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DUAL RICKART (BAER) MODULES AND
PRERADICALS

S. ASGARI, Y. TALEBI AND A. R. MONIRI HAMZEKOLAEE∗

Abstract. In this work, we introduce dual Rickart (Baer)
modules via the concept of preradicals. It is shown that W is
τ -d-Rickart if and only if W = τ(W )⊕L such that τ(W ) is a dual
Rickart module. We prove that a module W is τ -d Baer if and
only if W is τ -d-Rickart and W satisfies strongly summand sum
property for d.s. submodules of W contained in τ(W ). Via τ(RR),
we characterize right τ -d Baer rings.

1. Introduction

We may say a functor τ :Mod−R →Mod−R is a preradical if for
τ we have the following:

(1) For any right R-module W , τ(W ) is a submodule of W ,
(2) If f : W → K is an R-module homomorphism, then

f(τ(W )) ⊆ τ(K) and τ(f) is the restriction of f to τ(W ).
Note that if D is a d.s. submodule (direct summand) of W , then
τ(D) = τ(W ) ∩ D for a preradical τ . An interested reader for more
information about preradicals, may check [2].

For a module W , a new submodule defined as
Z(W ) =

∩
{Kerf | f : W → U,U ∈ U}.

In this definition, U stands for the class of all small right R-modules.
By the way, the module W is said to be cosingular (noncosingular) in
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case Z(W ) = 0 (Z(W ) = W )([11]). Consider a ring R such that every
simple right R-module is injective. Then R is a right V -ring. Note that
as a famous result a ring R is a right V -ring if and only if the radical of
every right R-module is zero. Let W be a module and N a submodule
of W . Then W is said to be fully invariant, denoted by N ⊵W , in
case for each g ∈ EndR(W ) we have g(N) ⊆ N . Note that Soc(W ),
Rad(W ) and Z(W ) are some known fully invariant submodules of W .

In the last three decades, some researchers tried to study
lifting modules and their various generalizations via some aspects of
preradicals. For instance, in [1] and [12] we can see that lifting
modules and one of their generalizations were studied via some kind
of fully invariant submodules (note that, a fully invariant submodule
in fact introduces a preradical). A module M is said to be dual Rickart
provided for each φ : M → M , the image is a direct summand of
M ([6]). Also, in [9] a new generalization of dual Rickart modules
(applying a homological approach) were introduced and studied. There
are many works about dual Rickart modules and their generalizations
([1, 6, 9],. . .). Till now, non of works has been done related to dual
Rickart modules has a torsionally approach. By the way, in this
work we try to make a preradically approach to the concepts dual
Rickart modules and dual Baer modules. Via preradicals, we define and
study τ -d-Rickart modules and τ -d Baer modules. Somewhere in the
manuscript, we apply some known preradicals such as Soc, Rad and
Z. Some general properties of τ -d-Rickart (Baer) modules are also
investigated. We tried to achieve some conditions under which a
module can be τ -d-Rickart (Baer). Any undefined terminology here,
may be found in [8] and [13].

2. τ-d-Rickart modules and τ-d Baer modules

We may start the section with the key definition. Throughout this
section τ will denotes a preradical.

Definition 2.1. Suppose W is a module. If for each g in EndR(W ),
the submodule g(τ(W )) is a d.s. submodule of W , then we say W is
τ -d-Rickart.

It can be worth to say that a dual Rickart module W may not be τ -
d-Rickart. Consider the Z-module W = Zp∞ . Then W is dual Rickart
while it is not τ -dual-Rickart. Here τ indicates the preradical Soc (see
Example 2.2).

Example 2.2. Let W be a module. Suppose that τ(W ) is a nonzero
small submodule of W , then for every g in EndR(W ), the submodule
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g(τ(W )) is a small submodule of W . So that g(τ(W )) may not be a
d.s. submodule of W for some endomorphism g of W . Therefore, W is
not a τ -d-Rickart module. Now, Z-module W = Zp∞ is not τ -d-Rickart
if we choose τ to be Soc.

