ON THE MINIMAXNESS AND ARTINIANNESS DIMENSIONS

J. A'ZAMI* AND M. R. DOUSTIMEHR

ABSTRACT. Let R be a commutative Noetherian ring, I, J be ideals of R such that $J \subseteq I$, and M a finitely generated R-module. In this paper, we prove that the invariants $A_I^J(M) := \inf\{i \in \mathbb{N}_0 \mid J^t H_I^i(M) \text{ is not Artinian for all } t \in \mathbb{N}_0\}$ and $\inf\{i \in \mathbb{N}_0 \mid J^t H_I^i(M) \text{ is not minimax for all } t \in \mathbb{N}_0\}$ are equal. In particular, we show that the invariants $A_I^I(M)$ and $\inf\{i \in \mathbb{N}_0 \mid H_I^i(M) \text{ is not minimax}\}$ are equal. We also establish the local-global principle, $A_I^J(M) = \inf\{A_{IR_p}^{JR_p}(M_p) | p \in \text{Spec}(R)\}$, in some cases.

1. INTRODUCTION

Let R denote a commutative Noetherian ring (with identity) and Ian ideal of R. For an R-module M, the *i*th local cohomology module of M with support in V(I) is defined as:

$$H_I^i(M) = \lim_{n \ge 1} \operatorname{Ext}_R^i(R/I^n, M).$$

Local cohomology was first defined and studied by Grothendieck. Let M be a finitely generated R-module. The *J*-finiteness dimension $f_I^J(M)$ of M relative to I is defined by

$$f_I^J(M) = \inf\{i \in \mathbb{N}_0 \mid J^t H_I^i(M) \neq 0 \text{ for all } t \in \mathbb{N}_0\},\$$

DOI: 10.22044/JAS.2022.11553.1584.

MSC(2010): Primary: 13D45, 14B15; Secondary: 13E05.

Keywords: Minimax modules; Artinian module; Local cohomology module.

Received: 5 January 2022, Accepted: 11 November 2022.

^{*}Corresponding author.

with the usual convention that the infimum of the empty set of integers is interpreted as ∞ . It is immediate from [5, Proposition 9.1.2] that

 $f_I(M) := f_I^I(M) = \inf\{i \in \mathbb{N}_0 \mid H_I^i(M) \text{ is not finitely generated}\}.$

As a generalization of $f_I^J(M)$, we define the *J*-Artinianness dimension $A_I^J(M)$ of M relative to I by

$$A_I^J(M) := \inf\{i \in \mathbb{N}_0 \mid J^t H_I^i(M) \text{ is not Artinian for all } t \in \mathbb{N}_0\}.$$

Let $A_I(M) := A_I^I(M)$. It is easy to see that

$$A_I(M) \ge \inf\{i \in \mathbb{N}_0 \mid H_I^i(M) \text{ is not Artinian}\}.$$

There are several examples show that the above inequality is strict. Set

 $\mu_I^J(M) := \inf\{i \in \mathbb{N}_0 \mid J^t H_I^i(M) \text{ is not minimax for all } t \in \mathbb{N}_0\}.$

By the definitions, it is clear that $f_I^J(M) \leq A_I^J(M) \leq \mu_I^J(M)$. In this paper, we show that if $J \subseteq I$, then $A_I^J(M) = \mu_I^J(M)$.

In [2], Asadollahi and Naghipour proved that

$$f_I^J(M) = \inf\{f_{IR_{\mathfrak{p}}}^{JR_{\mathfrak{p}}}(M_{\mathfrak{p}}) | \mathfrak{p} \in \operatorname{Spec}(R)\},\$$

whenever Ass $H_I^{f_I^J(M)}(M)$ is finite or

 $f_I(M) \neq \{i \in \mathbb{N}_0 | H_I^i(M) \text{ is not } J\text{-cofinite}\}.$

We also generalize this local-global principle for the invariant $A_I^J(M)$. More precisely, we prove the following.

