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n−ABSORBING I−PRIME HYPERIDEALS IN
MULTIPLICATIVE HYPERRINGS

A. A. MENA∗ AND I. AKRAY

Abstract. In this paper, we define the concept I−prime hyper-
ideal in a multiplicative hyperring R. A proper hyperideal P of
R is an I−prime hyperideal if for a, b ∈ R with ab ⊆ P − IP
implies a ∈ P or b ∈ P . We provide some characterizations of
I−prime hyperideals. Also we conceptualize and study the no-
tions 2−absorbing I−prime and n−absorbing I−prime hyperideals
into multiplicative hyperrings as generalizations of prime ideals. A
proper hyperideal P of a hyperring R is an n−absorbing I−prime
hyperideal if for x1, · · · , xn+1 ∈ R such that x1 · · ·xn+1 ⊆ P − IP ,
then x1 · · ·xi−1xi+1 · · ·xn+1 ⊆ P for some i ∈ {1, · · · , n+ 1}. We
study some properties of such generalizations. We prove that if P
is an I−prime hyperideal of a hyperring R, then each of P

J , S−1P ,
f(P ), f−1(P ),

√
P and P [x] are I−prime hyperideals under suit-

able conditions and suitable hyperideal I, where J is a hyperideal
contains in P . Also, we characterize I−prime hyperideals in the
decomposite hyperrings. Moreover, we show that the hyperring
with finite number of maximal hyperideals in which every proper
hyperideal is n−absorbing I−prime is a finite product of fields.

1. Introduction

Many concepts in modern algebra was generalized by generalizing
their structures to hyperstructure. The French mathematician F. Marty
in 1934 introduced the concept hyperstructure or multioperation
by returning a set of values instead of a single value [11]. The
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hyperstructures theory was studied from many points of view and
applied to several areas of mathematics especially in computer science
and logic. In [11] the author presented the concept hypergroup and
after that in 1937, the authors H. S. Wall [16] and M. Kranser [10] also
gave their respective definitions of hypergroup as a generalization of
groups.

The hyperrings were introduced by many authors. A type of
hyperring where the multiplication is a hyperoperation while the
addition is just an operation introduced by Rota in 1982 and called a
multiplicative hyperring [13]. A well known example on multiplicative
hyperring is that for a ring (R,+, ·) and corresponding to every non-
singleton subset A ∈ P ∗(R) = P (R)\{ϕ} where P (R) is the power
set of R, there exists a multiplicative hyperring with absorbing zero
(RA,+, ◦) where RA = R and for any x, y ∈ RA,

x ◦ y = {x · a · y : a ∈ A}

(see [12, 15]). Another type of hyperring in which addition is a
hyperoperation while the multiplication is an operation introduced by
M. Krasner in 1983 and called Krasner hyperring [10]. The hyper-
rings in which the additions and multiplications are hyperoperations
where introduced by De Salvo [8]. Procesi and Rota in [12] have
conceptualized the notion of primeness of hyperideal in a
multiplicative hyperring. A proper hyperideal P is called prime
hyperideal if ab ⊆ P , then a ∈ P or b ∈ P . The radical of a hyperideal
P denoted by

√
P is the intersection of all prime hyperideals that

contains P . Some generalizations of prime hyperideals can be found in
[3, 7, 14] .

In the recent years many generalizations of prime ideals were
introduced. Here state some of them. The authors in [4] and [5]
introduced the notions 2−absorbing and n−absorbing ideals in
commutative rings. A proper ideal P is called 2−absorbing (or
n−absorbing) ideal if whenever the product of three (or n + 1)
elements of R in P , the product of two (or n) of these elements is
in P .

In [1] and [2], the author Akray introduced the notions I−prime ideal
and n−absorbing I−ideal in classical rings as a generalization of prime
ideals. For fixed proper ideal I of a commutative ring R with identity,
a proper ideal P of R is an I−prime if for a, b ∈ R with a.b ∈ P − IP ,
then a ∈ P or b ∈ P . A proper ideal P of R is an n−absorbing
I−ideal if for x1, · · · , xn+1 ∈ R such that x1 · · ·xn+1 ∈ P − IP , then
x1 · · ·xi−1xi+1 · · ·xn+1 ∈ P for some i ∈ {1, 2, · · · , n+ 1}.
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In this paper all hyperrings are commutative hyperring with
identity. Here we want to define the I−prime hyperideal, 2−absorbing
I−hyperideal and n−absorbing I−hyperideal in multiplicative
hyperrings. For fixed proper hyperideal I of a multiplicative
hyperring R, a proper hyperideal P of R is an I−prime if a, b ∈ R
with a.b ⊆ P − IP , then a ∈ P or b ∈ P . A proper hyperideal P of R
is a 2−absorbing I−prime hyperideal if for x1, x2, x3 ∈ R such that

x1x2x3 ⊆ P − IP ,
then x1x2 ⊆ P or x1x3 ⊆ P or x2x3 ⊆ P . A proper hyperideal P of
R is an n−absorbing I−prime hyperideal if for x1, · · · , xn+1 ∈ R such
that x1 · · ·xn+1 ⊆ P − IP , then x1 · · ·xi−1xi+1 · · ·xn+1 ⊆ P for some
i ∈ {1, 2, · · · , n+ 1}.

In section two, we define I−prime hyperideal and we prove some
equivalents of I−prime hyperideal (Theorem 2.18). Moreover, we
establish I−prime hyperideals in finite product of hyperrings
(Theorem 2.20). Section three devoted for 2−absorbing I−prime and
n−absorbing I−prime hyperideals and we prove Theorem 3.9 which
state (Let R =

∏n+1
i=1 Ri and P be a proper non-zero hyperideal of R.