Following result expresses an important characterization of τ -d-Rickart
modules which will be used freely throughout the paper.
Theorem 2.3. If W is a module, then below statements coincide:
(1) W is τ -d-Rickart;
(2) W decomposed to a submodule L and τ(W ) such that τ(W ) is

dual Rickart.
Proof. (1) ⇒ (2) By assumption, for a module W , τ(W ) is a d.s.
submodule of W . Set W = τ(W ) ⊕ L for a submodule L of W .
Suppose that g is an endomorphism τ(W ). Then h = j ◦ g ◦ π is
an endomorphism of W such that j is the inclusion from τ(W ) to W
and π is the projection of W on τ(W ). Being W a τ -d-Rickart module
implies h(τ(W )) = Img is a d.s. submodule of W and consequently a
d.s. submodule of τ(W ) as h(τ(W )) is contained in τ(W ).

(2) ⇒ (1) Let W = τ(W ) ⊕ L such that τ(W ) is dual Rickart.
Suppose that g is an endomorphism of W . Then λ = π ◦ g ◦ j will be
an endomorphism of τ(W ) where j : τ(W ) → W is the inclusion and
π : W → τ(W ) is the projection on τ(W ). As λ(τ(W )) = g(τ(W ))
and τ(W ) is a dual Rickart module, then g(τ(W )) is a d.s. submodule
of τ(W ) and consequently of W , as required. □
Example 2.4. (1) Let F be a field and R =

∏∞
i=1 Fi where Fi = F for

each i ∈ N. Then R is a von Neumann regular V -ring. Take W = R
and τ = Soc. Then τ(W ) = Soc(R) = ⊕∞

i=1F is an essential submodule
of W . It follows by Theorem 2.3, W is not τ -d-Rickart, although τ(W )
itself is dual Rickart.

(2) Let R be a right Noethrian right V -ring (we can consider the ring
R in [3, Example]). As every simple right R-module is injective and R
is right Noetherian, we conclude that Soc(RR) is injective and hence a
d.s. submodule of RR. Therefore, RR is τ -d-Rickart where τ = Soc.

(3) According to [7, C29, Page 255], there is a field F with derivation
δ such that the differential polynomial ring F [x, δ] is a simple non-
regular V -domain. Note that R = F [x, δ] is a right and left Noetherian
ring, so that by (2) Soc(RR) is a d.s. submodule of RR. Hence, RR is
τ -d-Rickart while RR is not a dual Rickart module.
Remark 2.5. Let W be an indecomposable module such that τ(W ) ̸= 0.
Then W is τ -d-Rickart if and only if τ(W ) = W is dual Rickart. In
other words, if τ(W ) is a nontrivial submodule of W , then W can not
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be τ -d-Rickart. For instance, a local module W with τ(W ) ̸= 0 is not
a τ -d-Rickart module, where τ = Rad.
Proposition 2.6. Each d.s. submodule of a τ -d-Rickart module is
τ -d-Rickart.
Proof. Suppose W is a τ -d-Rickart module and N is a d.s. submodule
of W . Set W = N ⊕ K. Consider an arbitrary endomorphism h of
N . It follows that f = j ◦ h ◦ π is an endomorphism of W , so that
f(τ(W )) = h(τ(N)) is a d.s. submodule of W as W is a dual τ -Rickart
module. Note that j : N → W is the inclusion and π : W → N is the
projection of W on N . It follows that h(τ(N)) is a d.s. submodule of
N , which completes the proof. □

Recall from [5], a module M is said to be dual Baer in case for every
N ≤ M , there exists an idempotent e in S = EndR(M) such that
D(N) = {f ∈ S|Imf ⊆ N} = eS.