Theorem 1.1. Let M be a finitely generated R-module, I, J be ideals of R and one of the following conditions (1) or (2) holds:

- (1) Ass $H_I^{A_I^J(M)}(M)$ is finite; (2) $J \subseteq I$ and $A_I(M) \neq \{i \in \mathbb{N}_0 | H_I^i(M) \text{ is not } J\text{-cominimax} \}.$ (Recall that an R-module K is said to be J-cominimax if Supp $K \subseteq V(J)$ and $\operatorname{Ext}_{R}^{i}(R/J, K)$ is minimax for all $i \geq 0$)

Then
$$A_I^J(M) = \inf\{A_{IR_{\mathfrak{p}}}^{JR_{\mathfrak{p}}}(M_{\mathfrak{p}})|\mathfrak{p} \in \operatorname{Spec}(R)\}.$$

The following theorem plays an important role in this paper.

Theorem 1.2. Let M be an R-module, I, J ideals of R such that Supp $M \subseteq V(I)$ and Hom_R(R/I, M) is minimax. If for each $\mathfrak{p} \in \operatorname{Spec}(R) \setminus \operatorname{Max}(R)$ there is a non-negative integer $t_{\mathfrak{p}}$ such that $(J^{t_{\mathfrak{p}}}M)_{\mathfrak{p}} = 0$, then $J^{t}M$ is Artinian for some positive integer t.

As a consequence of Theorem 1.2, we prove the following criterion for the minimaxness.

138

Corollary 1.3. Let M be an R-module and I an ideal of R such that $\operatorname{Supp} M \subseteq V(I)$. Then $\operatorname{Hom}_R(R/I, M)$ is minimax and for each $\mathfrak{p} \in \operatorname{Spec}(R) \setminus \operatorname{Max}(R)$ there is a non-negative integer $t_{\mathfrak{p}}$ such that $(I^{t_{\mathfrak{p}}}M)_{\mathfrak{p}} = 0$ if and only if M is minimax.

Throughout this paper, R will always be a commutative Noetherian ring with non-zero identity and I will be an ideal of R. An R-module L is said to be *minimax*, if there exists a finitely generated submodule N of L such that L/N is Artinian. The class of minimax modules was introduced by H. Zöschinger [11] and he has given in [11, 12] many equivalent conditions for a module to be minimax. We shall use Max (R)to denote the set of all maximal ideals of R. Also, for any ideal I of R, we denote $\{\mathfrak{p} \in \text{Spec}(R) : \mathfrak{p} \supseteq I\}$ by V(I). For any unexplained notation and terminology we refer the reader to [5] and [9].

2. Artinianness dimension

In this section, we define and study the Artinianness dimension of a finitely generated R-module M with respect to the ideal I. We also prove local-global principle for this invariant in some case. Our main results are Theorems 2.7, 2.9 and 2.11.

Definition 2.1. Let M be a finitely generated R-module and I, J ideals of R. We define the *J*-Artinianness dimension $A_I^J(M)$ of M with respect to I by

 $A_I^J(M) := \inf\{i \in \mathbb{N}_0 \mid J^t H_I^i(M) \text{ is not Artinian for all } t \in \mathbb{N}_0\}.$

Note that $A_I^J(M)$ is either a positive integer or ∞ . We also denote $A_I^I(M)$ by $A_I(M)$ and call it the Artinianness dimension of M with respect to I.

The following example shows that the invariant $A_I^J(M)$ is different from the invariant $\inf\{i \mid H_I^i(M) \text{ is not Artinian}\}$, in general.

Example 2.2. Let M be a finitely generated R-module. It is easy to see that

 $A_I(M) \ge \inf\{i \mid H^i_I(M) \text{ is not Artinian}\}.$

Now let \mathfrak{p} be a non-maximal prime ideal of R and I be an ideal of R such that $I \subseteq \mathfrak{p}$. Set $M := R/\mathfrak{p}$. Since $\Gamma_I(M) = M$, $\Gamma_I(M)$ is not Artinian. Also $I^t\Gamma_I(M) = 0$, for some $t \in \mathbb{N}$. Hence $I^t\Gamma_I(M)$ is Artinian. Thus, the above inequality may be strict.

Now we prove the following useful lemmas.

Lemma 2.3. Let M be an R-module. Then M is Artinian if and only if M is minimax and Supp $M \subseteq Max(R)$.