If P is an (n+ 1)−absorbing I−prime hyperideal of R, then
P = P1 × P2 × · · · × Pn+1

for some proper n−absobing Ii−prime hyperideals P1, · · · , Pn+1 of
R1, · · · , Rn+1 respectively, where I =

∏n+1
i=1 Ii and Ii = Ri,

∀i = 1, 2, · · · , n + 1). Also, we prove Theorem 3.11 that state (Let
| Max(R) |≥ n + 1 ≥ 2. Then each proper hyperideal of R is an
n−absorbing I−prime hyperideal if and only if each quotient of R
is a product of (n + 1)−fields). Finally, let P be an n−absorbing
I−hyperideal of a hyperring R. Then there are at most nth prime
hyperideals of R that are minimal over P (Theorem 3.13).

2. I−prime hyperideals

We start this section by defining the concept of I−prime hyperideal
and some example of it. A proper hyperideal P of R is an I−prime
hyperideal if for a, b ∈ R with ab ⊆ P − IP implies a ∈ P or b ∈ P .

In the following examples we show that the class of I−prime
hyperideals contains properly the class of prime hyperideals.

Example 2.1. Consider the hyperring of integers (Z,+, ◦),
A = {0, 1} ⊆ Z

and n ◦m = {nam : a ∈ A} = {0, nm}. So 4Z is not prime hyperideal,
since 2 ◦ 2 = {0, 4} ⊆ 4Z and 2 /∈ 4Z. But 4Z is 2Z-prime hyperideal,
since ∀a, b ∈ Z, a ◦ b = {0, ab} ⊈ 4Z− (2Z ◦ 4Z) = 4Z− 8Z.
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Example 2.2. Let (Z,+, ◦) be the hyperring of integers and
A = {4, 8} ⊆ Z and a◦b = aAb = {4ab, 8ab}. Then 1◦1 = {4, 8} ⊆ 2Z
but 1 /∈ 2Z and hence 2Z is not prime hyperideal. However 2Z is not
8Z−prime hyperideal, since

2Z− (8Z ◦ 2Z) = 2Z− (64Z ∪ 128Z) = 2Z− 64Z
which contains 1 ◦ 1. Therefore, 2Z is neither prime hyperideal nor
8Z-prime hyperideal of (Z,+, ◦).

The intersection of two I−prime hyperideals is not I−prime
hyperideal let us explain our claim by this example.

Example 2.3. Consider the hyperring of integers (Z,+, ◦), where
a ◦ b = {2ab, 3ab}. Let P = 2Z, I = 3Z and

P − IP = 2Z− (3Z) ◦ (2Z)
= 2Z− 6AZ
= 2Z− (12Z ∪ 18Z).

Thus P is I−prime hyperideal. Now, for Q = 3Z and I = 3Z we have
Q− IQ = 3Z− (3Z) ◦ (3Z)

= 3Z− 9AZ
= 3Z− (18Z ∪ 27Z).

So Q is I−prime hyperideal of Z while P ∩ Q = 6Z is not 3Z−prime
hyperideal, since

6Z− (3Z) ◦ (6Z) = 6Z− (36Z ∪ 54Z)2 ◦ 3
= {12, 18}
⊆ 6Z− (36Z ∪ 54Z),

but neither 2 ∈ 6Z nor 3 ∈ 6Z.

The following lemma is a generalization of Lemma 2.1 in [1].

Lemma 2.4. Let P be a proper hyperideal of a hyperring (R,+, ◦).
Then P is an I-prime hyperideal if and only if P/IP is weakly prime
hyperideal in R/IP .

Proof. (⇒) Let P be an I-prime hyperideal in (R,+, ◦). Let a, b ⊆ R
with

{0} ̸= (a+ IP )(b+ IP ) = a ◦ b+ IP ∈ P/IP .
Then a ◦ b ⊆ P − IP implies a ⊆ P or b ⊆ P , hence a + IP ⊆ P/IP
or b + IP ⊆ P/IP . So P/IP is weakly prime hyperideal in R/IP .
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(⇐) Suppose that P/IP is weakly prime hyperideal in R/IP and take
r, s ⊆ R such that r ◦ s ⊆ P − IP . Then

{0} ̸= r ◦ s+ IP = (r + IP )(s+ IP ) ⊆ P/IP

so r + IP ⊆ P/IP or s + IP ⊆ P/IP . Therefore r ⊆ P or s ⊆ P .
Thus P is an I-prime hyperideal in R. □

Let (R,+, ◦) be a hyperring and x be an indeterminate. Then
(R[x],+, •) is a polynomial multiplicative hyperring where
axn • bxm = (a ◦ b)xn+m (see [6]).

Theorem 2.5. If P is an I−prime hyperideal of (R,+, ◦), then P [x]
is I[x]−prime hyperideal of (R[x],+, •) .

Proof. Let a(x) • b(x) ⊆ P [x]− I[x] • P [x] = P [x]− (IP )[x]. Without
loss of generality, let a(x) = cxn and b(x) = dxm, for c, d ∈ R. Thus
c◦dxn+m ⊆ P [x] so c◦d ⊆ P and c◦dxn+m ⊈ IP [x] implies c◦d ⊈ IP . P
I−prime hyperideal gives us c ∈ P or d ∈ P . Hence a(x) = cxn ∈ P [x]
or b(x) = dxm ∈ P [x] and so P [x] is an I[x]−prime. □
Corollary 2.6. Let P be an I−prime hyperideal of R. Then P [x] is
an I−prime hyperideal of R[x].

Theorem 2.7. Let R be a hyperring and f : R −→ R be a good
epiomorphism and let P be an I-prime hyperideal of R with Kerf ⊆ P .
Then f(P ) is an I−prime hyperideal.

