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THE UNIT GRAPH OF A COMMUTATIVE SEMIRING

L. BORO∗, M. M. SINGH AND J. GOSWAMI

Abstract. Let S be a commutative semiring with unity and U(S)
be the set of all units of S. The unit graph of S, denoted by
G(S) is the undirected graph with vertex set S and two distinct
vertices x and y are adjacent in G(S) if and only if x+ y ∈ U(S).
In this paper, we concentrate on the unit graph G(S) and look
at several properties like the completeness, the bipartiteness, the
connectedness, the diameter and the girth. We also obtain
necessary and sufficient conditions for G(S) to be traversable under
certain conditions.

1. Introduction

In 1989, Grimaldi [13] introduced the graphical aspect of algebraic
structures, namely unit graph G(Zn) of Zn. The unit graph G(Zn)
is an undirected graph, whose vertex set is elements of Zn, and two
distinct vertices x and y are adjacent in G(Zn) if and only if x + y
is a unit of Zn. Recently, Ashrafi et al. [3] generalized the unit
graph G(Zn) to G(R) for an arbitrary ring R and obtained various
results of finite commutative rings regarding the connectedness, the
chromatic index, the diameter, the girth and the planarity of G(R).
In recent years, many fundamental papers on unit graphs associated
with rings have been appeared, for instance, see [14, 17, 16, 15, 19, 20].
Nowadays, the study of graph structures on semiring theoretical
setting is also an interesting area of research. Many research works
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relating to a graph structure associated with semirings has been
appeared recently, for instance, see [1, 5, 6, 12, 21].

A semiring S is an algebraic sysytem (S, +, .) such that (S,+) is a
commutative monoid with identity element 0 and (S, .) is a semigroup
with identity element 1. In addition, binary operations “+” and “.”
are connected by distributivity and 0 annihilates S. A semiring S with
unity is said to be a commutative semiring if (S, .) is a commutative
semigroup. A non-empty subset I of S is called an ideal of S if the
following two conditions hold: (i) x+ y ∈ I for all x, y ∈ I (ii) sx ∈ I
for any s ∈ S and x ∈ I. An ideal I of S is called a k-ideal (subtractive
ideal) if x, x + y ∈ I, then y ∈ I. Therefore, {0} is a k-ideal of S. A
semiring S is said to be a local semiring if and only if S has a unique
maximal k-ideal. Moreover, x is a unit of S if and only if x lies outside
of each maximal k-ideal of S [4]. We denote the characteristic, the set of
units, the set of non-units, and the Jacobson radical of a semiring S by
char(S), U(S), U(S) and J(S) respectively. For undefined terminology
and concept of semiring theory, we refer to Golan [11].

Let G be a graph with vertex set V (G) and edge set E(G). Two
distinct vertices u and v of G are said to be adjacent (u ∼ v) if there
is an edge between u and v. The degree of a vertex v in G is the
number of edges incident on v and it is denoted by deg(v). We denote
the maximum degree and the minimum degree of G by ∆(G) and δ(G)
respectively. G is called regular if every vertex has an equal degree. G
is connected if there is a path between every two distinct vertices of
G; otherwise, it is disconnected. G is totally disconnected if no two
vertices of G are adjacent. For x, y ∈ V (G), the length of the shortest
path from x to y is denoted by d(x, y) and the diameter of G is diam(G)
= sup{d(x, y) | x, y ∈ V (G)}. The girth gr(G) is defined as the length
of the shortest cycle in G. We denote gr(G) = ∞ if G contains no
cycles. G is said to be a complete graph if any two distinct vertices of
G are adjacent and we denote the complete graph with n vertices by
Kn. A complete bipartite graph is one whose vertices are partitioned
into two disjoint sets V1 and V2 such that no two vertices of the same
partite set are adjacent, but for every x ∈ V1 and y ∈ V2 are adjacent.
We denote the complete bipartite graph on m and n vertices by Km,n.
K1,n is called a star graph. A circuit in a graph G is a closed trail
of length three or more. A circuit C is called an Eulerian circuit if C
contains every edge of G. A connected graph G is said to be Eulerian
if it contains an Eulerian circuit. A connected graph G is said to be
Hamiltonian if it has a circuit that contains all the vertices of G. Two
graphs G and H are said to be isomorphic to one another, written as
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G ∼= H, if there exists a bijection f : V (G) −→ V (H) such that for each
pair u, v of vertices of G, uv ∈ E(G) if and only if f(u)f(v) ∈ E(H).
For undefined terminology and concept of graph theory, we refer to
Diestel [9].