Proof. Let M be minimax. Then there is a finitely generated submodule N of M such that M/N is Artinian. Since N is finitely generated and Supp $N \subseteq Max(R)$, N is Artinian. Therefore, it is immediate from the short exact sequence

$$0 \longrightarrow N \longrightarrow M \longrightarrow M/N \longrightarrow 0$$

that M is Artinian.

Lemma 2.4. Let M be an R-module and I an ideal of R such that $\operatorname{Hom}_R(R/I, M)$ is minimax. Then, $\operatorname{Hom}_R(R/I^n, M)$ is minimax for all $n \in \mathbb{N}$.

Proof. We proceed by induction on n. If n = 1, there is nothing to prove. Suppose that n > 1 and the case n-1 is settled. Since I^{n-1}/I^n is finitely generated R/I-module, I^{n-1}/I^n is a homomorphic image of $(R/I)^r$ for some $r \in \mathbb{N}$. It is immediate from the monomorphism $\operatorname{Hom}_R(I^{n-1}/I^n, M) \longrightarrow \operatorname{Hom}_R(R/I, M)^r$ that $\operatorname{Hom}_R(I^{n-1}/I^n, M)$ is minimax. By applying the functor $\operatorname{Hom}_R(-, M)$ to the short exact sequence

$$0 \longrightarrow I^{n-1}/I^n \longrightarrow R/I^n \longrightarrow R/I^{n-1} \longrightarrow 0,$$

we get the exact sequence

 $\operatorname{Hom}_R(R/I^{n-1}, M) \longrightarrow \operatorname{Hom}_R(R/I^n, M) \longrightarrow \operatorname{Hom}_R(I^{n-1}/I^n, M).$ (†) We conclude from inductive assumption and the exact sequence (†) that $\operatorname{Hom}_R(R/I^n, M)$ is minimax. This completes the inductive steps. \Box

The following theorem plays a key role in this paper.

Theorem 2.5. Let M be an R-module, I, J be ideals of R such that Supp $M \subseteq V(I)$ and $\operatorname{Hom}_R(R/I, M)$ is minimax. If for each $\mathfrak{p} \in \operatorname{Spec}(R) \setminus \operatorname{Max}(R)$ there is a non-negative integer $t_{\mathfrak{p}}$ such that $(J^{t_{\mathfrak{p}}}M)_{\mathfrak{p}} = 0$, then $J^t M$ is Artinian for some positive integer t.

Proof. For each $t \in \mathbb{N}_0$, the set Ass $J^t M$ is finite. Thus $\operatorname{Supp} J^t M$ is a closed subset of $\operatorname{Spec}(R)$ (in the Zariski topology), and so the descending chain

 $\cdots \supseteq \operatorname{Supp} J^t M \supseteq \operatorname{Supp} J^{t+1} M \supseteq \cdots$

is eventually stationary. Therefore there is a non-negative integer t_0 such that, for each $t \ge t_0$, Supp $J^t M = \text{Supp } J^{t_0} M$. Let

$$\mathfrak{p} \in \operatorname{Spec}(R) \setminus \operatorname{Max} R$$

140

141

By assumption, $(J^t M)_{\mathfrak{p}} = 0$ for some integer $t \ge t_0$. So $\mathfrak{p} \notin \operatorname{Supp} J^{t_0} M$. Hence, $\operatorname{Supp} J^{t_0} M \subseteq \operatorname{Max}(R)$. As $\operatorname{Hom}_R(R/I, J^{t_0}M)$ is minimax and

$$\operatorname{Supp} \operatorname{Hom}_{R}(R/I, J^{t_{0}}M) \subseteq \operatorname{Supp} J^{t_{0}}M \subseteq \operatorname{Max}(R),$$

it follows from Lemma 2.3 that $\operatorname{Hom}_R(R/I, J^{t_0}M)$ is Artinian. Since $\operatorname{Supp} J^{t_0}M \subseteq V(I)$, it yields from Melkersson's theorem [10, Theorem 1.3] that $J^{t_0}M$ is Artinian.

As a consequence of Theorem 2.5, we prove the following corollary.

