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ISOTONIC CLOSURE FUNCTIONS ON A LOCALE

T. HAGHDADI∗ AND A. A. ESTAJI

Abstract. In this paper, we introduce and study isotonic closure
functions on a locale. These are pairs of the form (L, clL), where
L is a locale and clL : Sℓ(L) → Sℓ(L) is an isotonic closure function
on the sublocales of L. Moreover, we introduce generalized clL-
closed sublocales in isotonic closure locales and discuss some of
their properties. Also, we introduce and study the category ICF
whose objects and morphisms are isotonic closure functions (L, clL)
and localic maps, respectively.

1. Introduction and Preliminaries

Hausdorff studied closed spaces and isotonic spaces in [8]. Later on,
Day [2], Hammer [7, 6] and Habil [4, 5] studied some properties of
isotonic spaces. In 1970, Levine [9] initiated the study of the so-called
g-closed sets.

Recall that a subset A of a topological space (X, τ) is g-closed if the
closure of A is included in every open superset of A. Since g-closed
sets are natural generalizations of closed sets, they have been widely
studied by topologists in recent years.

Let X be a set, P (X) denote its power set, and cl : P (X) → P (X)
be an arbitrary set-valued function, called a closure function. Then
cl(A), A ⊆ X, is called the closure of A, and the pair (X, cl) is called
a generalized closure space.
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Consider the following axioms of the closure function in which A, B,
Aλ ∈ P (X).

(K0) cl(∅) = ∅.
(K1) A ⊆ B implies cl(A) ⊆ cl(B).
(K2) A ⊆ cl(A).
(K3) cl(A ∪B) ⊆ cl(A) ∪ cl(B).
(K4) cl(cl(A)) = cl(A).
(K5)

∪
λ∈Λ cl(Aλ) = cl(

∪
λ∈ΛAλ).

The dual of a given closure function cl is the interior function
int : P (X) → P (X) defined by

int(A) : = X \ cl(X \ A).
Given the interior function int : P (X) → P (X), the closure function
can be recovered via

cl(A) : = X \ (int(X \ A)) for all A ∈ P (X).

A set A ∈ P (X) is closed in the generalized closure space (X, cl) if
cl(A) = A. It is open if its complement X \A is closed, or equivalently,
A = int(A) (see [2]).

In the pointfree (localic) approach to topology, topological spaces
are replaced by locales, seen as generalized spaces in which points are
not explicitly mentioned. Formally, a locale L is defined as a special
complete lattice (where we denote top (respectively, bottom) by 1
(respectively, 0)), usually called a frame, in which finite meets
distribute over arbitrary joins, that is,

a ∧
∨
S =

∨
{a ∧ s : s ∈ S}

for all a ∈ L and S ⊆ L. A sublocale of a locale L is a subset S ⊆ L,
closed under arbitrary meets, such that ∀x ∈ L,∀s ∈ S(x → s ∈ S).
Among the important examples of sublocales are, for each a ∈ L, the
closed sublocales c(a) =↑ a = {b ∈ L : a ≤ b}, the open sublocales
o(a) = {a → b : b ∈ L}. Morover, for every a ∈ L,

b(a) = {b → a : b ∈ L}
is the smallest sublocale containing a. Throughout the paper L and M
stand for a locales, unless otherwise noted.

The lattice of all sublocales of L is denoted by Sℓ(L). In this lattice,
the meet is the intersection. The join of any collection {Si : i ∈ I} of
Sℓ(L) is given by∨

i

Si =

{∧
M : M ∈ Sℓ(L)and M ⊆

∪
i

Si

}
.
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The lattice Sℓ(L), partially ordered by inclusion, is a coframe, in the
sense that for any S ∈ Sℓ(L) and any family {Tα} of sublocales, the
following distributive law holds.

S ∨
∧
α

Tα =
∧
α

(S ∨ Tα).

The smallest sublocale of L is O = {1}, which is known as the void
sublocale. The largest is, of course, L. We say that sublocales S and T
are disjoint if S ∩ T = O. A sublocale of L is complemented if it has
a (Boolean) complement in the lattice Sℓ(L). If A is a complemented
sublocale, we denote its complement by Ac .

Definition 1.1. The supplement sublocale A of L, denoted by A# or
L∖ A, is

A# : =
∩{

B ∈ Sℓ(L) : B ∨ A = L
}
.

Note that, every supplement sublocale is the dual of pseudocomple-
mentary. It is easy to see that A## ⊆ A and A ∨ A# = L. Also, if A
is a complemented sublocale of L, then A ∩A# = O and so, A# is the
complement of A in the coframe Sℓ(L).

A map f : L −→ M between locales is said to be a localic map
whenever for every a ∈ L, b ∈ M and S ⊆ L,

(L1) f(
∧

S) =
∧

f [S] (in particular, f(1) = 1),
(L2) f(f∗(b) → a) = b → f(a), and
(L3) f(a) = 1 ⇒ a = 1,

where f∗ : M −→ L denotes the left adjoint of f provided by (L1).
A localic map f : L −→ M gives rise to two mappings, namely,

f [−] : Sℓ(L) −→ Sℓ(M) and f−1[−] : Sℓ(M) −→ Sℓ(L) defined by
f [S] =

{
f(x) : x ∈ S

}
and

f−1[T ] =
∨{

A ∈ Sℓ(L)|A ⊆ f−1[T ]
}

.
Note that f−1[−] is the right adjoint of f [−] (that is, f [S] ⊆ T if and
only if S ⊆ f−1[T ]).