In this paper, we generalize the unit graph of a commutative ring
to the unit graph of a commutative semiring under semiring theoretic
settings. By following [13], we define the undirected unit graph G(S)
of S by setting all the elements of S to be the vertices and two distinct
vertices x and y are adjacent in G(S) if and only if x+ y is a unit of S.
If we omit the word “distinct” in the definition, we obtain the closed
unit graph of S, denoted by G(S), and this graph may have loops also.

The organization of this paper is as follows: in Section 2, we study
and examine the properties of the unit graph G(S) of S such as the
completeness, the bipartiteness, and the regularity for additive group
T in semiring S. We also prove that G(R) ∼= G(S) if R ∼= S, and
finally we discuss the connectedness of G(S). In Section 3, we study
and determine the diameter and the girth of the unit graph G(S) of
semiring S. Finally, we show that G(S) is traversable under some
conditions.

2. Some Basic Properties of G(S)

In this section, first we look at a relation between the unit graph
G(S) and the closed unit graph G(S) of a commutative semiring S
with unity.

Lemma 2.1. Let S be a commutative semiring with unity. Then
G(S) = G(S) if and only if 2 /∈ U(S).

Proof. Assume that G(S) = G(S). Hence, G(S) has no loop at any
x ∈ S. Note that 1 + 1 = 2. Since G(S) has no loop at 1, this implies
that 2 /∈ U(S).

Conversely, let 2 /∈ U(S), i.e. 1 + 1 = 2 /∈ U(S). Then there is no
loop at 1. Now, we will show that there is no loop at any x ∈ S. On
the contrary, suppose that there is a loop at x ∈ S, then

x+ x = 2x ∈ U(S).
Now, 2x ∈ U(S), then there exists an element x

′ ∈ S such that
(2x)x

′ = 1 = x
′
(2x) and so 2(xx′) = 1 = (xx′)2. Thus 2 is a unit

in S, a contradiction. Therefore, there is no loop at any x ∈ S, and so
G(S) = G(S). □
Example 2.2. Let S = N ∪ {0}. Then (S,+, .) is a semiring, where
2 /∈ U(S) and G(S) = G(S).
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Proposition 2.3. Let S be a commutative semiring with unity. Then
G(S) is a complete graph if and only if S is a semifield with
char(S) = 2.
Proof. Let G(S) be a complete graph and let x be any non-zero element
of S. So, we have x + 0 = 0 + x = x ∈ U(S), for all non-zero x ∈ S.
Therefore, every non-zero element of S has a multiplicative inverse.
Thus, S is a semifield and by Lemma 2.1, we have char(S) = 2.

Conversely, assume that S is a semifield with char(S) = 2. Hence,
each x ∈ S, x + x = 0, and so x is the additive inverse of x in S.
Therefore, (S,+) is an abelian group, and so (S,+, .) is a field. Let
x, y ∈ S with x ̸= y. Since x is the additive inverse of x, it follows that
x+ y ̸= 0, and so x+ y ∈ U(S). Therefore, G(S) is complete. □

For the additive group T in semiring S, we obtain the following
generalization result for G(S) from [3, Proposition 2.4].
Proposition 2.4. Let S be a finite commutative semiring with unity
and T be an additive group in S with multiplicative identity. Then the
following results hold for the unit graph G(S):

(1) If 2 /∈ U(T ), then the unit graph G(S) is |U(T )|-regular.
(2) If 2 ∈ U(T ), then for every x ∈ U(T ) we have

deg(x) = |U(T )| − 1,
and for every x ∈ U(T ) we have deg(x) = |U(T )|.