Proof. Firstly, we have to show that f(P ) is hyperideal of R. Let r̄ ∈ R
and y ∈ f(P ). Then x = f−1(y) ∈ P and there exists r ∈ R such that
f(r) = r̄. So r̄.y = f(r).f(x) = f(r.x) ⊆ f(P ). Now let us show that
f(P ) is an I−prime hyperideal. To do this, we have for all x, y ∈ R
there exist a, b ∈ R such that x = f(a), y = f(b). Then

x.y = f(a).f(b) = f(a.b) ⊆ f(P ),
so a.b ⊆ P +Kerf . As P is an I−prime hyperideal, a ∈ P or b ∈ P ,
that is x = f(a) ∈ f(P ) or y = f(b) ∈ f(P ). So f(P ) is an I−prime
hyperideal of R. □
Theorem 2.8. Let (R,+, ◦) be a hyperring and f : R −→ R be a good
homomorphism and let Q be an I-prime hyperideal of R. Then f−1(Q)
is an I−prime hyperideal.

Proof. Let a ◦ b ⊆ f−1(Q). Then f(a ◦ b) = f(a) ◦ f(b) ⊆ Q because
f is a good homomorphism. As Q is I−prime hyperideal, f(a) ∈ Q
or f(b) ∈ Q. So, a ∈ f−1(Q) or b ∈ f−1(Q) and hence f−1(Q) is an
I−prime hyperideal of R. □
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The following theorem generalizes Theorem 2.2 of [1].

Theorem 2.9. (1) Let I ⊆ J be two hyperideals of a multiplicative
hyperring R. If P is an I−prime hyperideal of R, then it is a J−prime
hyperideal.

(2) Let R be a commutative multiplicative hyperring and P an
I-prime hyperideal that is not prime hyperideal, then P 2 ⊆ IP . Thus,
an I-prime hyperideal P with P 2 ⊈ IP is a prime hyperideal.

Proof. (1) The proof comes from the fact that if I ⊆ J , then

P − JP ⊆ P − IP .

(2) Suppose that P 2 ⊈ IP , we show that P is prime hyperideal. Let
ab ⊆ P for a, b ∈ R. If ab ⊈ IP , then P I-prime gives a ∈ P or b ∈ P .
So assume that ab ⊆ IP . First, suppose that aP ⊈ IP ; say ax ⊈ IP
for some x ∈ P . Then a(x+ b) ⊆ P − IP . So a ∈ P or x+ b ∈ P and
hence a ∈ P or b ∈ P . Hence we can assume that aP ⊆ IP and in a
similar way we can assume that bP ⊆ IP . Since P 2 ⊈ IP , there exist
y, z ∈ P with yz ⊈ IP . Then (a+ y)(b+ z) ⊆ P − IP . So P I-prime
gives a + y ∈ P or b + z ∈ P and hence a ∈ P or b ∈ P . Therefore P
is a prime hyperideal of R see also [1] . □

Corollary 2.10. Let P be an I-prime hyperideal of a hyperring R with
IP ⊆ P 3. Then P is ∩∞

i=1P
i-prime hyperideal.

Proof. If P is prime hyperideal, then P is ∩∞
i=1P

i-prime hyperideal.
Assume that P is not prime hyperideal. By Theorem 2.5,

P 2 ⊆ IP ⊆ P 3.

Thus IP = P n for each n ≥ 2. So ∩∞
i=1P

i = P ∩ P 2 = P 2 and
(∩∞

i=1P
i)P = P 2P = P 3 = IP . Being P is I-prime hyperideal implies

P is ∩∞
i=1P

i-prime hyperideal. □

Remark 2.11. Let P be an I-prime hyperideal. Then P ⊆
√
IP or√

IP ⊆ P . If P &
√
IP , then P is not prime hyperideal since otherwise

IP ⊆ P implies
√
IP ⊆

√
P = P . While if

√
IP ⊊ P , then P is a

prime hyperideal. Now we give a way to construct I-prime ideals P
when ∩∞

i=1P
i ⊆ IP ⊆ P 3.

Corollary 2.12. Let P be an I−prime hyperideal of a hyperring R
which is not prime hyperideal. Then

√
P =

√
IP .

Proof. By Theorem 2.5, P 2 ⊆ IP and hence
√
P =

√
P 2 ⊆

√
IP . The

other containment always holds. □



n−ABSORBING I−PRIME 111

Remark 2.13. Assume that P is an I−prime hyperideal, but not prime.
Then by Theorem 2.5, if IP ⊆ P 2, then P 2 = IP . In particular, if P
is weakly prime hyperideal (0-prime) but not prime hyperideal, then
P 2 = {0}. Suppose that IP ⊆ P 3. Then P 2 ⊆ IP ⊆ P 3; So P 2 = P 3

and thus P 2 is an idempotent.

Lemma 2.14. If P is an I−primary hyperideal of a hyperring R, then√
P is a

√
I−prime hyperideal of R.

Proof. Let ab ⊆
√
P −

√
I
√
P =

√
P −

√
IP for a, b ∈ R. Then

(ab)n = anbn ⊆ P for some n ∈ N and (ab)m ⊈ IP for all m ∈ N. So
anbn ⊆ P − IP and as P is an I−primary hyperideal of R, an ⊆ P
or bn ⊆

√
P , that is a ∈

√
P or b ∈

√
P which means that

√
P is a√

I−prime hyperideal of R. □
The following theorem generalizes the result [1, Theorem 2.8].

Theorem 2.15. (1) Let R and S be two commutative multiplicative
hyperrings and P be {0}−prime hyperideal of R. Then P×S is I-prime
hyperideal of R× S for each hyperideal I of R× S with

∩∞
i=1(P × S)i ⊆ I(P × S) ⊆ P × S.