Corollary 2.6. Let M be an R-module and I an ideal of R such that Supp $M \subseteq V(I)$. Then $\operatorname{Hom}_R(R/I, M)$ is minimax and there is a nonnegative integer $t_{\mathfrak{p}}$ such that $(I^{t_{\mathfrak{p}}}M)_{\mathfrak{p}} = 0$ for all $\mathfrak{p} \in \operatorname{Spec}(R) \setminus \operatorname{Max}(R)$ if and only if M is minimax.

Proof. It follows from Theorem 2.5 that there is a non-negative integer t_0 such that $I^{t_0}M$ is Artinian. Hence, by [6, Lemma 2.1], $M/(0:_M I^{t_0})$ is Artinian. According to Lemma 2.4, $(0:_M I^{t_0})$ is minimax. Therefore, by the exact sequence

$$0 \longrightarrow (0:_M I^{t_0}) \longrightarrow M \longrightarrow M/(0:_M I^{t_0}) \longrightarrow 0$$

of *R*-modules and *R*-homomorphisms, *M* is minimax, as required. \Box

Now, we are ready to state and prove the first main result of this paper which concludes that

 $A_I(M) = \inf\{i \in \mathbb{N}_0 \mid H_I^i(M) \text{ is not minimax}\}.$

Theorem 2.7. Let M be a finitely generated R-module and I, J be ideals of R such that $J \subseteq I$. Then

 $A_I^J(M) = \inf\{i \in \mathbb{N}_0 \mid J^t H_I^i(M) \text{ is not minimax}\}.$

In particular,

$$A_I(M) = \inf\{i \in \mathbb{N}_0 \mid I^t H_I^i(M) \text{ is not minimax}\}\$$

= $\inf\{i \in \mathbb{N}_0 \mid H_I^i(M) \text{ is not minimax}\}.$

Proof. Let

 $\mu_I^J(M) := \inf\{i \in \mathbb{N}_0 \mid J^t H_I^i(M) \text{ is not minimax}\}.$

Obviously, $A_I^J(M) \le \mu_I^J(M)$.

For the converse, let $i < \mu_I^J(M)$. Then, there exists $t' \in \mathbb{N}_0$ such that $J^{t'}H_I^i(M)$ is minimax for all $i < \mu_I^J(M)$. So there is a finitely generated submodule N_i of $J^{t'}H_I^i(M)$ such that $J^{t'}H_I^i(M)/N_i$ is Artinian. Hence,

$$(JR_{\mathfrak{p}})^{t'}H^{i}_{IR_{\mathfrak{p}}}(M_{\mathfrak{p}}) \simeq (J^{t'}H^{i}_{I}(M))_{\mathfrak{p}} \simeq (N_{i})_{\mathfrak{p}}$$

is a finitely generated $R_{\mathfrak{p}}$ -module for all $\mathfrak{p} \in \operatorname{Spec}(R) \setminus \operatorname{Max}(R)$. Since $JR_{\mathfrak{p}} \subseteq IR_{\mathfrak{p}}$ and $(JR_{\mathfrak{p}})^{t'}H^{i}_{IR_{\mathfrak{p}}}(M_{\mathfrak{p}})$ is $IR_{\mathfrak{p}}$ -torsion, there exists $t_{\mathfrak{p}} \in \mathbb{N}_{0}$ such that

$$(J^{t_{\mathfrak{p}}+t'}H^{i}_{I}(M))_{\mathfrak{p}} \simeq (JR_{\mathfrak{p}})^{t_{\mathfrak{p}}+t'}H^{i}_{IR_{\mathfrak{p}}}(M_{\mathfrak{p}}) = 0.$$

Now, it follows from Theorem 2.5 that there is a positive integer t such that $J^t J^{t'} H^i_I(M)$ is Artinian.

Now, let J = I. It follows from the above argument and [7, Lemma 2.2] that

$$A_I(M) = \inf\{i \in \mathbb{N}_0 \mid I^t H_I^i(M) \text{ is not minimax}\}\$$

= $\inf\{i \in \mathbb{N}_0 \mid H_I^i(M) \text{ is not minimax}\}.$

Now we restate Theorem 2.7 in another terms, which is sometime useful.

Corollary 2.8. Let M be finitely generated R-module, I, J be ideals of R such that $J \subseteq I$ and $s \in \mathbb{N}$. Then the following statements are equivalent.