Definition 1.2. Suppose that L is a lattice. A ∧-closed subset S ⊆ L
is called almost saturated, whenever if x, y ∈ L, s ∈ S and x ∧ y = s,
then there exist s1, s2 ∈ S such that x ≤ s1, y ≤ s2 and s = s1 ∧ s2.

Proposition 1.3. Assume that L is a locale. B ⊆ L is a sublocale if
and only if B is closed under arbitrary meets and also almost saturated.
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Proof. ⇒) By the hypothesis, there is a nucleus function j : L → L such
that j(L) = B. It is obvious that B is closed under arbirary meets.
Now, Let x ∧ y = b in which x, y ∈ L and b ∈ B. Take b1 = j(x ∨ b)
and b2 = j(y ∨ b). Clearly, b1, b2 ∈ j(L) = B. On other hand, we can
write:

x ≤ j(x) ≤ j(x ∨ b) = b1 , y ≤ j(y) ≤ j(y ∨ b) = b2.

In addition,
b = b∨(x∧y) = (x∨b)∧(y∨b) ⇒ b = j(b) = j(x∨b)∧j(y∨b) = b1∧b2.

⇐) Define j : L → L with j(x) =
∧

↑B x in which
↑B x = {b ∈ B : x ≤ b}.

It is easily seen that j is a closure operator. Only, it suffices to show
that j is a ∧-homomorphism. Since B is almost saturated, it is easy to
see that the set ↑B (x ∧ y) ⊆ {b1 ∧ b2 : x ≤ b1, y ≤ b2}. Hence we can
write:

j(x) ∧ j(y) = (
∧

↑B x) ∧ (
∧

↑B y)

=
∧

{b1 ∧ b2 : x ≤ b1, y ≤ b2}

≤
∧

↑B (x ∧ y)

= j(x ∧ y).

On the other hand, it is clear that j(x ∧ y) ≤ j(x) ∧ j(y). Therefore,
the equivality holds. □

This paper is organized as follows. In Section 2, we introduce and
study isotonic closure functions. These are pairs of the form (L, clL),
where L is a locale and clL : Sℓ(L) → Sℓ(L) is an isotonic closure
function on the sublocales of L. We describe connections between
closure functions and interior functions in a locale L. In Section 3, we
introduce generalized clL- closed and generalized clL-open sublocales in
an isotonic closure function and study their fundamental properties. In
Section 4, we introduce the category of isotonic closure functions over
a locale L and discuss some of its properties.

2. Isotonic closure functions on a locale

Let L be a locale, Sℓ(L) be the set of all sublocales of L, and
clL : Sℓ(L) → Sℓ(L) be an arbitrary set-valued function, called a closure
function. We note that this concept is different from the concept of
clouser of a sublocale. Moreover, almost all the contents of this section
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can be generalized for the locales and frames. Consider the following
axioms of the closure function for arbitrary sublocales A and B.

(K0) clL(O) = O.
(K1) A ⩽ B implies clL(A) ⩽ clL(B).
(K2) A ⩽ clL(A).
(K3) clL(A ∨B) ⩽ clL(A) ∨ clL(B).
(K4) clL(clL(A)) = clL(A).

The following proposition is now an immediate consequence.

Proposition 2.1. The following conditions are equivalent for an
arbitrary closure function clL : Sℓ(L) → Sℓ(L).

(1) A ⩽ B ⩽ L implies clL(A) ⩽ clL(B).
(2) clL(A) ∨ clL(B) ⩽ clL(A ∨B).
(3) clL(A ∧B) ⩽ clL(A) ∧ clL(B).

The dual of a closure function clL is the interior function
intL : Sℓ(L) → Sℓ(L) defined by

intL(A) =
(
clL(A

#)
)#

.

Proposition 2.2. Let clL : Sℓ(L) → Sℓ(L) be a closure function that
satisfies the axioms (K0), (K1), (K2) and (K4). Then, the following
statements are true.

(1) intL(L) = L.
(2) A ⊆ B implies intL(A) ⊆ intL(B).
(3) intL(A) ⊆ A.
(4) intL(intL(A)) = intL(A).

Proof. Let A and B be sublocales of L.

(1) By (K0),

intL(L) =
(
clL(L

#)
)#

=
(
clL(O)

)#
= (O)# = L.

(2) If A ⊆ B, then B# ⊆ A#. By (K1), clL(B
#) ⊆ clL(A

#) and
so,

(
clL(A

#)
)# ⊆

(
clL(B

#)
)#. Therefore, by the definition of interior,

intL(A) ⊆ intL(B).

(3) By (K2), A# ⊆ clL(A
#) and so,

(
clL(A

#)
)# ⊆ A## ⊆ A, which

means that intL(A) ⊆ A.
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(4) By (3), intL
(
intL(A)

)
⊆ intL(A). To complete the proof, note

that by (k4) and (K1) we can write(
clL(A

#)
)## ⊆ clL(A

#) =⇒ clL

((
clL(A

#)
)##

)
⊆ clL

(
clL(A

#)
)

=⇒ clL

((
clL(A

#)
)##

)
⊆ clL(A

#)

=⇒
(
clL(A

#))# ⊆
(
clL

((
clL(A

#)
)##

))#

=⇒ intL(A) ⊆
(
clL

((
intL(A)

)#))#

=⇒ intL(A) ⊆ intL
(
intL(A)

)
.