(2) Let P be a finitely generated proper hyperideal of a commutative
hyperring R. Assume P is an I-prime hyperideal with IP ⊆ P 3. Then
either P is {0}−prime or P 2 ̸= {0} is idempotent and R decomposes
as T ×S where S = P 2 and P = J ×S where J is a {0}−prime. Thus
P is I-prime hyperideal for ∩∞

i=1P
i ⊆ IP ⊆ P .

Proof. (1) Let R and S be two commutative hyperrings and P be a
{0}−prime hyperideal of R. Then P × S need not be a {0}−prime
hyperideal of R× S; In fact, P × S is {0}−prime if and only if P × S
(or equivalently P ) is prime hyperideal. However, P × S is an I-prime
hyperideal for each I with ∩∞

i=1(P × S)i ⊆ I(P × S). If P is prime
hyperideal, then P × S is a prime hyperideal and thus is I-prime for
all I. Assume that P is not a prime hyperideal. Then P 2 = {0} and
(P × S)2 = {0} × S. Hence ∩∞

i=1(P × S)i = ∩∞
i=1P

i × S = {0} × S.
Thus

P × S − ∩∞
i=1(P × S)i = P × S − {0} × S = (P − {0})× S.

Since P is {0}−prime hyperideal, P × S is ∩∞
i=1(P × S)i-prime

hyperideal and as ∩∞
i=1(P × S)i ⊆ I(P × S), P × S is I-prime

hyperideal.
(2) If P is a prime hyperideal, then P is {0}−prime. So we can

assume that P is not prime hyperideal. Then P 2 ⊆ IP and hence
P 2 ⊆ IP ⊆ P 3. So P 2 = P 3. Hence P 2 is idempotent. Since P 2
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is finitely generated, P 2 =< e > for some idempotent e ∈ R. Sup-
pose P 2 = {0}. Then IP ⊆ P 3 = {0}. So IP = {0} and hence
P is {0}−prime. So assume P 2 ̸= {0}. Put S = P 2 = <e> and
T =< 1 − e >, so R decomposes as T × S where S = P 2. Let
J = P (1− e), so P = J × S where

J2 = (P (1− e))2 = P 2(1− e)2 =< e >< 1− e >= {0}.
We show that J is {0}−prime hyperideal. Let a ◦ b ⊆ J − {0}, so

(a, 1)(b, 1) = (a ◦ b, 1)
⊆ J × S − (J × S)2

= J × S − {0} × S

⊆ P − IP.

Since IP ⊆ P 3 implies IP ⊆ P 3 = (J × S)3 = {0} × S. Hence
(a, 1) ∈ P or (b, 1) ∈ P so a ∈ J or b ∈ J . Therefore J is a {0}−prime
hyperideal. □
Corollary 2.16. Let (R,+, ◦) be an indecomposable commutative
hyperring and P a finitely generated I-prime hyperideal of (R,+, ◦),
where IP ⊆ P 3. Then P is a {0}−prime hyperideal.
Corollary 2.17. Let (R,+, ◦) be a Noetherian integral hyperdomain.
A proper hyperideal P of R is prime hyperideal if and only if P is
P 2-prime hyperideal.

The next theorem is a generalization of [1, Theorem 2.12].
Theorem 2.18. Let P be a proper hyperideal of a hyperring R. Then
the following assertions are equivalent:

(1) P is I-prime hyperideal.
(2) For r ∈ R− P , (P : r) = P ∪ (IP : r).
(3) For r ∈ R− P , (P : r) = P or (P : r) = (IP : r).
(4) For hyperideals J and K of R, JK ⊆ P and JK ⊈ IP imply

J ⊆ P or K ⊆ P .
Proof. (1) ⇒ (2) Suppose r ∈ R − P . Let s ∈ (P : r), so rs ⊆ P .
If rs ⊆ P − IP , then s ∈ P . If rs ⊆ IP , then s ∈ (IP : r). So
(P : r) ⊆ P ∪ (IP : r). The other containment always holds.

(2) ⇒ (3) Note that if a hyperideal is a union of two hyperideals,
then it is equal to one of them.

(3) ⇒ (4) Let J and K be two hyperideals of R with JK ⊆ P .
Assume that J ⊈ P and K ⊈ P . We claim that JK ⊆ IP . Suppose
r ∈ J . First, let r /∈ P . Then rK ⊆ P gives K ⊆ (P : r). Now K ⊈ P ,
so (P : r) = (IP : r). Thus rK ⊆ IP . Next, let r ∈ J ∩ P . Choose
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s ∈ J − P . Then r + s ∈ J − P . By the first case sK ⊆ IP and so
(r+s)K ⊆ IP. Pick t ∈ K. Then rt = (r+s)t−st ⊆ IP and rK ⊆ IP.
Hence JK ⊆ IP .
(4) ⇒ (1) Let rs ∈ P − IP. Then (r)(s) ⊆ P . But (r)(s) ⊈ IP. So

(r) ⊆ P or (s) ⊆ P which means r ∈ P or s ∈ P. □
Proposition 2.19. Let P be an I-prime hyperideal of a hyperring R
and J ⊆ P be a hyperideal of R. Then P/J is I−prime hyperideal of
R/J .

Proof. Let x, y ∈ R with x̄ ◦ ȳ ⊆ P/J − I(P/J) = P/J − (IP + J)/J
where x̄, ȳ are the images of x, y in R/J . Thus x ◦ y ⊆ P − IP . So
x ∈ P or y ∈ P . Therefore x̄ ∈ P/J or ȳ ∈ P/J . So P/J is I-prime
hyperideal. □

Let R1 and R2 be two hyperrings. It is known that the prime
hyperideals of R1 × R2 have the form P × R2 or R1 × Q, where P
is a prime hyperideal of R1 and Q is a prime hyperideal of R2. We next
generalize this result to I-prime hyperideals.