- (1) There exists $r \in \mathbb{N}_0$ such that $J^r H^i_I(M)$ is Artinian for all i < s;
- (2) There exists $r \in \mathbb{N}_0$ such that $J^r H^i_I(M)$ is minimax for all i < s.

In particular, if J = I, then the following statements are equivalent.

- (1) There exists $r \in \mathbb{N}_0$ such that $I^r H^i_I(M)$ is Artinian for all i < s;
- (2) There exists $r \in \mathbb{N}_0$ such that $I^r H^i_I(M)$ is minimax for all i < s;
- (3) $H_I^i(M)$ is minimax for all i < s.

Proof. The proof is concluded from Theorem 2.7.

The following theorem is a generalization of [2, Theorem 2.3] which shows that local-global principle for the invariant $A_I^J(M)$ holds whenever Ass $H_I^{A_I^J(M)}(M)$ is a finite set.

Theorem 2.9. Let M be a finitely generated R-module and I, J be ideals of R such that Ass $H_I^{A_I^J(M)}(M)$ is a finite set. Then,

$$A_{I}^{J}(M) = \inf \{ A_{IR_{\mathfrak{p}}}^{JR_{\mathfrak{p}}}(M_{\mathfrak{p}}) | \mathfrak{p} \in \operatorname{Spec} (R) \}$$

= $\inf \{ A_{IR_{\mathfrak{m}}}^{JR_{\mathfrak{m}}}(M_{\mathfrak{m}}) | \mathfrak{m} \in \operatorname{Max} (R) \}.$

Proof. Let $r := A_I^J(M)$. Clearly,

$$r \leq \inf\{A_{IR_{\mathfrak{p}}}^{JR_{\mathfrak{p}}}(M_{\mathfrak{p}})|\mathfrak{p} \in \operatorname{Spec}(R)\} \leq \inf\{A_{IR_{\mathfrak{m}}}^{JR_{\mathfrak{m}}}(M_{\mathfrak{m}})|\mathfrak{m} \in \operatorname{Max}(R)\}.$$

Assume on the contrary that

143

$$r < \inf\{A_{IR_{\mathfrak{m}}}^{JR_{\mathfrak{m}}}(M_{\mathfrak{m}}) | \mathfrak{m} \in \operatorname{Max}(R)\},\$$

and look for a contradiction. Similar to the proof of Theorem 2.5, there is a non-negative integer t_0 such that, for each $t \ge t_0$,

$$\operatorname{Supp} J^t H^r_I(M) = \operatorname{Supp} J^{t_0} H^r_I(M).$$

Let $\mathfrak{p} \in \operatorname{Spec}(R) \setminus \operatorname{Max}(R)$. There is a maximal ideal \mathfrak{m} of R such that $\mathfrak{p} \subset \mathfrak{m}$. Since $r < A_{IR_{\mathfrak{m}}}^{JR_{\mathfrak{m}}}(M_{\mathfrak{m}})$, there exists an integer $s \geq t_0$ such that $(JR_{\mathfrak{m}})^s H_{IR_{\mathfrak{m}}}^r(M_{\mathfrak{m}})$ is Artinian. Hence,

$$(J^s H^r_I(M))_{\mathfrak{p}} \simeq ((JR_{\mathfrak{m}})^s H^r_{IR_{\mathfrak{m}}}(M_{\mathfrak{m}}))_{\mathfrak{p}R_{\mathfrak{m}}} = 0.$$

So, Ass $J^{t_0}H^r_I(M) = \text{Supp } J^{t_0}H^r_I(M) \subseteq \text{Max}(R)$ is a finite set. Let

Supp
$$J^{t_0}H^r_I(M) := {\mathfrak{m}_1, \ldots, \mathfrak{m}_n}.$$

For each $1 \leq i \leq n$, there exists $t_i \geq t_0$ such that

$$(J^{t_i}H^r_I(M))_{\mathfrak{m}_i} \simeq (JR_{\mathfrak{m}_i})^{t_i}H^r_{IR_{\mathfrak{m}_i}}(M_{\mathfrak{m}_i})$$

is Artinian. Set $t := \max\{t_1, \ldots, t_n\}$. Then, $(J^t H^r_I(M))_{\mathfrak{m}_i}$ is Artinian for all $1 \le i \le n$. Now, it follows from [1, Lemma 2.1] that $J^t H^r_I(M)$ is Artinian, which is a contradiction.