Thus, intL(A) = intL
(
intL(A)

)
.

□

A sublocale A ∈ Sℓ(L) is cl-closed if clL(A) = A, and it is cl-open if
intL(A) = A.

Definition 2.3. An isotonic closure function is a pair (L, clL), where
L is a locale and clL : Sℓ(L) → Sℓ(L) is a closure function that satisfies
the axioms (K0) and (K1).

Example 2.4. Let L =
{
⊥, a, b, c, d,⊤

}
be a locale with the following

Hass diagram.

ss
s sss

⊥

a

b c

d

⊤

�
�

@
@
�

�
@

@

By Proposition 1.3, we have

Sℓ(L) =
{
{⊤}, {b,⊤}, {c,⊤}, {d,⊤}, {⊥,⊤}{⊥, b,⊤}, {⊥, c,⊤},

{⊥, d,⊤}, {b, d,⊤}, {c, d,⊤}, {⊥, b, d,⊤}, {⊥, c, d,⊤},

{a, b, c,⊤}, {a, b, c, d,⊤}, {⊥, a, b, c,⊤}, L
}
.

(1) We define a set-valued function clL : Sℓ(L) → Sℓ(L) by
clL({⊥, b,⊤}) = {a, b, c,⊤} and clL(A) = A for every sublocale
A ̸= {⊥, b,⊤}. Then, clL is a closure function which satisfies
(K0) but not (K1). Hence, (L, clL) is not an isotonic closure
function.
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(2) Define a closure function clL : Sℓ(L) → Sℓ(L) by
clL({c,⊤}) = clL({d,⊤}) = clL({⊥, c,⊤})

= clL({c, d,⊤) = clL({⊥, d,⊤})
= {⊥,⊤},

clL({⊥, c, d,⊤}) = {⊥, b, d,⊤} and for other sublocales A,
clL(A) = A. Then, (L, clL) is an isotonic closure function which
satisfies (K4). Note that (L, clL) does not satisfy (K3). To see
this, consider the sublocales A = {b,⊤} and B = {c,⊤}. Then
A ∨B = {a, b, c,⊤} and so,

clL(A ∨B) = clL
(
{a, b, c,⊤}

)
= {a, b, c,⊤}.

On the other hand,
clL(A) ∨ clL(B) = {b,⊤} ∨ {⊥,⊤} = {⊥, b,⊤}.

Therefore, clL(A∨B) ̸⊆ clL(A)∨clL(B). Also, A = {⊥, c, d,⊤}
implies A ̸⊆ clL(A), which means that clL does not satisfy (K2).

(3) Define a closure function clL : Sℓ(L) → Sℓ(L) by
clL

(
{⊥, b,⊤}

)
= {⊥, a, b, c,⊤}

and clL({⊥, b, d,⊤} = L. Then, clL satisfies the axioms (K0),
(K1) and (K2).

(4) Define a closure function clL : Sℓ(L) → Sℓ(L) by
clL({⊥, b, d,⊤}) = L and clL(A) = A for other sublocales A
of L. Then, clL satisfies the axioms (K0), (K1), (K2) and
(K3).

Remark 2.5. Assume that a closure function clL : Sℓ(L) → Sℓ(L)
satisfies (K2). Then, clL(L) = L and intL(O) = O.

Remark 2.6. Let L be a locale, clL : Sℓ(L) → Sℓ(L) be a closure
function, and A be a sublocale of L.

(1) L \ clL(A) ⊆ intL(L \ A).
(2) If A is complemented, then L \ clL(A) = intL(L \ A), because

intL(L \ A) = intL(A
#) =

(
clL(A

##)
)#

=
(
clL(A)

)#
= L \ clL(A).

(3) L \ intL(L \ A) ⊆ clL(A).
(4) If A and clL(A) are complemented, then L\intL(L\A) = clL(A),

because
L \ intL(L \ A) =

(
intL(A

#)
)#

=
(
clL(A

##)
)##

= clL(A).

The condition that A and clL(A) are complementary is necessary.
This is the content of the following example.
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Example 2.7. (1) Let the locale L and cl : Sℓ(L) → Sℓ(L) be as
in Example 2.4(2). Consider the sublocale A = {c,⊤}. Then,
it is clear that no complement exists for A. Also,

intL

((
{c,⊤}

)#)
= intL(L) = L.

On the other hand,
(
clL

(
{c,⊤}

))#

= {a, b, c, d,⊤}. Therefore,

intL

((
{c,⊤}

)#) ̸=
(
clL

(
{c,⊤}

))#

.
(2) Let the locale L and cl : Sℓ(L) → Sℓ(L) be as in Example

2.4(1). Consider the sublocale A = {b,⊤}. It is clear that no
complements exist for the sublocales A and clL(A). Moreover,

intL
(
{b,⊤}#

)
= intL(L) = L

and so,
(
intL

(
{b,⊤}#

))#

= (L)# = {⊤}. On the other hand,

clL
(
{b,⊤}

)
= {b,⊤}. Then, clL

(
{b,⊤}

)
̸=

(
intL

(
{b,⊤}#

))#

.

The proof of the following lemma is straightforward.
Lemma 2.8. Let (L, clL) be an isotonic closure function which satisfies
(K2). Then, for every sublocale A of L, the following statements are
true.

(1)
(
clL(A)

)# ⊆ clL(A
#).