Theorem 2.20. Let Ri be a hyperring and Ii a hyperideal of Ri for
i = 1, 2. Let I = I1× I2. Then the I-prime hyperideals of R1×R2 have
exactly one of the following three types:

(1) P1 × P2, where Pi is a proper hyperideal of Ri with IiPi = Pi.
(2) P1×R2 where P1 is an I1-prime hyperideal of R1 and I2R2 = R2.
(3) R1×P2, where P2 is an I2-prime hyperideal of R2 and I1R1 = R1.

Proof. We first prove that a hyperideal of R1 ×R2 having one of these
three types is I-prime hyperideal. The first type is clear since

P1 × P2 − I (P1 × P2) = P1 × P2 − (I1P1 × I2P2) = ϕ.
Suppose that P1 is I1-prime hyperideal and I2R2 = R2. Let

(a, b)(x, y) ⊆ P1 ×R2 − (I1P1 × I2R2)

= P1 ×R2 − (I1P1 ×R2)

= (P1 − I1P1)×R2.

Then ax ⊆ P1− I1P1 implies that a ∈ P1 or x ∈ P1, so (a, b) ∈ P1×R2

or (x, y) ∈ P1×R2. Hence P1×R2 is I-prime hyperideal. Similarly we
can prove the last case. Next, let P1×P2 be I-prime and ab ⊆ P1−I1P1.
Then

(a, 0)(b, 0) = (ab, 0) ∈ P1 × P2 − I (P1 × P2),
so (a, 0) ∈ P1 × P2 or (b, 0) ∈ P1 × P2, that is, a ∈ P1 or b ∈ P1. Hence
P1 is I1-prime. Likewise, P2 is I2-prime.
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Assume that P1×P2 ̸= I1P1×I2P2, say P1 ̸= I1P1. Let x ∈ P1−I1P1

and y ∈ P2. Then (x, 1)(1, y) = (x, y) ∈ P1 × P2. So (x, 1) ∈ P1 × P2

or (1, y) ∈ P1 × P2. Thus P2 = R2 or P1 = R1. Assume that P2 = R2.
Then P1 ×R2 is I-prime, where P1 is I1-prime.

□

3. n−absorbing I−prime hyperideals

We start this section by the definition of n−absorbing I−prime
hyperideals.

Definition 3.1. A proper hyperideal P of a hyperring R is a
2−absorbing I−prime hyperideal if for x1, x2, x3 ∈ R such that
x1x2x3 ⊆ P − IP , then x1x2 ⊆ P or x1x3 ⊆ P or x2x3 ⊆ P . A
proper hyperideal P of R is an n−absorbing I−prime hyperideal if for
x1, · · · , xn+1 ∈ R such that x1 · · ·xn+1 ⊆ P − IP , then

x1 · · ·xi−1xi+1 · · ·xn+1 ⊆ P

for some i ∈ {1, 2, · · · , n+ 1}.

It is clear that the class of n−absorbing I−prime hyperideals
contains properly the class of n−absorbing hyperideals. As we can
see this in the following example.

Example 3.2. Let K be a hyperfield and R = K[x1, · · · , xn+2] be a
polynomial multiplicative hyperring. Consider the hyperideals

P =< x1 · · ·xn+1, x
2
1 · · ·xn, x

2
1xn+2 >

and I =< x1 · · ·xn >. So
P − IP =< x1 · · ·xn+1, x

2
1 · · ·xn, x

2
1xn+2 >

− < x1 · · ·xn+1, x
2
1 · · ·xn, x

2
1 · · ·xnxn+2 > .

Hence P is an n−absorbing I−prime hyperideal but not n−absorbing
hyperideal.

Lemma 3.3. Let P be an I−prime hyperideal of R and K be a subset
of R. For any a ∈ R, aK ⊆ P, aK ⊈ IP and a /∈ P implies that
K ⊆ P . (or aK ⊆ P and K ⊈ P imply that a ∈ P ).

Proof. Let aK ⊆ P and a /∈ P for any a ∈ R. Then we have
aK = ∪aki ⊆ P for all ki ∈ K. Hence aki ⊆ P and aki ⊈ IP for all
ki ∈ K. Since P is an I−prime hyperideal and a /∈ P , ki ∈ P, ∀ki ∈ K.
Thus K ⊆ P . □
Lemma 3.4. Let P be an I−prime hyperideal of R and A,B be subsets
of R. If AB ⊆ P and AB ⊈ IP , then A ⊆ P or B ⊆ P .
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Proof. Assume that AB ⊆ P,AB ⊈ IP and A ⊈ P , B ⊈ P . Since
AB =

∪
aibi ⊆ P , aibi ⊆ P , for ai ∈ A, bi ∈ B. And as A ⊈ P and

B ⊈ P , we have x /∈ P and y /∈ P for some x ∈ A, y ∈ B. Then
xy ⊆ AB ⊆ P and xy ⊈ IP . From being P an I−prime hyperideal,
we have x ∈ P or y ∈ P which is a contradiction. Thus A ⊆ P or
B ⊆ P . □

Every I−prime hyperideal is a 2−absorbing I−prime hyperideal.
Since for (ab)c ⊆ P − IP , we have ab ⊆ P or bc ⊆ P . If ab ⊈ P then
by I−prime hyperideal of P , we have c ∈ P and so ac ∈ P or bc ∈ P .
Hence P is a 2−absorbing I−prime hyperideal of R.

Lemma 3.5. Let P be a hyperideal of R and P1, P2, . . . , Pn be
2−absorbing primary hyperideals of R such that

√
Pi = P for all

i = 1, . . . , n. Then
∩n

i=1 Pi is a 2-absorbing I−prime hyperideal and∩n
i=1 Pi = P .

