺s T implies S ≺B T, so there exists M > 0 such
that for all x ∈ H,

|⟨T ∗Sx, x⟩| = |⟨Sx, Tx⟩|
≤ ∥Sx∥∥Tx∥
≤ M∥Tx∥2

= M |⟨Tx, Tx⟩|
= M |⟨T ∗Tx, x⟩|.

That is T ∗S ≺s T
∗T.

As S ≺s T implies S∗ ≺s T
∗, so T ∗S ≺s T

∗T follows that S∗T ≺s T
∗T.

(ii) As S ≺s T follows S ≺B T, so there is M > 0 such that for all
x ∈ H,

|⟨S∗Sx, x⟩| = |⟨Sx, Sx⟩|
= ∥Sx∥2

≤ M∥Tx∥2

= M |⟨Tx, Tx⟩|
= M |⟨T ∗Tx, x⟩|.

That is S∗S ≺s T
∗T.

(iii) Since S ≺s T, there exists M > 0 such that for all x ∈ H,

|⟨R∗SRx, x⟩| = |⟨SRx,Rx⟩|
≤ M |⟨TRx,Rx⟩|
= M |⟨R∗TRx, x⟩|.

(iv) Part (i) and Theorem 2.7 imply the assertion. □

Theorem 2.9. Let S, T ∈ B(H) such that S ≺s T and M be a subspace
of H. If TM ⊆ M⊥, then SM ⊆ M⊥.

Proof. By assumption, there exists N > 0 such that for all x ∈ H,

|⟨Sx, x⟩| ≤ N |⟨Tx, x⟩|. (2.9)
By hypothesis x ∈ M implies that Tx ∈ M⊥. Assume that x ∈ M,
so ⟨Tx, x⟩ = 0, thus (2.9) implies that ⟨Sx, x⟩ = 0, that is Sx ∈ M⊥.
Therefore SM ⊆ M⊥. □
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Theorem 2.10. Let S, T ∈ B(H) and S ≺s T. If S and T are both
self-adjoint, then Sn ≺s T

n, where n = 2m, for all m ∈ N.

Proof. We proceed by induction. For m = 1, according to part (ii) of
Theorem 2.8, we have

S∗S ≺s T
∗T.

Since by hypothesis S∗ = S and T ∗ = T, it follows that S2 ≺s T
2.

Now suppose that for n = 2m and m ∈ N, we have Sn ≺s T n. Again
we use part (ii) of Theorem 2.8 to conclude that

(Sn)∗Sn ≺s (T
n)∗T n,

since S∗ = S and T ∗ = T, we get S2n ≺s T
2n. Thus the result holds for

2n = 2m+1. This completes the induction. □
For T ∈ B(H), the Davis-Wielandt radius of T is defined by

dw(T ) = sup
{√

|⟨Tx, x⟩|2 + ∥Tx∥4 : x ∈ H, ∥x∥ = 1
}
.

The total cosine of T is defined by

| cos |T = inf

{
|⟨Tx, x⟩|
∥Tx∥ ∥x∥

: x ∈ H, Tx ̸= 0, x ̸= 0

}
.

These concepts will be used in the next theorem.
Theorem 2.11. Suppose that S, T ∈ B(H) and S ≺s T, i.e., there
exists M > 0 such that for all x ∈ H,

|⟨Sx, x⟩| ≤ M |⟨Tx, x⟩|. (2.10)
Then the following statements hold.

(i) For all x ∈ H,
√

|⟨Sx, x⟩|2 + ∥Sx∥4 ≤ N
√

|⟨Tx, x⟩|2 + ∥Tx∥4,
and so dw(S) ≤ N dw(T ), for some N > 0.

(ii) | cos |S ≤
√
8M2| cos |T.

(iii) c(S) ≤ M c(T ).

Proof. (i) By Proposition 2.2, for all x ∈ H, we have ∥Sx∥ ≤
√
8M∥Tx∥

and so
∥Sx∥4 ≤ 64M4∥Tx∥4. (2.11)

Also, (2.10) follows that
|⟨Sx, x⟩|2 ≤ M2|⟨Tx, x⟩|2. (2.12)

The relations (2.11) and (2.12) conclude that for some N > 0, we have√
|⟨Sx, x⟩|2 + ∥Sx∥4 ≤ N

√
|⟨Tx, x⟩|2 + ∥Tx∥4.

By taking the supremum over x ∈ H such that ∥x∥ = 1, we get
dw(S) ≤ N dw(T ).
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(ii) The hypothesis implies that for all x ∈ H with Sx ̸= 0, x ̸= 0,

|⟨Sx, x⟩|
∥Sx∥ ∥x∥

≤ M
|⟨Tx, x⟩|
∥Sx∥ ∥x∥

,

and so by taking the infimum over x ∈ H with Sx ̸= 0, x ̸= 0, we have

| cos |S = inf
|⟨Sx, x⟩|
∥Sx∥ ∥x∥

≤ M inf
|⟨Tx, x⟩|
∥Sx∥ ∥x∥

= M sup
∥Sx∥ ∥x∥
|⟨Tx, x⟩|

≤
√
8M2 sup

∥Tx∥ ∥x∥
|⟨Tx, x⟩|

=
√
8M2 inf

|⟨Tx, x⟩|
∥Tx∥ ∥x∥

=
√
8M2| cos |T.