(2) intL(A) ⊆ clL(A).
Lemma 2.9. Let L be a locale whose all sublocales are complemented.
Then, (L, clL) is an isotonic closure function if and only if
intL : Sℓ(L) → Sℓ(L) satisfies the following conditions.

(1) intL(L) = L.
(2) For arbitrary sublocales A and B of L with A ⩽ B, intL(A) ⩽

intL(B).
Proof. ⇒) Let A ⩽ B. Then, by (K1), clL(B#) ⩽ clL(A

#). Therefore(
clL(A

#)
)# ⩽

(
clL(B

#)
)#, which means that intL(A) ⩽ intL(B).

Also,
intL(L) =

(
clL(L

#)
)#

=
(
clL(O)

)#
= (O)# = L.

⇐) If intL(L) = L, then

clL(O) =
(
intL(O

#)
)#

=
(
intL(L)

)#
=

(
L
)#

= O.

Now, let A ⩽ B. Then, by (2),
(
intL(A

#)
)# ⩽

(
intL(B

#)
)#. Then by

Remark 2.6, clL(A) ⩽ clL(B). Therefore, (L, clL) is an isotonic closure
function. □
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Definition 2.10. Let (L, clL) be a closure function and M be a
sublocale of L. Then clM : Sℓ(M) → Sℓ(M), defined by

A 7→ M ∩ clL(A),
is the relativization of clL to M . The pair (M, clM) is called a
sub-closure function of (L, clL).

It is easy to see that, if (L, clL) is an isotonic closure function, then
(M, clM) is an isotonic closure function.
Definition 2.11. A property B of a closure function (L, clL) is
hereditary if every sub-closure function (M, clM) of (L, clL) also has
the property B.
Lemma 2.12. The properties (K0), (K1) and (K2) are hereditary in
any closure function (L, clL).
Proof. This is straightforward. □

In the following example, we show that the axiom (K4) is not
hereditary.
Example 2.13. Let the locale L and cl : Sℓ(L) → Sℓ(L) be as in
Example 2.4(2). Consider the sublocale M = {⊥, c, d,⊤} of L. By
Definition 2.10,

clM({c,⊤}) = clM({d,⊤}) = clM({⊥, c,⊤})
= clM({c, d,⊤}) = clM({⊥, d,⊤})
= {⊥,⊤},

clM({⊤}) = {⊤} and clM({⊥, c, d,⊤}) = {⊥, d,⊤}. Hence
clM

(
clM({⊥, c, d,⊤})

)
= {⊥,⊤},

which implies that clM
(
clM({⊥, c, d,⊤})

)
̸= clM({⊥, c, d,⊤}).

Definition 2.14. Let L be a locale and clL : Sℓ(L) → Sℓ(L) be a closure
function on L. Then, the neighborhood function N : L → P(Sℓ(L)) and
the convergent function N ∗ : L → P(Sℓ(L)) are respectively defined as
follows:

N (x) =
{
N ∈ Sℓ(L) ; x ∈ intL(N)

}
and

N ∗(x) =
{
N ∈ Sℓ(L) ; x ∈ clL(N)

}
.

A sublocale B is a neighborhood of sublocale A, if B ∈ N (x) for all
x ∈ A.

By the above definition, the following lemma is obvious.
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Lemma 2.15. For any isotonic closure function (L, clL), B ∈ N (A)
if and only if A ⊆ intLB.

Proposition 2.16. Let (L, clL) be an isotonic closure function. Then,
N (a) = N (b(a)) for every a ∈ L.

Proof. Let N ∈ N (a). Then a ∈ intL(N) and so N (b(a)) ⊆ intL(N).
Hence by Lemma 2.15, N ∈ N (b(a)). Now, let N ∈ N (b(a)). Then,
N ∈ N (x → a) for every x ∈ L. Put x = 1, so N ∈ N (1 → a) = N (a).
Therefore, N (b(a)) = N (a). □
Proposition 2.17. Let (L, cl) be a closure function. If A and clL(A)
are complemented sublocales of L and A ∈ N ∗(x), then A# ̸∈ N (x) for
every ⊤ ̸= x ∈ L.

Proof. Let ⊤ ̸= x ∈ L and A be a complemented sublocale of L. Then
by Remark 2.6,

A ∈ N ∗(x) ⇒ x ̸∈
(
clL(A)

)# ⇒ x ̸∈ int(A#) ⇒ A# ̸∈ N (x).

□

The condition that A is complemented is necessary. This is the
content of the following example.

Example 2.18. Let the locale L and clL : Sℓ(L) → Sℓ(L) be as in
Example 2.4(2). Then,

N (b) =
{
o(c), c(b), o(d), c(c), b(a), c(a), < ⊥, d >,< ⊥, b, d >,

< ⊥, c, d >, L
}
.

and

N ∗(b) =
{
b(b), o(c), c(b), b(a), c(a), o(d), < ⊥, b, d >, L

}
.

Now, let A =< ⊥, b, d >. Therefore, A is not a complemented
sublocale. It is easy to see that A ∈ N ∗(b) and A# ∈ N (b).

In the following example we show that the converse of the above
proposition is not necessarily true.