It is natural to define an analogue for d. Baer modules in τ -case.
Definition 2.7. Let W be a module. We say that W is τ -d Baer
provided for every right ideal I of EndR(W ) the submodule

Iτ(W ) =
∑

g∈I g(τ(W ))

is a d.s. submodule of W .
Theorem 2.8. For a module W , the below listed statements coincide:
(1) W is τ -d Baer;
(2) τ(W ) is a d. Baer d.s. submodule of W ;
(3) W is τ -d-Rickart and W satisfies strong summand sum property

for d.s. submodules of W included in τ(W );
(4) The submodule

∑
g∈B g(τ(W )) is a d.s. submodule of W , where

B is an arbitrary subset of EndR(W ),
Proof. (1) ⇒ (2) Consider S = EndR(W ) as an ideal of itself. Then
by (1), Sτ(W ) =

∑
g∈S g(τ(W )) = τ(W ) is a d.s. submodule of W .

Now, let I be a right ideal of EndR(τ(W )) and consider the inclusion
j : τ(W ) → W and the projection πτ(W ) : W → τ(W ). Consider the
subset I0 = {j ◦ λ ◦ πτ(W ) | λ ∈ I} of S. Then J = I0S is a right ideal
of S. As

Iτ(W ) =
∑

g∈I g(τ(W )) =
∑

g∈J g(τ(W )) = Jτ(W )

and W is a τ -d Baer module, we conclude that Iτ(W ) = Jτ(W ) is a
d.s. submodule of W and consequently is a d.s. submodule of τ(W ),
as well. It follows from [5, Theorem 2.1], τ(W ) is a d. Baer module.
(2) ⇒ (1) Let I be a right ideal of S and B = {πτ(W )◦g |τ(W )| g ∈ I}.

Note that J = BEndR(τ(W )) is a right ideal of EndR(τ(W )). Since
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Jτ(W ) = Iτ(W ) and τ(W ) is a d. Baer module, we conclude that
Jτ(W ) is a d.s. submodule of τ(W ) and hence a d.s. submodule of W .

(1) ⇒ (3) Let g ∈ S. As W is τ -d Baer and < g > τ(W ) = g(τ(W )),
then g(τ(W )) is a d.s. submodule of W . Let {eγ | γ ∈ Γ} be a set
of idempotents of S such that Imeγ ⊆ τ(W ) for each γ ∈ Γ. Suppose
I =<

∑
γ∈Γ eγ > that is an ideal of S. Now,

Iτ(W ) =
∑

g∈I g(τ(W )) ⊆
∑

γ∈Γ eγ(W ).

As eγ(W ) is contained in
∑

g∈I g(τ(W )), it follows that∑
γ∈Γ eγ(W ) =

∑
g∈I g(τ(W )) = Iτ(W )

is a d.s. submodule of W (note that W is τ -d Baer).
(3) ⇒ (4) It follows from the fact that τ(W ) is fully invariant in W .
(4) ⇒ (1) It is obvious. □
By Theorem 2.8, every τ -d Baer module is τ -d-Rickart.

Proposition 2.9. Let W be a regular module. If W satisfies strong
summand sum property on d.s. submodules of W contained in τ(W ),
then W is τ -d Baer.

Proof. Let g be an arbitrary endomorphism of W . Note that
g(τ(W )) =

∑
x∈g(τ(W )) xR.

Being W regular, we conclude g(τ(W )) is a d.s. submodule of W . □
In the light of Theorem 2.8, we have the following remark.

Remark 2.10. Let W be an indecomposable module such that
τ(W ) ̸= 0. Then W is τ -d Baer if and only if τ(W ) = W is d. Baer.

Theorem 2.11. Let W be a module. Then W is τ -d Baer if and only
if every d.s. submodule N of W is τ -d Baer.

Proof. Let W be τ -d Baer and W = N ⊕N ′ for a submodule N ′ of W .
Then τ(W ) = τ(N)⊕ τ(N ′). Suppose that A is a subset of EndR(N).
Then B = {j◦g◦πN | g ∈ A} in which πN : W → N is the projection of
W on N and j is the inclusion from N to W , is a subset of EndR(W ).
It is straightforward to check that

Aτ(N) =
∑

g∈A g(τ(N)) =
∑

g∈B g(τ(W )).