Proof. For the proof of both (1) and (2), we assume that the vertex
x ∈ T is given. We have T + x = T , therefore, for every u ∈ U(T ),
there exists an element xu ∈ T such that xu + x = u. Clearly, xu is
uniquely determined by u.

(1) Let 2 /∈ U(T ). Then xu ̸= x, therefore, xu is adjacent to x in G(S).
Therefore, f : U(T ) −→ NG(S)(x) given by f(u) = xu is a well-defined
function. Now, it is easy to see that f is a bijection and therefore,
deg(x) = |NG(S)(x)| = |U(T )|, which yields that G(S) is regular for
every x ∈ V (G(S)). Thus we have deg(x) = |U(T )|.

(2) Let 2 ∈ U(T ). Then we have the following two cases:
Case 1. If x ∈ U(T ), then we have xu ̸= x, therefore, xu is adjacent

to x in G(S). Thus, the above result (1) is still valid, which yields that
deg(x) = |U(T )|.

Case 2. If x ∈ U(T ), then 2x ∈ U(T ), and we have xu ̸= x for
u ̸= 2x, and so x2x = x. Now, xu is adjacent to x in G(S) for u ̸= 2x.
Therefore, f : U(T ) −→ NG(S)[x] given by f(u) = xu, is a well-defined
function. It is easy to see that f is a bijection. Therefore,

deg(x) = |NG(S)[x]| − 1 = |U(T )| − 1.
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□

We discuss the bipartiteness criterion of G(S) in the following results.

Proposition 2.5. Let S be a semifield. Then G(S) is a star graph if
and only if |S| ≤ 3.

Proof. Let G(S) be a star graph. Then there exists a vertex of degree
one, and so U(S) is finite and non-empty. Suppose that |S| > 3 and
G(S) is a tree, then every non-zero element x of S is adjacent to 0 since
S is a semifield. Again, for some x, y ̸= 0 of S, we have x+ y ∈ U(S),
which is a contradiction. This yields that G(S) is a star graph if and
only if G(S) is either K1,1 or K1,2. Note that G(S) is K1,1 if and only
if |S| = 2. If |S| = 3, then by Proposition 2.3, G(S) is not a complete
graph since char(S) ̸= 2, and so it is K1,2. This yields that G(S) is a
star graph if and only if |S| ≤ 3. □
Remark 2.6. If semiring S is a semifield, then G(S) has pendant
vertex if and only if |S| ≤ 3. There are some more semirings that are
not rings but have a pendant vertex in the unit graphs. For example
S = (P (X),∪,∩), where X = {a, b} and P (X) is a power set of X.
Then it is easy to see that deg(ϕ) = 1.

Proposition 2.7. Let S be a commutative non-local semiring with
unity such that |S/m| = 2, where m is a maximal k-ideal with maximal
cardinality of semiring S. Then G(S) is a bipartite graph.

Proof. Let S be a commutative non-local semiring with unity. Then S
has more than one maximal k-ideal. Let m be a maximal k-ideal with
maximal cardinality of semiring S. Then we can partition the vertex set
of G(S) as V1 = m and V2 = S\m. Now, we have V (G(S)) = V1∪V2 and
V1 ∩ V2 = ϕ. Clearly, any two distinct elements of V1 are not adjacent.
To prove the Proposition, it is enough to show that no two elements of
V2 are adjacent. Let a be a fixed element of V2 and let x, y be any two
distinct elements of V2. Now, by assumption S = m∪(m+a). Therefore,
we can write x = b1 + a and y = b2 + a, where b1, b2 ∈ m. This implies
that x + y = b1 + b2 + 2a. If x + y ∈ U(S), then b1 + b2 + 2a ∈ U(S),
which implies that V1 has a unit, a contradiction. Therefore, any two
distinct elements of V2 are not adjacent, which yields that G(S) is a
bipartite graph. □
Example 2.8. (1) For S = (Z10,+, .) semiring, m1 = {0, 2, 4, 6, 8}

and m2 = {0, 5} are two maximal ideals of S. Therefore, m1

and S \ m1 are two partite sets of G(S); moreover G(S) is a
4-regular bipartite graph.
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(2) An inspection will shows that the set SP4 = {0, 1, 2, b} equipped
with operations + and . defined by:

+ 0 1 2 b
0 0 1 2 b
1 1 2 1 2
2 2 1 2 1
b b 2 1 0

. 0 1 2 b
0 0 0 0 0
1 0 1 2 b
2 0 2 2 0
b 0 b 0 b

is a semiring (which is not a ring) with unity. Here, m1 = {0, 2}
and m2 = {0, b} are two maximal k-ideals of SP4 and so m2 and
S \ m2 are two partite sets of G(SP4); moreover G(SP4) is a
tree.

Proposition 2.9. Let S be a commutative local semiring with unity.
Then G(S) is a complete bipartite graph if and only if either (S,m ̸= 0)
or |S| ≤ 3.

Proof. Let G(S) be a complete bipartite graph. If G(S) is a tree, then
by Proposition 2.5, |S| ≤ 3. Now, we assume that G(S) is not a tree,
and let V1, V2 be two partite sets of G(S). Without loss of generality, we
can assume that 0 ∈ V1. Let u ∈ U(S). Note that 0+u ∈ U(S). Hence,
0 and u are adjacent in G(S). As 0 ∈ V1, it follows that u ∈ V2. Let
s ∈ V2. Since G(S) is a complete bipartite with partite sets V1 and V2,
0 and s are adjacent in G(S). Therefore, s = 0+ s ∈ U(S). The above
arguments imply that V2 = U(S). Thus S = U(S) ∪ U(S) = V1 ∪ V2,
and so it follows that V1 = U(S) = m. This yields that S has a unique
maximal ideal m. Therefore, S is a local semiring.

Conversely, let semiring S be either (S,m ̸= 0) or |S| ≤ 3. If
|S| ≤ 3, then the result holds from the Proposition 2.5. Now, we as-
sume that m = U(S) ̸= 0 is a unique maximal k-ideal of S, and so we
obtain V1 = U(S) and V2 = U(S) as partite sets of G(S). Let x ∈ V1

and y ∈ V2 be given. If x + y /∈ U(S), a contradiction. Therefore,
x+ y ∈ U(S), which yields that x and y are adjacent and each vertex
of V1 is joined to every vertex of V2. Therefore, G(S) is a complete
bipartite graph. □

Proposition 2.10. Let R and S be two commutative semirings with
unity. If R ∼= S, then G(R) ∼= G(S).

Proof. Let R ∼= S, then clearly |R| = |S|. Thus, for G(R) and G(S)
we have |V (G(R))| = |V (G(S))|. Now to prove that the adjacency of
vertices are also preserved. First we shall show that image of a unit is
also a unit under isomorphism between R and S. Let f : R −→ S be
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an isomorphism of semirings. For any r ∈ R, we denote f(r) by rS. Let
x be a unit of R. Then xy = 1 = yx for some y ∈ R \ {0}. Therefore,
f(xy) = f(1) and so f(x)f(y) = f(1). Thus xS yS = 1S, where 1S is a
unity of S. This shows that xS ∈ U(S) and f(U(R)) = U(S).

Now, to check the edges, let x, y ∈ R be such that xy is an edge
of G(R). Then x + y ∈ U(R), and so for f(x), f(y) ∈ S, we have
f(x) + f(y) = f(x + y) ∈ U(S), which yields that adjacency of the
vertices are preserved. Therefore, G(R) ∼= G(S). □

We discuss the connectedness property of G(S) in the following
results.
Proposition 2.11. Let S be a commutative semiring without unity
and let |S| ≥ 2. Then G(S) is totally disconnected.
Proof. By hypothesis, the semiring S has no unity. Hence, U(S) = ϕ.
Therefore, G(S) has no edges, and so it follows that G(S) is totally
disconnected. □
Example 2.12. Consider the set S = {0, 1}. On S we define the
operations as follows: 0 + 0 = 1 + 1 = 0, 1 + 0 = 0 + 1 = 1 and
0.0 = 0.1 = 1.0 = 1.1 = 0. Then (S,+, .) forms a commutative
semiring without unity and so G(S) is totally disconnected.
Proposition 2.13. Let S be a commutative semiring with unity. If
U(S) is a k-ideal, then G(S) is connected.