Example 2.19. Let L =
{
⊥, a ∧ b = x, a, b,⊤ = a ∨ b

}
. It is obvious

that by Proposition 1.3,

Sℓ(L) =
{
{⊤}, {⊥,⊤}, {a,⊤}, {b,⊤}, {⊥, a,⊤}, {⊥, b,⊤},

{x, a, b,⊤}, L
}
.
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It is easily seen that Sℓ(L) is a Boolean algebra. Supposing the function
clL is identity, clearly, the function intL is also identity. Now, if we
take A = {a,⊤}, then x ̸∈ A = clL(A) and so A ̸∈ N ∗(x). In addition,
x ̸∈ {⊥, b,⊤} = A# = intL(A

#) and consequently A# ∈ N (x).

Lemma 2.20. Let L be a locale whose all sublocales are complemented.
Then, (L, clL) is an isotonic closure function if and only if the
neighborhood function N : L → P(Sℓ(L)) satisfies the following
conditions.

(1) For every a ∈ A, L ∈ N (a).
(2) A ∈ N (a) and A ⩽ B imply B ∈ N (a), for every a ∈ L.

Proof. ⇒) Let a ∈ A. By Lemma 2.9, intL(L) = L and so, a ∈ intL(L).
This means that L ∈ N (a). Let A ∈ N (a) and A ⩽ B. Since A ⩽ B,
by Lemma 2.9, intL(A) ⩽ intL(B). So, a ∈ intL(B).

⇐) It is clear that intL(L) ⩽ L. Let a ∈ L. By (1), L ∈ N (a), which
means that a ∈ intL(L). Hence, intL(L) = L. Now, let A ⩽ B and
a ∈ intL(A). Then, A ∈ N (a) and so by (2), B ∈ N (a). Hence,
a ∈ intL(B) and consequently, intL(A) ⊆ intL(B). Therefore, by
Lemma 2.9, (L, clL) is isotonic. □

Proposition 2.21. Let L be a locale whose all sublocales are
complemented. Let cl1L and cl2L be closure functions on L. Then,
the following conditions are equivalent.

(1) cl1L(A) ⊆ cl2L(A) for all A ∈ Sℓ(L).
(2) int2L(A) ⊆ int1L(A) for all A ∈ Sℓ(L).
(3) N2(x) ⊆ N1(x) for all x ∈ L.
(4) N ∗

1 (x) ⊆ N ∗
2 (x) for all x ∈ L.

Proof. The proof is straightforward. □

Definition 2.22. Let (L, clL) and (M, clM) be isotonic closure
functions. A localic map f : L −→ M is

(1) continuous if clL(f−1[B]) ⩽ f−1[clM(B)] for every B ∈ Sℓ(L);
(2) closure-preserving if f

(
clL(A)

)
⩽ clM

(
f(A)

)
for any A ∈ Sℓ(L).

Proposition 2.23. Let (L, clL) and (M, clM) be isotonic closure
functions, and f : L → M a localic map. Then, the following
statements are equivalent.

(1) f : L → M is continuous.
(2) f : L → M is closure-preserving.
(3) If f(A) ⩽ B, then f

(
clL(A)

)
⩽ clM(B) for all A ∈ Sℓ(L) and

B ∈ Sℓ(M).
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Proof. 1 ⇒ 3) Suppose that f : L → M is a continuous localic map,
A ∈ Sℓ(L), B ∈ Sℓ(M) and f(A) ⩽ B. Then A ⩽ f−1[B] and so,
clL(A) ⩽ clL(f−1[B]). Hence, by (1),

clL(A) ⩽ clL(f−1[B]) ⊆ f−1(clM(B)).
Now, since f−1[.] is the right adjoint of f [.],

f
(
clL(A)

)
⩽ ff−1

(
clM([B])

)
⩽ clM(B).

3 ⇒ 1) Let B be a sublocale of M and set A = f−1[B]. Then
f(A) ⩽ B and so by (3), f(clL(A)) ⊆ clM(B). Thus,

f
(
clL(f−1[B])

)
= f

(
clL(A)

)
⩽ clM(B)

and so, clL(f−1[B]) ⩽ f−1

(
clM(B)

)
. This means that f is continuous.

2 ⇒ 3) Let f be closure-preserving and f(A) ⩽ B. Since f : L → M
is closure-preserving, f

(
clL(A)

)
⩽ clM

(
f(A)

)
and by (K1),

clM
(
f(A)

)
⩽ clM(B).

Hence, f
(
clL(A)

)
⩽ clM(B).

3 ⇒ 2) Let A be a sublocale of L and set B = f(A). By (3),
f
(
clL(A)

)
⩽ clM(B) = clM

(
f(A)

)
,

which means that f is closure-preserving. □
Proposition 2.24. Let (L, clL) and (M, clM) be two isotonic closure
functions that satisfies in axiom (K2) and (k4). Then localic map
f : L → M is continuous if and only if for every cl-closed sublocale B
of M , f−1[B] is a cl-closed sublocale of L.
Proof. ⇒) Let B be a cl-closed sublocale M . Since, f : L → M is
continuous and B is cl-closed, we infer that

clL
(
f−1(B)

)
⩽ f−1

(
clM(B)

)
= f−1(B).

Now, by (K2), f−1(B) ⩽ clL
(
f−1(B)

)
. Hence f−1[B] is a cl-closed

sublocale of L.
⇐) Let B be a sublocale of M . Then by (K4), clM(B) is a cl-closed

sublocale of M and so f−1

(
clM(B)

)
is a cl-closed sublocale of L. Now,

by (K2), B ⩽ clM(B). Since f−1

(
clM(B)

)
is cl-closed, we have

clL
(
f−1(B)

)
⩽ clL

(
f−1(clM(B))

)
= f−1(clM(B)).