Being W , a τ -d Baer module implies that Aτ(N) is a d.s. submodule of
W and hence a d.s. submodule of N . The result follows from Theorem
2.8.

The converse is straightforward. □
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Corollary 2.12. Let W be a module, P a projective module and
f : W → P be an epimorphism such that Kerf is contained in τ(W ).
Then, if W is τ -d Baer, then P is τ -d Baer.

Remark 2.13. Let W be a module. Then
(1) If Rad(W ) ≪ W and W is Rad-d. Baer module, then

Rad(W ) = 0.
(2) If Soc(W ) ≤e W and W is Soc-d. Baer module, then W is

semisimple.

Proof. (1) Since W is finitely generated, Rad(W ) is small in W . By
Theorem 2.8, Rad(W ) is a d.s. submodule of W . Hence Rad(W ) = 0.
(2) Since W is finitely cogenerated, Soc(W ) is essential in W and, by

Theorem 2.8, Soc(W ) is a d.s. submodule of W . Hence Soc(W ) = W
and so W is semisimple. □

3. Relatively τ-d-Rickart modules

In this section we shall define relative τ -d-Rickart modules and we
will apply this concept to study finite direct sums of τ -d-Rickart
modules.

Definition 3.1. Let W and U be R-modules. Then W is said to be
U-τ -d-Rickart in case the image of τ(W ) under φ for each φ ∈ EndR(W )
is a d.s. submodule of U .

Next, we introduce a condition for relatively τ -d-Rickart modules.

Theorem 3.2. Suppose that W and U are R-modules. Then below
listed coincide:

(1) The module W is U-τ -d-Rickart;
(2) For each d.s. submodule P of W and every submodule C of U ,

P is C-τ -d-Rickart.

Proof. (1) ⇒ (2) Let W be U -τ -d-Rickart. Suppose that P = eW for
some e2 = e ∈ EndR(W ) and let C be a submodule of U . Assume that
ψ ∈ Hom(P,C). Since ψeW = ψP ⊆ C ⊆ U and W is U -τ -d-Rickart,
ψe(τ(W )) is a d.s. submodule of U . As ψe(τ(W )) is contained in C, we
conclude that ψe(τ(W )) is a d.s. submodule of C. We shall prove that
ψ(τ(L)) is a d.s. submodule of C. Suppose that W = P ⊕ P ′. Next,
we have τ(W ) = τ(P )⊕τ(P ′). Then e(τ(W )) = e(τ(P )) = τ(P ). Now
ψe(τ(W )) = ψ(τ(P )) combining with W is τ -d-Rickart relative to U ,
we come to a conclusion that ψ(τ(P )) is a d.s. submodule of C.

(2) ⇒ (1) Obvious. □
Proposition 3.3. Let W be a τ -d-Rickart module. Then
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(1) The sum of two d.s. submodules of W one of them contained in
τ(W ), is a d.s. submodule of W .

(2) The sum of each pair of d.s. submodules of W included in τ(W ),
is a d.s. submodule of W .
Proof. (1) Let K = eW and L = fW for some e2 = e ∈ EndR(W ) and
f 2 = f ∈ EndR(W ). Since W = fW ⊕(1−f)W , L = fW ⊆ τ(W ), we
have τ(W ) = fW ⊕τ((1−f)W ). Then ((1−e)f)(τ(W )) = (1−e)fW .
As W is a τ -d-Rickart module, ((1− e)f)(τ(W )) = (1− e)fW is a d.s.
submodule of W . Since

(1− e)fW = (fW + eW ) ∩ (1− e)W ,
W = ((fW + eW ) ∩ (1− e)W )⊕ T for some T ≤ W . Hence

(1− e)W = ((fW + eW ) ∩ (1− e)W )⊕ (T ∩ (1− e)W ).
So

W = eW ⊕ (1− e)W

= eW + ((fW + eW ) ∩ (1− e)W )⊕ (T ∩ (1− e)W )

= (fW + eW ) + (T ∩ (1− e)W ).