In (2.10), if for some x ∈ H, we have ⟨Tx, x⟩ = 0, then ⟨Sx, x⟩ = 0,
and so | cos |S = 0 = | cos |T. Therefore in the above inequalities, we
assume that for all x ∈ H, we have ⟨Sx, x⟩ ̸= 0.

(iii) The relation (2.10) follows part (iii). □

Let M be a closed subspace of H. If there exists a closed subspace
N of H with H = M ⊕N, then M is called complemented.
By Proposition 2.2, S ≺s T follows S ≺B T, and so the following three
proposition hold by [1, Theorem 13, Proposition 6, Proposition 5].

Proposition 2.12. Let S, T ∈ B(H) and S ≺s T. If R(T ) is
complemented, then there exists V ∈ B(H) such that S = V T.

Proof. By Proposition 2.2 and [1, Theorem 13], the assertion follows.
□

If S, T ∈ B(H) and S ≺s T, then S inherits some properties of T.
Proposition 2.2 and [1, Proposition 6] follow the next proposition.

Proposition 2.13. Let S, T ∈ B(H) and S ≺s T. Then the following
statements are true.

(i) If T is a compact operator, then S is so.
(ii) If T is a weakly compact operator, then S is so.
(iii) If T is a strictly singular operator, then S is so.

For T ∈ B(H), r(T ) = lim
n→∞

∥T n∥ 1
n is the spectral radius of T.
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Proposition 2.14. Let S, T ∈ B(H), and S ≺s T, i.e., there exists
M > 0 such that for all x ∈ H,

|⟨Sx, x⟩| ≤ M |⟨Tx, x⟩|.

Then the following statements hold.
(i) If N(T ) = N(S) and R(S) is closed, then R(T ) is closed.
(ii) If TS = ST, then for all n ∈ N, Sn ≺B T n and

r(S) ≤
√
8M r(T ) and so if T is quasinilpotent, then S is

so.

Proof. By Proposition 2.2, there exists M > 0 such that for all x ∈ H,

∥Sx∥ ≤
√
8M∥Tx∥.

Now [1, Proposition 5] implies (i) and (ii). □

3. Joint strong majorization

This section deals with the extend of strong majorization for the
d-tuples of operators in B(H)d, as follows.

Definition 3.1. Let S = (S1, . . . , Sd), T = (T1, . . . , Td) ∈ B(H)d be
two d-tuples of operators. We say that T joint strong majorizes S and
denoted by S ≺js T, if there exists M > 0 such that for all 1 ≤ i ≤ d
and all x ∈ H,

|⟨Six, x⟩| ≤ M |⟨Tix, x⟩|.
That is S ≺js T if and only if Si ≺s Ti for all 1 ≤ i ≤ d.

Clearly, the above inequality follows that(
d∑

i=1

|⟨Six, x⟩|2
) 1

2

≤ M

(
d∑

i=1

|⟨Tix, x⟩|2
) 1

2

. (3.1)

Let S∗ = (S∗
1 , . . . , S

∗
d) ∈ B(H)d be the adjoint operator of a d-tuples

S = (S1, . . . , Sd) in B(H)d. Clearly, S ≺js T if and only if S∗ ≺js T
∗.

We say that S is self-adjoint if S∗ = S.
In 1981, M. Chō et al. introduced the joint operator norm and the joint
numerical radius for a d-tuples T = (T1, . . . , Td) of operators defined
on H, respectively as follows [4],

∥T∥ := sup


(

d∑
i=1

∥Tix∥2
) 1

2

: x ∈ H, ∥x∥ = 1

 ,
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and

w(T ) = sup


(

d∑
i=1

|⟨Tix, x⟩|2
) 1

2

: x ∈ H, ∥x∥ = 1

 .

For a d-tuples T = (T1, . . . , Td) ∈ B(H)d, the Davis-Wielandt radius
and the Crawford number of T, respectively defined by

dw(T ) = sup


√√√√ d∑

i=1

|⟨Tix, x⟩|2 +

(
d∑

i=1

∥Tix∥2
)2

: x ∈ H, ∥x∥ = 1

 ,

and

c(T ) = inf


(

d∑
i=1

|⟨Tix, x⟩|2
) 1

2

: x ∈ H, ∥x∥ = 1

 .

The total cosine of T is defined by

| cos |T = inf


(∑d

i=1 |⟨Tix, x⟩|2
) 1

2

(∑d
i=1 ∥Tix∥2

) 1
2 ∥x∥

: x ∈ H, x ̸= 0,

d∑
i=1

∥Tix∥2 ̸= 0

 .

Proposition 2.2, Theorem 2.11 and (3.1) follow the next theorem for
two d-tuples of operators.