Therefore, localic map f : L → M is continuous. □
Proposition 2.25. Let L be a locale such that sublocales A, B, clL(A)
and clL(B) be complemented. Then, the following conditions are
equivalent for any isotonic closure function (L, clL).
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(1) clL(A) ∧B = A ∧ clL(B) = O.
(2) There exist U ∈ N (A) and V ∈ N (B) such that

A ∧ V = U ∧B = O.
Proof. 1 ⇒ 2) Let A and B be sublocales of L and

clL(A) ∧B = A ∧ clL(B) = O.
Since clL(A) ∧B = O,

B ⩽
(
clL(A)

)#
=

(
intL(A

#)
)## ⩽ intL(A

#),

that is, A# ∈ N (B). Thus, there exists V = A# ∈ N (B) such that
A ∧ V = A ∧ A# = O. Similarly, we obtain A ⩽ intL(B

#), that is,
there exists B# ∈ N (A) with B# ∧B = O.

2 ⇒ 1) Let A and B be sublocales of L. By (2), there exist sublocales
U and V of L such that A ⩽ intL(U), B ⩽ intL(V ), A ∧ V = O, and
U ∧B = O. Since A∧V = O implies V ⩽ A#, Propositition 2.2 shows
that B ⩽ intL(V ) ⩽ intL(A

#). Hence, clL(A) =
(
intL(A

#)
)# ⩽ B#.

Since B is a complemented sublocale, we conclude that clL(A)∧B = O.
The same argument yields A ∧ clL(B) = O. □

3. G-closed sublocales

In this section, we introduce generalized closed sublocales in isotonic
closure function and discuss some of their properties.
Definition 3.1. Let (L, clL) be an isotonic closure function.

(1) A sublocale A of L is called a generalized cl-closed sublocale
(briefly, g-cl-closed sublocale) if clL(A) ⊆ G whenever G is a
cl-open sublocale of (L, clL) with A ⊆ G.

(2) A sublocale A of L is called a generalized cl-open sublocale
(briefly, g-cl-open sublocale) if F ⊆ intL(A) whenever F is a
cl-close sublocale of (L, clL) with F ⊆ A.

Example 3.2. Let (L, clL) be an isotonic closure function. Then, the
sublocales O and L are g-cl-closed and g-cl-open.
Remark 3.3. Every cl-closed sublocale is g-cl-closed. The converse is
not true, as can be seen from the following example.
Example 3.4. Let (L, clL) be the isotonic closure function given in
Example 2.4 and A = o(c). It is easy to see that A is a g-cl-closed
sublocale. But clL

(
o(c)

)
= o(d) and so A is not cl-closed.

Proposition 3.5. Let (L, clL) be an isotonic closure function such
that clL satisfies (K2). Then, the set Gc(L) of all g-cl-closed sublocales
forms a

∨
-semilattice.
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Proof. Let A and B be g-cl-closed sublocales of L, and G be an open
sublocale of L such that A ∨ B ⊆ G. Then, A ⊆ G and B ⊆ G. Since
A and B are g-cl-closed, clL(A) ⊆ G and clL(B) ⊆ G. Then, by (K2),

clL(A ∨B) ⊆ clL(A) ∨ clL(B) ⊆ G.
Therefore, A ∨B is g-cl-closed. □

In the following example, we show that the intersection of two
g-cl-closed sublocales need not be a g-cl-closed sublocale.
Example 3.6. Let (L, clL) be the isotonic closure function given in
Example 2.4. Consider the g-cl-closed sublocales A =< ⊥, c, d > and
B = b(a). Then, A ∩ B = b(c) is not g-cl-closed. To see this, consider
the open sublocale G = c(c). Then, A ∩ B ⊆ G but clL(A ∩ B) ̸⊆ G.
Therefore, A ∩B is not g-cl-closed.
Lemma 3.7. Let F be a complemented sublocale of L such that
clL(F ) = F . Then, F# is a clL-open sublocale of L.
Proof. By the definition of interior,

intL(F
#) =

(
clL(F

##)
)#

=
(
clL(F )

)#
= F#,

which means that F# is a clL-open sublocale of L. □
Lemma 3.8. Let (L, clL) be an isotonic closure function such that clL
satisfies (K2). If A and B are clL-open sublocales, then A ∨ B is
clL-open.
Proof. Let A and B be clL-open sublocales. Then by Proposition 2.2,

intL(A) ∨ intL(B) ⊆ intL(A ∨B)

and so, A ∨B ⊆ intL(A ∨B). Since clL satisfies (K2),
intL(A ∨B) ⊆ A ∨B.

Then, intL(A ∨ B) = A ∨ B. This means that A ∨ B is a clL-open
sublocale. □
Proposition 3.9. Let (L, clL) be an isotonic closure function such that
clL satisfies (K2). If A is a g-cl-closed sublocale and, F is complemented
and cl-closed in (L, clL), then A ∩ F is g-cl-closed.
Proof. Let G be a cl-open sublocale of (L, clL) such that A ∩ F ⊆ G.
Then, A ⊆ G ∪ F#. By Lemmas 3.7 and 3.8, G ∪ F# is a cl-open
sublocale and so, clL(A) ⊆ G∪ F#. Then, clL(A)∩ F ⊆ G. Since F is
cl-closed,

clL(A ∩ F ) ⊆ clL(A) ∩ clL(F ) = clL(A) ∩ F ⊆ G.