Since (fW+eW )∩(T∩(1−e)W ) = 0, W = (eW+fW )⊕(T∩(1−e)W ).
Hence K + L is a d.s. submodule of W .

(2) It is clear by (1). □
Theorem 3.4. Let W be a module. Then W is τ -d-Rickart if and only
if for each f.g right ideal J of EndR(W ), the submodule

∑
ϕ∈J ϕ(τ(W ))

is a d.s. submodule of W .
Proof. Assume that J is a f.g right ideal of EndR(W ) generated by
ϕ1, . . . , ϕn. As W is τ -d-Rickart, then each ϕi(τ(W )) is a d.s.
submodule of W . By Proposition 3.3, W satisfies summand sum
property for d.s. submodules included in τ(W ). Note that τ(W ) is
fully invariant, so

∑
ϕ∈J ϕ(τ(W )) = ϕ1(τ(W )) + · · · + ϕn(τ(W )) is a

d.s. submodule of W . The converse is obvious. □

4. Ring version of τ-d Baer

Throughout this section, we shall preradicals τ such that for any ring
R, τ(RR) is a two-sided ideal of R.

Definition 4.1. A ring R is said to be (left) right τ -d Baer, provided
(RR) RR is τ -d Baer.

The following includes a ring R such that RR is τ -d Baer while RR
is not.
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Example 4.2. ([10, Example 3.3]) Let D be a commutative local
integral domain with field of fractions Q (for example, we might take
D the localization of the integers Z by a prime number p, i.e., D is
the subring of the field of rational numbers consisting of fractions
a/b such that b is not divisible by p). Let R =

(
D Q
0 Q

)
. The

operations are given by the ordinary matrix operations. Since D is
local, it has a unique maximal ideal, say W and the Jacobson radi-
cal of R is J(R) =

(
m Q
0 0

)
. Then R/J(R) ∼= (D/m) × Q. Thus

R is semilocal. On the other hand, if we suppose that D has zero
socle, then R has zero left socle and so Z(RR) = Soc(RR) = 0.
Hence RR is Z-d. Baer. But R has non-zero right socle, namely,
Z(RR) = Soc(RR) =

(
0 Q
0 Q

)
. It is known that, Z(RR) = Soc(RR)

is essential in RR (see [4]). It follows that RR can not be Z-d. Baer.
Theorem 4.3. Let R be a ring. Then the following are equivalent:
(1) R is right τ -d Baer;
(2) RR decomposed to τ(RR) and a right ideal K where τ(RR) is d.

Baer;
(3) RR decomposed to τ(RR) and a right ideal K such that τ(RR) is

semisimple.
Proof. (1) ⇔ (2) By Theorem 2.8.

(1) ⇒ (3) As R is τ -d Baer, then RR can be written as a direct sum
of τ(RR) and a right ideal K. R. We may prove that every submodule
of τ(RR) is a d.s. submodule. Note that B =

∑
b∈B bR and R is τ -d

Baer. Hence
∑

b∈B bI is a d.s. submodule of R. Therefore, Bτ(RR) is
a d.s. submodule of R. Notice that B ⊆ τ(RR), implies B = BI is a
d.s. submodule of τ(RR). We are done.

(3) ⇒ (1) Suppose that (3) holds. Being any semisimple module, d.
Baer combining with Theorem 2.8 imply R is τ -d Baer. □
Theorem 4.4. Below listed statements coincide for a ring R:

(1) RR is τ -d Baer;
(2) Every cyclic projective right R-module W is τ -d Baer.

Proof. (1) ⇒ (2) Suppose that W is a cyclic projective right R-module.
Then, W = wR ∼= R/rR(w) for some w ∈ W . Therefore, rR(w) is a
d.s. submodule of R. Hence, R = rR(w) ⊕ J . As RR is τ -d Baer, by
Theorem 2.11 J is τ -d Baer. Hence W is τ -d Baer.