Proof. Let S be a commutative semiring with unity, and let U(S) be
a k-ideal of S. Then U(S) is a unique maximal k-ideal of semiring S,
and so J(S) = U(S). Therefore, for any x ∈ U(S) and y ∈ U(S), we
have x+ y ∈ U(S). Therefore, G(S) is connected. □
Proposition 2.14. [4] Let S be a semiring. Then S is a local semiring
if and only if U(S) is a k-ideal.

From Propositions 2.13 and 2.14, we can easily conclude the following
result:
Corollary 2.15. Let S be a local semiring with unity. Then G(S) is
always connected.

3. Diameter, Girth and Traversability of G(S)

In this section, first we study and determine the diameter of the unit
graph G(S) for local semiring S with unity.
Proposition 3.1. Let S be a commutative semiring with unity. If S
is a semifield with char(S) = 2, then diam(G(S)) = 1.
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Proof. Let S be a semifield with char(S) = 2. Then by Proposition
2.3, G(S) is a complete graph. This yields that diam(G(S)) = 1. □

Proposition 3.2. Let S be a commutative local semiring with unity.
If |S| ≥ 3 and char(S) ̸= 2, then diam(G(S)) = 2.

Proof. By hypothesis, S is a commutative local semiring with unity.
Hence, U(S) is a unique maximal k-ideal. Let x ∈ U(S) and y ∈ U(S).
As U(S) is a k-ideal of S, it follows that x + y ∈ U(S), and so xy
is an edge of G(S). This shows that G(S) is a connected graph with
diam(G(S)) ≤ 2.

Now, the following two cases arise:
Case 1: We assume that S is not a semifield. Therefore, there exists

x ∈ S \ {0} such that x ∈ U(S). Note that x + 0 ∈ U(S) and hence,
x and 0 are not adjacent in G(S). Therefore, diam(G(S)) ≥ 2, and so
diam(G(S)) = 2.

Case 2: We assume that S is a semifield. Now by hypothesis, |S| ≥ 3
and char(S) ̸= 2. It follows from the Proposition 2.3 that G(S) is not a
complete graph. Hence, diam(G(S)) ≥ 2, and so diam(G(S)) = 2. □

We discuss the diameter of unit graph G(S) for non-local semiring
S with unity in the next result.

Proposition 3.3. Let S be a non-local commutative semiring with
unity. Then diam(G(S)) ∈ {2, 3,∞}.

Proof. If G(S) is disconnected, then diam(G(S)) = ∞. Let S be a non-
local semiring with unity, and so there exist more than one maximal
k-ideals. Let I1, ..., In be non-trivial maximal k-ideals of S. Then
U(S) = I1 ∪ I2 ∪ ... ∪ In and U(S) is not a k-ideal. Next, we assume
that x, y ̸= 0 ∈ U(S) such that x + y ∈ U(S). Again, let z ∈ U(S)
such that y + z ∈ U(S). Then diam(G(S)) ≤ 3. If x+ z ∈ U(S), then
there exists a path x − z − 0 in G(S). If x + z /∈ U(S), then there
exists a path x−y−z−0 in G(S). Since S is a non-local commutative
semiring, and so S is not a semifield with char(S) = 2. Therefore, by
Proposition 2.3, G(S) is not a complete graph, and so diam(G(S)) ̸= 1.
Hence, the result follows. □

Proposition 3.4. Let S be a commutative semiring with unity. Then
diam(G(S)) ∈ {1, 2, 3,∞}.