Hence, A ∩ F is g-cl-closed. □
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Proposition 3.10. Let (L, clL) be an isotonic closure function such
that clL satisfies (K2). Also, let A be a sublocale of L which is both
cl-open and g-cl-closed. Then, A is cl-closed.

Proof. By (K2), A ⊆ clL(A). On the other hand, A ⊆ A and, A is both
cl-open and g-cl-closed. Thus, clL(A) ⊆ A. Therefore, clL(A) = A and
so, A is cl-closed. □
Proposition 3.11. Let (L, clL) be an isotonic closure function such
that clL satisfies (K4). If A is a g-cl-closed sublocale of (L, clL) such
that A ⊆ B ⊆ clL(A), then B is a g-cl-closed subset of (L, clL).

Proof. Let G be a cl-open sublocale of (L, clL) such that B ⊆ G. Then,
A ⊆ G. Since A is g-cl-closed, clL(A) ⊆ G. Now, by (K4),

clL(B) ⊆ clL(clL(A)) = clL(A) ⊆ G.

Hence, B is a g-cl-closed sublocale. □

4. The category of isotonic closure functions

In this section, we introduce the category of isotonic closure functions
over a locale L and discuss some of its properties.

Definition 4.1. Let (L, clL) and (M, clM) be isotonic closure functions.
A function φ : L(L, clL) → (M, clM) is called a morphism if φ as a
function from L to M is a localic map and also φ

(
clL(A)

)
⊆ clM

(
φ(A)

)
for every A ∈ Sℓ(L).

Proposition 4.2. Isotonic closure functions and morphisms of isoton-
ics form a category denote by ICF.

Proposition 4.3. The category ICF has an initial object.

Proof. We show that (O, clO) is an initial object, where O = {⊤} and
clO : Sℓ(O) −→ Sℓ(O), defined by clO(O) = O, is an isotonic
closure function. Let (L, clL) be an arbitrary isotonic closure
function. Then f : (O, clO) −→ (L, clL), defined by f(1) = 1L, is a
localic map. Moreover, for the sublocale O, f

(
clO(O)

)
= f(O) = OL

and clL
(
f(O)

)
= clL(O) = OL. Hence, f : (O, clO) −→ (L, clL) is a

morphism. It is clear that f is unique. □
Theorem 4.4. The category ICF has a terminal object.

Proof. We show that (2, cl2) is a terminal object, where 2 is the
locale {0, 1} and cl2 : Sℓ(2) −→ Sℓ(2) is defined by cl2(O) = O and
cl2(2) = 2. It is clear that (2, cl2) is an isotonic closure function. Let
(L, clL) be an arbitrary isotonic closure function. Then f : L −→ 2,
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defined by f(1) = 1 and f(a) = 0 for every 1 ̸= a ∈ L, is a localic map.
Now, let A be a sublocale of L. If f(A) = O, then A = O and so,

f
(
clL(A)

)
= O = cl2

(
f(A)

)
.

If f(A) ̸= O, then cl2
(
f(A)

)
= 2 and so, f

(
clL(A)

)
⊆ cl2

(
f(A)

)
.

Hence, f : (L, clL) −→ (2, cl2) is a morphism. It is clear that f is
unique. □

We consider LOC as the category with locales for objects and the
localic maps for morphisms.

Remark 4.5. [11] The epimorphisms in LOC are precisely the onto
localic maps.

Lemma 4.6. Let f : (L, clL) −→ (M, clM) be a morphism in ICF.
Then, f is an epimorphism in ICF if and only if f is an epimorphism
in Loc.

Proof. Necessity. Suppose that f is an epimorphism in ICF and
f1, f2 : M −→ K are localic maps such that f1 ◦ f = f2 ◦ f . We
define clK : Sℓ(K) −→ Sℓ(K) by clK(O) = O and clK(A) = K for
every O ̸= A ∈ Sℓ(K). Then, (K, clK) is an isotonic closure function.
For any sublocale A of M ,

f1
(
clM(A)

)
⊆ clK

(
f1(A)

)
.

Sℓ(M)

f1
��

clM // Sℓ(M)

f1
��

Sℓ(K)
clK

// Sℓ(K)

Hence, f1 : (M, clM) −→ (K, clK) is a morphism. Similarly,
f2 : (M, clM) −→ (K, clK) is a morphism and f1 ◦ f = f2 ◦ f . Since f
is right-cancellable in ICF, we obtain f1 = f2. Then, f : L → M is an
epimorphism in LOC.

Sufficiency. This is clear. □
Proposition 4.7. Let f : (L, clL) −→ (M, clM) be a morphism in ICF.
Then, f is an epimorphism in ICF if and only if f is a surjective localic
map.

Proof. By Remark 4.5 and Lemma 4.6, the proof is straightforward. □
Proposition 4.8. Let f : (L, clL) → (M, clM) be a morphism in ICF.
Then, f is a monomorphism in ICF if and only if f is a monomorphism
in LOC
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Proof. Necessity. Let K
g //
h

// L be localic maps such that f◦g = f◦h.

Consider the isotonic closure function clK : Sℓ(K) → Sℓ(K) defined by
clK(A) = O for all sublocales A of K. For every sublocale A of K,

h
(
clK(A)

)
= h(O) = O

and so,
h
(
clK(A)

)
⊆ clL

(
h(T )

)
.