(2) ⇒ (1) It is obvious. □
.
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5. Direct sum of τ-d-Rickart modules and direct sum of
τ-d Baer modules

In this section, we study direct sums of τ -d-Rickart modules and
direct sums of τ -d Baer modules.

We provide some conditions which under a direct sum of τ -d-Rickart
modules is also τ -dual Rickart.
Proposition 5.1. Let W = ⊕n

i=1Wi and U be modules such that U
satisfies summand sum property for d.s. submodules of U included in
τ(U). Then W is U-τ -d-Rickart if and only if each Wi is U-τ -d-Rickart.
Proof. If W is U -τ -d-Rickart, then each Wi is U -τ -d-Rickart by
Theorem 3.2. Conversely, let ϕ : W → U be a homomorphism.
Then ϕ = (ϕi)

n
i=1 where each ϕi : Wi → U is a homomorphism. By

hypothesis, ϕi(τ(Wi)) is a d.s. submodule of U . As U satisfies
summand sum property for d.s. submodules included in τ(U), we have

ϕ(τ(W )) = ϕ(⊕n
i=1τ(Wi))

= ϕ1(τ(W1)) + ϕ2(τ(W2)) + · · ·+ ϕn(τ(Wn))

≤⊕ U.

Therefore W is U -τ -d-Rickart. □
Corollary 5.2. Let W = ⊕n

i=1Wi. Then W is Wj-τ -d-Rickart if and
only if Wi is τ -d-Rickart relative to Wj for each 1 ≤ i ≤ n.
Theorem 5.3. Let {Wi}ni=1 and U be modules. Assume that for each
i ≥ j with 1 ≤ i, j ≤ n, Wi is projective relative to Wj. Then U is
(⊕n

i=1Wi)-τ -d-Rickart if and only if U is Wj-τ -d-Rickart for all 1 ≤
j ≤ n.
Proof. First implication holds by Theorem 3.2. For the other side,
suppose that U is Wj-τ -d-Rickart for all 1 ≤ j ≤ n. We prove by
induction on n. Assume that n = 2 and U is τ -d-Rickart relative
to W1 and W2. Let ϕ : U → W1 ⊕ W2 be a homomorphism. Then
ϕ = π1ϕ+ π2ϕ, where πi is the natural projection from W1 ⊕W2 to Wi

(i = 1, 2). As U is W2-τ -dual Rickart, π2ϕ(τ(U)) is a d.s. submodule
of W2. Let W2 = π2ϕ(τ(U))⊕W ′

2 for some W ′
2 ≤ W2. Hence

W1 ⊕W2 = W1 ⊕ π2ϕ(τ(U))⊕W ′
2.

As W2 is W1-projective, π2ϕ(τ(U)) is W1-projective. Since
W1 + ϕ(τ(U)) = W1 ⊕ π2ϕ(τ(U))

is a d.s. submodule of W1 ⊕W2, there exists T ⊆ ϕ(τ(U)) such that
W1 + ϕ(τ(U)) = W1 ⊕ T , by [8, Lemma 4.47]. Thus
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ϕ(τ(U)) = (ϕ(τ(U)) ∩W1)⊕ T .

Since U is W1-τ -d-Rickart,

π1ϕ(τ(U)) = W1 ∩ (W2 + ϕ(τ(U))) = W1 ∩ ϕ(τ(U))

is a d.s. submodule of W1. Therefore ϕ(τ(U)) is a d.s. submodule of
W1 ⊕ T . Since W1 ⊕ T = W1 ⊕ ϕ(τ(U)) ≤⊕ W1 ⊕W2, ϕ(τ(U)) is a d.s.
submodule of W1 ⊕W2. Thus U is τ -d-Rickart relative to W1 ⊕W2.
Now, assume that U is τ -dual Rickart relative to ⊕n

i=1Wi. We show
that U is τ -d-Rickart relative to Wn+1 ⊕ (⊕n

i=1Wi). Since Wn+1 is
Wj-projective for each 1 ≤ j ≤ n, Wn+1 is (⊕n

i=1Wi)-projective. As U
is Wn+1-τ -d-Rickart, U is ⊕n+1

i=1Wi-τ -d-Rickart by a similar argument
for the case n = 2. □

We mention that in the above theorem we use ideas of the proof of
[6, Theorem 5.5].