We prepare the grand by some definitions and a proposition to prove local-global principle for the invariant $A_I^J(M)$ in another case. Let J be an ideal of R. The J-cominimaxness of an R-module was introduced in [3]. An R-module K is said to be J-cominimax if Supp $K \subseteq V(J)$ and $\operatorname{Ext}_R^i(R/J, K)$ is minimax for all $i \geq 0$. Let M be a finitely generated R-module and I, J be ideals of R such that $J \subseteq I$. We define the J-cominimaxness dimension $c_I^J(M)$ of M relative to I by

 $c_I^J(M) = \inf\{i \in \mathbb{N}_0 | H_I^i(M) \text{ is not } J\text{-cominimax }\}.$

Proposition 2.10. Let M be a finitely generated R-module and I, J be ideals of R such that $J \subseteq I$. Then,

$$A_I(M) = \inf\{A_I^J(M), c_I^J(M)\}.$$

Proof. Clearly $A_I(M) \leq A_I^J(M)$. If $r := c_I^J(M) < A_I(M)$. Then, there exists a non-negative integer t such that $I^t H_I^i(M)$ is Artinian for all $i \leq r$. Hence, by Corollary 2.8, $H_I^i(M)$ is minimax for all $i \leq r$. Since

Supp
$$H_I^r(M) \subseteq V(I) \subseteq V(J)$$
,

 $H_I^r(M)$ is J-cominimax, which is imposable. Thus, $A_I(M) \leq c_I^J(M)$. So,

$$A_I(M) \le \inf \{A_I^J(M), c_I^J(M)\}.$$

Finally, assume on the contrary that

A'ZAMI AND DOUSTIMEHR

 $s := A_I(M) < \inf\{A_I^J(M), c_I^J(M)\},\$

and look for a contradiction. Since $s < A_I^J(M)$, there exists a nonnegative integer t such that $J^t H_I^s(M)$ is Artinian. Hence, by [6, Lemma 2.1], $H_I^s(M)/(0:_{H_I^s(M)} J^t)$ is Artinian. As $s < c_I^J(M)$, it follows from Lemma 2.4 that $(0:_{H_I^s(M)} J^t)$ is minimax. Now, we deduce from the short exact sequence

$$0 \longrightarrow (0:_{H^s_I(M)} J^t) \longrightarrow H^s_I(M) \longrightarrow H^s_I(M)/(0:_{H^s_I(M)} J^t) \longrightarrow 0$$

that $H_I^s(M)$ is minimax. So, it follows from Theorem 2.7 that $H_I^i(M)$ is minimax for all $i \leq s$. Again, by Theorem 2.7, there exists a non-negative integer t such that $I^t H_I^i(M)$ is Artinian for all $i \leq s$, which is a contradiction. This contradiction completes the proof of the proposition.

Now, we are going to prove local-global principle for $A_I^J(M)$ in another case.

Theorem 2.11. Let M be a finitely generated R-module and let I, J be ideals of R such that $J \subseteq I$ and $A_I(M) \neq c_I^J(M)$. Then,

$$A_{I}^{J}(M) = \inf \{ A_{IR_{\mathfrak{p}}}^{JR_{\mathfrak{p}}}(M_{\mathfrak{p}}) | \mathfrak{p} \in \operatorname{Spec} (R) \}$$

= $\inf \{ A_{IR_{\mathfrak{m}}}^{JR_{\mathfrak{m}}}(M_{\mathfrak{m}}) | \mathfrak{m} \in \operatorname{Max} (R) \}.$

Proof. As $A_I(M) \neq c_I^J(M)$, it follows from Proposition 2.10 that $A_I^J(M) \leq c_I^J(M)$. Hence, $A_I(M) = A_I^J(M)$. It follows from Corollary 2.8 that $H_I^i(M)$ is minimax for all $i < A_I^J(M)$. Thus Ass $H_I^{A_I^J(M)}(M)$ is a finite set, by [4, Theorem 2.3]. Now, the result follows from Theorem 2.9.