Proof. The proof follows by Propositions 3.1, 3.2 and 3.3. □

In the following result, we study and determine the girth of G(S) for
local semiring S with unity.
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Proposition 3.5. Let S be a commutative local semiring with unity.
Then gr(G(S)) ∈ {3, 4,∞}.
Proof. If |S| ≤ 3, then characteristic of S is either 2 or 3. If
char(S) = 2, then it is easy to see that G(S) is K2. If char(S) = 3,
then G(S) is not a complete graph by the Proposition 2.3, which shows
that G(S) has no cycle. Therefore, let G(S) has a cycle and |S| ≥ 4,
then |U(S)| ≥ 2. If |S| = 4 and S is not a semifield, then U(S) = {1, u}
and u2 = 1, and so there exists a cycle 0 −→ 1 −→ x −→ u −→ 0 of
shortest length 4 in G(S). Again, if S is a local semiring with m ̸= 0,
then G(S) is a complete bipartite graph by Proposition 2.9. Therefore,
gr(G(S)) = 4. If S is a semifield and G(S) contains a cycle, then for
some x, y ∈ S \{0}, there exists a cycle 0 −→ x −→ y −→ 0 of shortest
length 3. Therefore, gr(G(S)) ∈ {3, 4,∞}. □
Proposition 3.6. Let S be a finite commutative semiring with unity
and T be an additive group in S with multiplicative identity. Suppose
2 /∈ U(T ). Then G(S) is Eulerian if and only if |U(T )| is even.
Proof. Let T be an additive group in S with multiplicative identity and
2 /∈ U(T ). Let G(S) be Eulerian. Then by Proposition 2.4, G(S) is
|U(T )|-regular. Therefore, |U(T )| is even.

Conversely, let |U(T )| be even and 2 /∈ U(T ). Then by Proposition
2.4, G(S) is |U(T )|-regular graph, which yields that G(S) is Eulerian.

□
In order to prove the existence of Hamiltonian in unit graph G(S),

we recall the following Theorem.
Theorem 3.7. [9, Ore] Let G be a graph of order n ≥ 3 and for every
pair u and v of nonadjacent vertices, deg(u) + deg(v) ≥ n, then G is
Hamiltonian.
Proposition 3.8. Let S be a commutative local semiring with unity.
If |S| ≥ 4 with |U(S)| = |U(S)|, then G(S) is Hamiltonian.

Proof. Let S be a commutative local semiring with unity. Then U(S) is
a unique maximal k-ideal of S, and so J(S) = U(S). Therefore, for each
x ∈ U(S) and y ∈ U(S), we have x+y ∈ U(S). Since |U(S)| = |U(S)|,
and so for x ∈ S, we have deg(x) = |U(S)| = |U(S)|. Thus for any two
non-adjacent vertices x and y in G(S), we have deg(x) + deg(y) = |S|.
This yields that G(S) is Hamiltonian by Theorem 3.7. □
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THE UNIT GRAPH OF A COMMUTATIVE SEMIRING

L. BORO, M. M. SINGH AND J. GOSWAMI

جابه جایی نیم حلقه ی یکه گراف

گوسوامی٣ جیتوپارنا و سینگ٢، موهان مادان بورو١، لیتون

هند شیلونگ، هیل، شرقی شمال دانشگاه ریاضیات، ١گروه

هند شیلونگ، هیل، شرقی شمال دانشگاه اجتماعی، علوم و پایه علوم ٢گروه

هند گواهاتی، گاوهاتی، دانشگاه ریاضیات، ٣گروه

یکه گراف باشد. آن یکه عناصر همه ی مجموعه ی U(S) و یکدار جابه جایی نیم حلقه ی S می کنیم فرض
رأس دو و می باشد S آن رئوس مجموعه ی که است غیرجهتی گرافی می شود، داده نشان G(S) با که S
G(S) یکه گراف مطالعه ی به ما مقاله، این در .x + y ∈ U(S) هرگاه مجاورند آن در y و x متمایز
بررسی را کمر و قطر همبندی، بودن، دوبخشی بودن، کامل مانند گراف این خواص برخی و می پردازیم

است. پیمایش قابل گراف G(S) آن، تحت که می دهیم ارائه کافی و لازم شرطی همچنین، می کنیم.

پیمایش. قابل کمر، قطر، همبندی، یکه، گراف کلیدی: کلمات
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