Corollary 5.4. Let {Wi}ni=1 be modules. Assume that for each i ≥ j
with 1 ≤ i, j ≤ n, Wi is Wj-projective. Then ⊕n

i=1Wi is τ -d-Rickart if
and only if Wi is Wj-τ -d-Rickart for all 1 ≤ i, j ≤ n.

Proof. The first implication follows from Theorem 3.2. Conversely,
assume that Wi is Wj-τ -d-Rickart for all 1 ≤ j ≤ n. Now ⊕n

i=1Wi

is Wj-τ -d-Rickart for all 1 ≤ j ≤ n by Corollary 5.2. Therefore, by
Theorem 5.3, ⊕n

i=1Wi is τ -d-Rickart. □

We may interested in investigating direct sums of τ -d Baer modules.

Theorem 5.5. Suppose that Wi, for i = 1, . . . , n are modules,
W = ⊕n

i=1Wi and Wi ⊴ W for all i ∈ {1, . . . , n}. Then W is a
τ -d Baer module if and only if Wi is τ -d Baer for all i ∈ {1, . . . , n}.

Proof. One way holds by Theorem 2.11. For the other side, let Wi be a
τ -d Baer module for all i ∈ {1, . . . , n} and I be a subset of EndR(W ).
Then τ(W ) = ⊕n

i=1(τ(Wi)). Let

ϕ = (ϕij)i,j∈{1,...,n} ∈ EndR(W )

be arbitrary, where ϕij ∈ Hom(Wj,Wi). Since Wi ⊴ W for all
i ∈ {1, . . . , n} and τ(W ) = ⊕n

i=1(τ(Wi)), we have

ϕ(τ(W )) = ⊕n
i=1ϕii(τ(Wi)).

Hence∑
ϕ∈I ϕ(τ(W )) =

∑
ϕ∈Ii ⊕

n
i=1ϕii(τ(Wi)) = ⊕n

i=1

∑
ϕ∈Ii ϕii(τ(Wi))



DUAL RICKART (BAER) MODULES AND PRERADICALS 189

where Ii = {ϕ|Wi
: ϕ ∈ I} ⊆ EndR(Wi). As Wi is τ -d Baer for all

i ∈ {1, . . . , n},
∑

ϕ∈Ii ϕii(τ(Wi)) is a d.s. submodule of Wi and so∑
ϕ∈I ϕ(τ(W )) is a d.s. submodule of W . Therefore W is a τ -d Baer

module. □
We can prove the following proposition similar to the proof of

Theorem 5.5.
Proposition 5.6. Let {Wi}i∈I be a class of R-modules for an index
set I. If for every i ∈ I, we have Wi ⊴

⊕
i∈I Wi, then

⊕
i∈I Wi is τ -d

Baer if and only if each Wi is τ -d Baer.
Similar to τ -d-Rickart version, we may define the following.