Let M be a finitely generated R-module and let I, J be ideals of R such that $J \subseteq I$ and $IM \neq M$. As $A_I^J(M) = \mu_I^J(M)$, it follows from [7, Corollaries 2.9, 2.10, 2.11 and Theorem 2.12] that

$$A_{IR_{\mathfrak{p}}}^{JR_{\mathfrak{p}}}(M_{\mathfrak{p}}) \ge l \text{ for all } \mathfrak{p} \in \operatorname{Spec}\left(R\right) \Longleftrightarrow A_{I}^{J}(M) \ge l,$$

where $l \in \{1, 2, \operatorname{grade}_M I, f_I(M)\}$.

In [8], Khashyarmanesh and Salarian show that if R is a homomorphic image of a Gorenstein ring, then

$$f_I^J(M) = \inf\{f_{IR_{\mathfrak{p}}}^{JR_{\mathfrak{p}}}(M_{\mathfrak{p}}) | \mathfrak{p} \in \operatorname{Spec}(R)\},\$$

for every choice of ideals I, J of R and every choice of the finitely generated R-module M. It is an open problem to us whether the similar statement holds for the invariant $A_I^J(M)$ when R is a homomorphic image of a Gorenstein ring.

Acknowledgments

The authors are deeply grateful to the referee for a very careful reading of the manuscript and many valuable suggestions.

References

- M. Aghapour and L. Melkersson, Finiteness properties of minimax and coatomic local cohomology modules, Arch. Math., 94 (2010), 519–528.
- [2] D. Asadollahi and R. Naghipour, A new proof of Faltings' local-global principle for the finiteness of local cohomology modules, *Arch. Math.*, **103** (2014), 451–459.
- [3] J. A'zami, R. Naghipour and B. Vakili, Finiteness properties of local cohomology modules for a-minimax modules, *Proc. Amer. Math. Soc.*, 137(2) (2008), 439–448.
- [4] K. Bahmanpour and R. Naghipour, On the cofiniteness of local cohomology modules, Proc. Amer. Math. Soc., 136 (2008), 2359–2363.
- [5] M. P. Brodmann and R. Y. Sharp, Local cohomology; an algebraic introduction with geometric applications, Cambridge University Press, Cambridge, 1998.
- [6] M. R. Doustimehr, Faltings' local-global principle and annihilator theorem for the finiteness dimensions, Comm. Algebra., 47(5) (2019), 1853–1861.
- [7] M. R. Doustimehr and R. Naghipour, Faltings' local-global principle for minimaxness of local cohomology modules, *Comm. Algebra*, 43 (2015), 400–411.
- [8] K. Khashyarmanesh and Sh. Salarian, Faltings' theorem for the annihilation of local cohomology modules over a Gorenstein ring, *Proc. Amer. Math. Soc.*, 132 (2004), 2215–2220.
- [9] H. Matsumura, *Commutative ring theory*, Cambridge Univ. Press, Cambridge, UK, 1986.
- [10] L. Melkersson, On asymptotic stability for sets of prime ideals connected with the powers of an ideal, Math. Proc. Cambridge Philos. Soc., 107 (1990), 267–271.
- [11] H. Zöschinger, Minimax modules, J. Algebra, **102** (1986), 1–32.
- [12] H. Zöschinger, Uber die maximalbedingung f
 ür radikalvolle untermoduln, Hokkaido Math. J., 17 (1988), 101–116.

Jafar A'zami

Department of Mathematics, University of Mohaghegh Ardabili, Ardabil, Iran. Email: jafar.azami@gmail.com, azami@uma.ac.ir

Mohammad Reza Doustimehr

Department of Mathematics, University of Tabriz, Tabriz, Iran; and School of Mathematics, Institute for research in fundamental sciences (IPM), P.O. Box 19395-5746, Tehran, Iran.

Email: m_doustimehr@tabrizu.ac.ir, mdoustimehr@yahoo.com

Journal of Algebraic Systems

ON THE MINIMAXNESS AND ARTINIANNESS DIMENSIONS

J. A'ZAMI AND M. R. DOUSTIMEHR