Proof. Assume P =
∩n

i=1 Pi and so
√
P =

√
∩n

i=1Pi = ∩n
i=1

√
Pi = P .

Let xyz ⊆ P − IP with xy ⊈ P , for x, y, z ∈ R. Thus xy ⊈ Pi for
some i = 1, 2, · · · , n. From being Pi a 2-absorbing primary hyperideal
and xyz ⊆ P − IP ⊆ Pi, hence xz ⊆

√
Pi = P or yz ⊆

√
Pi = P which

means that P is a 2-absorbing I−prime hyperideal of R. □

Theorem 3.6. Let h : R → L be a bijective good homomorphism of
hyperrings and P be a 2-absorbing I−prime hyperideal of L. Then
h−1(P ) is a 2-absorbing h−1(I)−prime hyperideal of R.

Proof. Suppose that abc ⊆ h−1(P ), h−1(I)h−1(P ) = h−1(P )−h−1(IP ),
for a, b, c ∈ R. So h(abc) = h(a)h(b)h(a) ⊆ P and h(abc) ⊈ IP . From
being P a 2-absorbing I−prime hyperideal, we have h(a)h(b) ⊆ P or
h(a)h(c) ⊆ P or h(b)h(c) ⊆ P , that is h(ab) ⊆ P or h(ac) ⊆ P or
h(bc) ⊆ P which implies ab ⊆ h−1(P ) or ac ⊆ h−1(P ) or bc ⊆ h−1(P ).
So h−1(P ) is a 2-absorbing h−1(I)−prime hyperideal of R. □

Theorem 3.7. Suppose that P is an n−absorbing I−prime hyperideal
of R. Then

√
P is an n−absorbing

√
I−prime hyperideal of R and

an ⊆ P for all a ∈
√
P .

Proof. Let a ∈
√
P . Then am ⊆ P for some m ∈ N. If m ≤ n, we

are done. If m > n, by using the n-absorbing I−prime property on
products am, we conclude that an ⊆ P . Now, consider

a1 · · · an+1 ⊆
√
P −

√
I
√
P =

√
P −

√
IP
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for a1, · · · , an+1 ∈ R. Thus (a1 . . . an+1)
n = an1 · · · ann+1 ⊆ P . If

an1 · · · ann+1 ⊆ IP , then a1 · · · an+1 ⊆
√
IP which is a contradiction.

Hence an1 · · · ann+1 ⊆ P − IP and P n-absorbing I−prime hyperideal
gives us the desired. □

Lemma 3.8. Let Pi be an ni−absorbing I−prime hyperideal of a
hyperring R for i = 1, 2, · · · ,m and IPi = IPj, for i ̸= j, Then
∩m

i=1Pi is an n−absorbing I−prime hyperideal where n =
∑m

i=1 ni.

Proof. Let k > n and x1 · · ·xk ⊆ ∩m
i=1Pi−I∩m

i=1Pi. Then by hypothesis
for each i = 1 · · ·m, there exists a product of ni of these k−elements in
Pi. Let Ai be the collection of these elements and let A = ∪k

i=1Ai. Thus
A has at most n−elements. Now, as Pi is an n−absorbing I−prime
hyperideal, the product of all elements of A must be in each Pi so
∩Pi contains a product of at most n−elements and therefore it is an
n−absorbing I−prime hyperideal of R. □

Theorem 3.9. Let R =
∏n+1

i=1 Ri and P be a proper non-zero hyperideal
of R. If P is an (n+ 1)−absorbing I−prime hyperideal of R, then

P = P1 × P2 × · · · × Pn+1

for some proper n−absobing Ii−prime hyperideals P1, · · · , Pn+1

of R1, · · · , Rn+1 respectively, where I =
∏n+1

i=1 Ii and Ii = Ri,
∀i = 1, 2, · · · , n+ 1.

Proof. Let x1, · · · , xn+1 ∈ R with

x1 · · ·xn+1 ⊆ P1 − I1P1

and suppose by contrary that P1 is not an n−absorbing I1−prime
hyperideal of R1. Set ai = (xi, 1, 1, · · · , 1) for i = 1, 2, · · · , n + 1 and
an+2 = (1, 0, · · · , 0). Then we have

a1a2 · · · an+2 = (x1x2 · · ·xn+1, 0, 0, · · · , 0) ⊆ P − IP

and

a1 · · · ai−1ai+1 · · · an+2 = (x1x2 · · ·xi−1xi+1 · · ·xn+1, 0, · · · , 0) ⊈ P

for i = 1, · · · , n+1, which contradicts with being P an (n+1)−absorbing
I−prime hyperideal. Hence P1 must be an n−absorbing I1−prime
hyperideal of R1. By similar arguments, we can show that Pi is an
n−absorbing Ii−prime hyperideal of Ri for i = 1, · · · , n+ 1. □

Theorem 3.10. Let R =
∏n+1

i=1 Ri, where Ri is a hyperring for
i ∈ {1, · · · , n + 1}. If P is an n−absorbing I−prime hyperideal of
R, then either P = IP or
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P = P1 × P2 × · · · × Pi−1 ×Ri × Pi+1 · · · × Pn+1

for some i ∈ {1, · · · , n + 1} and if Pj ̸= Ri for j ̸= i, then Pj is an
n−absorbing hyperideal in Ri.

Proof. Let P =
∏n+1

i=1 Pi be an n−absorbing I−prime hyperideal of R.
Then there exists (x1, · · · , xn+1) ⊆ P − IP , and so
(x1, 1, · · · , 1)(1, x2, 1 · · · , 1) · · · (1, 1, · · · , 1, xn+1) = (x1, x2, · · · , xn+1)

⊆ P − IP.