Definition 5.7. Let W and U be R-modules. Then, W is called U-
τ -d Baer if for every subset I of HomR(W,U),

∑
ϕ∈I ϕ(τ(W )) is a d.s.

submodule of U .
Theorem 5.8. Let W = W1⊕W2 and U be R-modules. If W is U-τ -d
Baer, then for any d.s. submodule K of U , each Wi is K-τ -d Baer.
Proof. Note that τ(W )⊴W , so τ(W ) = τ(W1)⊕ τ(W2). Suppose that
A is a subset of HomR(W1, K). Then B = {j◦g◦πW1 | g ∈ A} in which
πW1 : M → W1 is the projection of W on W1 and j is the inclusion
from K to U , is a subset of HomR(W,U). It is easy to check that
Aτ(W1) =

∑
g∈A g(τ(W1)) =

∑
g∈B g(τ(W )). As W is a U -τ -d Baer

module, Aτ(W1) is a d.s. submodule of U and hence a d.s. submodule
of K. □
Proposition 5.9. Suppose that J is an index set, {Wi}i∈J a class of
R-modules and U is an R-module. Below listed statements hold:

(1) If U satisfies summand sum property for d.s. submodules included
in τ(U) and J is finite, then

⊕
i∈J Wi is U-τ -d Baer if and only if

each Wi (i ∈ J ) is U-τ -d Baer.
(2) If U satisfies strong summand sum property for d.s. submodules

included in τ(U), and J is arbitrary, then
⊕

i∈J Wi is U-τ -d Baer if
and only if each Wi is U-τ -d Baer.
Proof. (1) One way holds from Theorem 5.8. For the necessity, suppose
that A is a subset of HomR(

⊕
i∈J Wi, U). Then

Bi = {ϕji | ϕ ∈ A}
in which ji is the inclusion from Wi to

⊕
i∈J Wi, is a subset of

HomR(Wi, U).
Assume that ϕ is a homomorphism from

⊕
i∈J Wi to U . Then

ϕ = (ϕi)i∈J where ϕi = ϕji is a homomorphism from Wi to U for
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each i ∈ J . By hypothesis,
∑

ϕi∈Bi
ϕi(τ(Wi)) is a d.s. submodule

of U for each i ∈ J . As U satisfies summand sum property for d.s.
submodules included in τ(N), we have

∑
ϕ∈A

ϕ(τ(W )) =
∑
ϕ∈A

ϕ(⊕n
i=1(τ(Wi)))

=
∑
i∈J

∑
ϕi∈Bi

ϕi(τ(Wi))

≤⊕ U.

Therefore
⊕

i∈J Wi is U -τ -d Baer.
(2) Similar to (1). □

Corollary 5.10. Let J be an index set and {Wi}i∈J a class of
R-modules. Then, for each j ∈ J ,

⊕
i∈J Wi is Wj-τ -d Baer if and

only if Wi is Wj-τ -d Baer for all i ∈ J .

Proof. It follows from Proposition 5.9 and Theorem 2.8. □
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رادیکال ها پیش و (بئر) ریکارت دوگان مدول های

کلایی٣ حمزه منیری علیرضا طالبی٢، یحیی عسگری١، سمیرا

ایران بابلسر، مازندران، دانشگاه ریاضی، دانشکده محض، ریاضی ١,٢,٣گروه

می کنیم. معرفی را (بئر) ریکارت دوگان مدول های رادیکال ها، پیش مفهوم از استفاده با مقاله، این در
آن در که W = τ(W )⊕L اگر تنها و اگر است ریکارت τ − d ،W مانند مدول یک می دهیم نشان
اگر تنها و اگر است بئر τ − d مدولی W می کنیم ثابت می باشد. ریکارت دوگان مدول یک ،τ(W )

که W از d.s. زیرمدول های برای جمعی مستقیم جمعوند قویاً خاصیت در و باشد ریکارت τ − d ،W
را راست بئر τ − d حلقه های ،τ(RR) از استفاده با همچنین کند. صدق هستند، τ(W ) در مشمول

می کنیم. رده بندی

بئر. مدول τ − d ریکارت، مدول τ − d ریکارت، دوگان مدول رادیکال، پیش کلیدی: کلمات


	1. Introduction
	2. -d-Rickart modules and -d Baer modules
	3. Relatively -d-Rickart modules
	4. Ring version of -d Baer
	5. Direct sum of -d-Rickart modules and direct sum of -d Baer modules 
	References