Therefore, h : (K, clK) → (L, clL) is a morphism in ICF. Similarly,
g : (K, clK) → (L, clL) is a morphism and f ◦ g = f ◦ h. Since f is
left-cancellable in ICF, we conclude that g = h.
Sufficiency. This is clear. □

Lemma 4.9. [11] Let f : L → M be a localic map, and S a sublocale
of M . Then,

f−1[S]

g

��

k=⊆ // L

f
��

S
j=⊆

// M

is a pullback in LOC.

Lemma 4.10. Let f : (L, clL) −→ (M, clM) be a morphism, and S
a sublocale of M . Then g : (f−1[S], clf−1[S]

) → (S, clS), defined by
g(x) = f(x), is a morphism in ICF, where (f−1[S], clf−1[S]

) and (S, clS)
are sub-closure functions of (L, clL) and (M, clM), respectively.

Proof. It is clear that g : f−1[S] → S is a localic map. Consider a
sublocale B of f−1[S]. Then,

g
(
clf−1[S]

(B)
)
= f

(
clL(B) ∩ f−1[S]

)
= f

(
clL(B)

)
∩ f

(
f−1[S]

)
⊆ clM

(
f(B)

)
∩ S

= clS
(
f(B)

)
= clS

(
g(B)

)
.

This means that g : (f−1[S], clf−1[S]
) → (S, clS) is a morphism in ICF.

□

Proposition 4.11. Let f : (L, clL) −→ (M, clM) be a morphism and
let S be a sublocale of M . Then, the following square is a pullback in
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ICF.
(f−1[S], clf−1[S]

)

g

��

k=⊆ // (L, clL)

f

��
(S, clS) j=⊆

// (M, clM)

Proof. Let (K, clK) be an isotonic closure function, and let
α : (K, clK) → (L, clL) and β : (K, clK) → (S, clS) be right morphisms
such that f ◦ α = j ◦ β. By Lemma 4.9, there exists a unique localic
map γ : K → f−1[S], defined by γ(x) = α(x), such that k ◦ γ = α and
g ◦ γ = β. Now, we show that γ is a right morphism in ICF. Let B be
a sublocale of K. Then, γ(B) is a sublocale of f−1[S]. Therefore,

γ
(
clK(B)

)
= k

(
γ
(
clK(B)

))
= k

(
γ
(
clK(B)

)
∩ f−1[S]

)
⊆ k

(
γ
(
clK(B)

))
∩ k

(
f−1[S]

)
= α

(
clK(B)

)
∩ f−1[S]

⊆ clL
(
α(B)

)
∩ f−1[S]

= clf−1[S]

(
α(B)

)
= clf−1[S]

(
γ(B)

)
.

This means that γ : (K, clK) → (f−1[S], clf−1[S]
) is a morphism in ICF,

k ◦ γ = α and g ◦ γ = β. □
Lemma 4.12. [11] Let f1, f2 : L → M be a pair of localic maps. Then,
(E, ιE) is the equalizer of (f1, f2) in LOC, where

E =
{
s|∀x, f1(x → s) = f2(x → s)

}
,

and ιE : E −→ L is the inclusion map.

Proposition 4.13. Let f1, f2 : (L, clL) → (M, clM) be morphisms.
Then (E, clE) is the equalizer of (f1, f2) in ICF, where

E =
{
s|∀x, f1(x → s) = f2(x → s)

}
,

and clE is the relativization of clL to E.

Proof. Let g : (K, clK) → (L, clL) be a right morphism such that

f1 ◦ g = f2 ◦ g. Since E is the equalizer of localic maps L
f1 //
f2

// M , we

conclude the existence of a unique localic map h : K −→ E, defined
by h(x) = g(x), such that ιE ◦ h = g. We show that
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h : (K, clK) −→ (E, clE)

is a morphism in ICF. To see this, let T be a sublocale of K. Then,
h
(
clK(T )

)
is a sublocale of E and

h
(
clK(T )

)
= g

(
clK(T )

)
⊆ clL

(
g(T )

)
.

Sℓ(K)

h
��

clK // Sℓ(K)

h
��

Sℓ(E)
clE

// Sℓ(E

Then
h
(
clK(T )

)
⊆ clL

(
g(T )

)
∩ E = clE

(
g(T )

)
= clE

(
h(T )

)
and so, h is a unique morphism in ICF. □
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لکل یک روی کشش هم بسته توابع

استاجی٢ اکبر علی و حقدادی١ تکتم

ایران بیرجند، بیرجند، صنعتی دانشگاه پایه، علوم ١گروه

ایران سبزوار، سبزواری، حکیم دانشگاه کامپیوتر، علوم و ریاضی ٢دانشکده

داده ایم. قرار مطالعه مورد و کرده معرفی را لکل یک روی هم کشش بسته توابع مفهوم ما مقاله، این در
clL:Sℓ(L) → Sℓ(L) و لکل یک L آن در که هستند (L, clL) صورت به زوج هایی توابع، از رده این
معرفی را یافته تعمیم بسته -clL زیرلکل های به علاوه است. L زیرلکل های روی هم کششی بسته تابع یک
ریخت های و اشیاء که را ICF رسته ما هم چنین داده ایم. قرار بحث مورد را آن ها خواص از برخی و کرده

کرده ایم. معرفی هستند، لکلیک نگاشت های و هم کشش بسته توابع ترتیب به آن

رسته. همسایگی، توابع لکل، هم کشش، بسته توابع کلیدی: کلمات
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