As P is an n−absorbing I−prime hyperideal, we have
(x1, x2, · · · , xi−1, 1, xi+1, · · · , xn+1) ⊆ P

for some i ∈ {1, 2, · · · , n + 1}. Thus (0, 0, · · · , 0, 1, 0, · · · , 0) ∈ P and
hence P = P1 × P2 × · · · × Pi−1 × Ri × Pi+1 · · · × Pn+1. If Pj ̸= Ri for
j ̸= i, then we have to prove Pj is an n−absorbing hyperideal of Ri.
Let i < j and take x1x2 · · ·xn+1 ⊆ Pj. Then
(0, 0, · · · , 0, 1, 0, · · · , 0, x1x2 · · ·xn+1, 0 · · · , 0)
= (0, 0, · · · , 1, 0, · · · , 0, x1, 0 · · · , 0)(0, 0, · · · , 1, 0, · · · , 0, x2, 0 · · · , 0)

· · · (0, 0, · · · , 1, 0, · · · , 0, xn+1, 0 · · · , 0)
⊆ P − IP.

Since P is an n−absorbing I−prime hyperideal,
(0, 0, · · · , 0, 1, 0, · · · , 0, x1x2 · · ·xk−1xk+1 · · ·xn+1, 0, · · · , 0) ∈ P

for some k ∈ {1, 2, · · · , n + 1}. Thus x1x2 · · ·xk−1xk+1 · · ·xn+1 ∈ Pj

and hence Pj is an n−absorbing hyperideal of Ri. We can do similar
arguments for the case i > j. □

In the following result, we characterize hyperrings in which every
proper hyperideal of R is an n−absorbing I−prime hyperideal.

Theorem 3.11. Let | Max(R) |≥ n + 1 ≥ 2. Then each proper
hyperideal of R is an n−absorbing I−prime hyperideal if and only
if each quotient of R is a product of (n+ 1)−fields.

Proof. (⇒) Let P be a proper hyperideal of R. Then
R
IP

∼= F1 × · · · × Fn+1

and P
IP

∼= P1×· · ·×Pn+1, where Pi is a hyperideal of Fi, i = 1, · · · , n+ 1.
If P = IP then there is nothing to prove, otherwise we have
Pj = 0, for at least one j ∈ {1, · · · , n+ 1} since P

IP
is proper. So,

P
IP

is an n−absorbing 0−prime hyperideal of R
IR

which means P is an
n−absorbing I−prime hyperideal of R.
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(⇐) Let m1, · · · ,mn+1 be distinct maximal hyperideals of R. Then
m =

∏n+1
i=1 mi is an n−absorbing I−hyperideal of R. we claim that m

is not an n−absorbing hyperideal. First, if mi ⊆ ∪i ̸=jmj, then there
exist mj with mi ⊆ mj by Prime Avoidance Lemma and this con-
tradicts the maximality of mi. Hence mi ⊈ ∪i ̸=jmj and so, there
exists xi ∈ mi − ∪n+1

i ̸=j mj so that x1 · · ·xn+1 ⊆ m. If there exists
j ∈ {1, · · · , n+ 1} with

a = x1x2 · · ·xj−1xj+1 · · ·xn+1 ⊆ m ⊆ mj,

then xi ∈ mj for some i ̸= j which is a contradiction. Hence m is
not an n−absorbing hyperideal and so mn+1 = Im. Then by Chinese
Remainder Theorem we have R

Im
≃ R

mn+1
1

× R
mn+1

2

× ... × R
mn+1

n+1

. Put
Fi =

R
mn+1

1

. If Fi is not a field, then it has a nonzero proper hyperideal
H and so 0×0×· · ·×0×H×0×· · ·×0 is an n−absorbing 0−hyperideal
of R

Im
. Thus, by Lemma 3.10 we have H = Fi or H = 0 which is

impossible. Hence Fi is a field. □
Corollary 3.12. Suppose | Max(R) |≥ n + 1 ≥ 2. Then each
proper hyperideal of R is an n−absorbing 0−hyperideal if and only if
R ∼= F1 × · · · × Fn+1, where F1, · · · , Fn+1 are fields.

Theorem 3.13. Let P be an n−absorbing I−prime hyperideal of a
hyperring R. Then there are at most nth prime hyperideals of R that
are minimal over P .

Proof. Let C = {qi : qi is a prime hyperideal minimal overP} and let
C has at least n elements. Assume q1, · · · , qn ∈ C are distinct elements
and xi ∈ qi − ∪j ̸=iqj for i = 1, · · · , n. By [9, Theorem 2.1], there is
a yi /∈ qj such that yix

ti
i ⊆ P for i = 1, · · · , n and for some positive

integers t1, · · · , tn. Since xi /∈ ∩n
j=1qj and P an n−absorbing I−prime

hyperideal, we have yix
n−1
i ∈ P . As xi /∈ ∩n

j=1qj and

yix
n−1
i ⊆ P ⊆ ∩n

j=1qj,

we get yi ∈ qi − ∪j ̸=iqj, and so yi /∈ ∩n
j=1qj for i = 1, · · · , n. Since

yix
n−1
i ⊆ P ,

∑n
j=1 yj

∏n
i=1 x

n−1
i ⊆ P and clearly

∑n
j=1 yj /∈ qi, for

i = 1, · · · , n, and being P an n−absorbing I−prime hyperideal, we
have yix

n−1
i ∈ P . As xi /∈ ∩n

j=1qj and yix
n−1
i ⊆ P ⊆ ∩n

i=1qi, we get
yi ∈ qi − ∪j ̸=iqj and so yi /∈ ∩n

i=1qi for i = 1, · · ·n. Since yix
n−1
i ⊆ P ,

Σn
j=1yj

∏n
i=1 x

n+1
i ⊆ P and clearly Σn

j=1yj /∈ qi, for i = 1, · · ·n and
being P an n−absorbing I−prime hyperideal, we have∏n

i=1 x
n−1
i ⊆ P .
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Now, suppose qn+1 ∈ C such that qn+1 ̸= qi, for i = 1, · · · , n and
consequently zi ∈ qn+1 for i = 1, · · · , n which is a contradiction.
Therefore C has at least n elements. □

In a multiplicative hyperring (R,+, ◦) a non empty subset L of R is
called a multiplicative set whenever a, b ∈ A ⇒ a ◦ b ∩ A ̸= ϕ.