Theorem 3.2. Let S = (S1, . . . , Sd), T = (T1, . . . , Td) ∈ B(H)d be two
d-tuples of operators and S ≺js T, i.e., there exists M > 0 such that
for all x ∈ H, and 1 ≤ i ≤ d we have

|⟨Six, x⟩| ≤ M |⟨Tix, x⟩|.

Then the following statements hold.
(i) For all x ∈ H,√√√√ d∑
i=1

|⟨Six, x⟩|2 +

(
d∑

i=1

∥Six∥2
)2

≤ N

√√√√ d∑
i=1

|⟨Tix, x⟩|2 +

(
d∑

i=1

∥Tix∥2
)2

and so dw(S) ≤ N dw(T ), for some N > 0.
(ii) | cos |S ≤

√
8M2| cos |T.

(iii) c(S) ≤ M c(T ).
(iv) w(S) ≤ Mw(T ).
(v) ∥S∥ ≤

√
8M∥T∥.

Let S = (S1, . . . , Sd), T = (T1, . . . , Td) ∈ B(H)d be two d-tuples of
operators. We consider ST by ST = (S1T1, . . . , SdTd).
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Theorem 3.3. Let S = (S1, . . . , Sd), T = (T1, . . . , Td) ∈ B(H)d be two

d-tuples of operators such that S ≺js T and
d∩

i=1

R(Ti) ̸= {0}. Then there

exists a d-tuples V in B

(
d∩

i=1

R(Ti),H
)d

such that S = V T.

Proof. Since S ≺js T implies that Si ≺s Ti, for all 1 ≤ i ≤ d, so by
Proposition 2.6, there are Vi ∈ B(R(Ti),H) such that Si = ViTi. Thus

S = V T and V = (V1, . . . , Vd) ∈ B

(
d∩

i=1

R(Ti),H
)d

. □

Theorems 2.7 and 2.8 are satisfied for the d-tuples of operators as
follows.
Proposition 3.4. Let α, β ∈ C\{0} and S, R, T ∈ B(H)d. If S ≺js T,
R ≺js T, then αS + βR ≺js T.

Proof. Let
S = (S1, . . . , Sd), R = (R1, . . . , Rd), T = (T1, . . . , Td) ∈ B(H)d.

As S ≺js T and R ≺js T conclude that Si ≺s Ti and Ri ≺s Ti, for
all 1 ≤ i ≤ d, so by Theorem 2.7, we have αSi + βRi ≺s Ti, for all
1 ≤ i ≤ d. Therefore αS + βR ≺js T. □
Theorem 3.5. Let S,R, T ∈ B(H)d, and S ≺js T. Then

(i) T ∗S ≺js T
∗T and S∗T ≺js T

∗T,
(ii) S∗S ≺js T

∗T,
(iii) R∗SR ≺js R

∗TR,
(iv) T ∗S ± S∗T ≺js T

∗T.

Proof. Since S ≺js T implies that Si ≺s Ti, for all 1 ≤ i ≤ d, the proof
follows by Theorem 2.8 and Proposition 3.4. □
Theorem 3.6. Let S = (S1, . . . , Sd), T = (T1, . . . , Td) ∈ B(H)d be two
self-adjoint d-tuples of operators and S ≺js T. Then Sn ≺js T

n, where
n = 2m, for all m ∈ N.

Proof. It follows by Theorem 2.10. □

4. Conclusion

We define a preordering in B(H) and call it strong majorization
which is stronger than majorization considered by Barnes. Thus all
results that Barnes proved, are satisfied for strong majorization. In
Example 2.5, we show that S ≺B T but S ̸≺s T. One can find some
conditions on S, T that Barnes’s majorization implies strong
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majorization, also find the properties of strong majorization that aren’t
inherited from Barnes’s majorization.
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NEW MAJORIZATION FOR BOUNDED LINEAR OPERATORS IN
HILBERT SPACES

F. GORJIZADEH AND N. EFTEKHARI

هیلبرت فضاهای در کراندار خطی عملگرهای برای جدید احاطه سازی

افتخاری٢ نها و زاده١ گرجی فرزانه

ایران شهرکرد، شهرکرد، دانشگاه ریاضی، علوم ١,٢دانشکده

بر شده تعریف کراندار و خطی عملگرهای تمام باناخ B(H)فضای در ترتیبی پیش می خواهیم مقاله این در
S, T ∈ B(H) برای و می نامیم قوی احاطه سازی آن را کنیم. بررسی و معرفی H مختلط هیلبرت فضای
عکس ولی می دهد، نتیجه را بارنز احاطه سازی قوی، احاطه سازی می دهیم. نمایش S ≺s T به صورت
احاطه سازی می رسد. ارث به S عملگر به T ویژگی های از برخی آن گاه S ≺s T هرگاه نیست. برقرار آن
می نامیم توام قوی احاطه سازی آن را و می دهیم توسیع B(H)d فضای در عملگرها از تایی d برای را قوی
ویژگی های از برخی که می دهیم نشان می دهیم. نمایش S ≺js T به صورت S, T ∈ B(H)d برای و

است. برقرار توام قوی احاطه سازی برای قوی احاطه سازی

مثبت. عملگر هیلبرت، فضای قوی، احاطه سازی کلیدی: کلمات
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