We can contract the localization of a multiplicative hyperring R as
follows: Let S be a multiplicative closed subset of R, that is, S is closed
under the hypermultiplication and contains the identity. Let S−1R be
the set (R× S/ ∼) of equivalence classes where

(r1, s1) ∼ (r2, s2) ⇐⇒ ∃s ∈ S such that ss1r2 = ss2r1.

Let r/s be the equivalence class of (r, s) ∈ R×S under the equivalence
relation ∼. The operation addition and the hyperoperation multiplica-
tion are defined by

r1
s1

+
r2
s2

=
s1r2 + s2r1

s1s2
= {a+ b

c
: a ∈ s1r2, b ∈ s2r1, c ∈ s1s2}

r1
s1

· r2
s2

=
r1r2
s1s2

= {a
b
, a ∈ r1r2, b ∈ s1s2}.

Note that the localization map f : R → S−1R, f(r) = r
1

is a
homomorphism of hyperrings. It is easy to see that the localization
of a hyperideal is a hyperideal.
Proposition 3.14. Let P be an I−prime hyperideal of R with
S ∩ P = ∅. Then S−1P is an S−1I−prime hyperideal of S−1R.
Proof. r1

s1
, r2
s2

∈ S−1R with
r1
s1

r2
s2

= r1r2
s1s2

⊆ S−1P − S−1IS−1P = S−1P − S−1(IP ).
For each n ∈ r1r2, s ∈ s1s2, we have n

s
∈ r1r2

s1s2
and n

s
= a

t
, where a ∈ P ,

t ∈ S. So there exists q ∈ S such that qtn = qsa. Hence qtn ⊆ P − IP
and so qr1r2 ⊆ P − IP . As P is an I−prime hyperideal, we have
qr1 ⊆ P or r2 ∈ P . Thus r1

s1
= qr1

qs1
∈ P or r2

s2
∈ S−1P . Therefore S−1P

is an S−1I−prime hyperideal of S−1R. □

4. Conclusion

In this article we transfer the notions I−prime ideals and
n−absorbing I−ideals in multiplicative hyperrings and named them
as I−prime hyperideal and n−absorbing I−prime hyperideal. We
study some properties of such two concepts and we see that they have
analogous properties of prime ideals. During the study, we found
out similar concepts that one can think about like 2 − I−primal
hyperideals, 2 − I−primal hypersubmodules and 2 − I−prime



120 MENA AND AKRAY

hypersubmodules.

Questions Readers can think about the following subjects:

(1) 2− I−primal hyperideals
(2) 2− I−primal hypersubmodules
(3) 2− I−prime hypersubmodules
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n-ABSORBING I-PRIME HYPERIDEALS IN

MULTIPLICATIVE HYPERRINGS

A. A. MENA AND I. AKRAY

ضربی حلقه های هایپر در کننده n-جذب I-اول ایده آل های هایپر
اکری٢ اسماعیل و منا١ علی

عراق اربیل، کردستان منطقه سوران، سوران، دانشگاه علوم، دانشکده ریاضی، ١,٢گروه

سره ی ایده آل می کنیم. تعریف را R ضربی حلقه ی هایپر در I-اول ایده آل هایپر ابتدا مقاله، این در
یا a ∈ P دهد نتیجه ab ⊆ P − IP هرگاه می نامیم I-اول ایده آل هایپر یک را R از P
ایده آل های مفاهیم همچنین می کنیم. بیان I-اول ایده آل های هایپر از مشخصه سازی هایی سپس .b ∈ P

ایده آل های از تعمیمی عنوان به ضربی حلقه های هایپر در کننده n-جذب I-اول و کننده ٢-جذب I-اول
هایپر را R ضربی حلقه ی هایپر از P سره ی ایده آل هایپر یک می دهیم. قرار بررسی مورد و معرفی را اول

اگر ،x١, . . . , xn+١ ∈ R هر برای هرگاه می نامیم کننده n-جذب I-اول ایده آل
x١ · · ·xn+١ ⊆ P − IP,

P اگر که می دهیم نشان .i ∈ {١, . . . , n+١} برخی برای x١ · · ·xi−١xi+١ · · ·xn+١ ⊆ P آن گاه
،S−١P ،P/J ،I روی خاصی شرایط تحت آن گاه باشد، R حلقه ی هایپر از I-اول ایده آل هایپر یک
مشمول ایده آل هایپر یک نیز J که هستند I-اول ایده آل هایپر نیز P [x] و

√
P ،f−١(P ) ،f(P )

بیان I-اول ایده آل های هایپر از مشخصه سازی یک تجزیه پذیر، حلقه های هایپر در همچنین است. P در
و باشد ماکسیمال ایده آل هایپر متناهی تعداد دارای حلقه هایپر یک اگر می دهیم نشان به علاوه، می کنیم.

است. میدان متناهی تعداد حاصل ضرب R آن گاه باشد، کننده n-جذب I-اول سره ایده آل هایپر هر

I-اول. ایده آل هایپر اول، ایده آل هایپر ضربی، حلقه ی هایپر حلقه، هایپر کلیدی: کلمات
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