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COMMON NEIGHBOURHOOD SPECTRUM AND
ENERGY OF COMMUTING CONJUGACY CLASS
GRAPH

F. E. JANNAT AND R. K. NATH*

ABSTRACT. In this paper, we compute the common neighbour-
hood (abbreviated as CN) spectrum and the common neighbour-
hood energy of commuting conjugacy class graph of several families
of finite non-abelian groups. As a consequence of our results, we
show that the commuting conjugacy class graphs of the groups
Doy, Tian, SDsn, Unmys Usns Van, G(p,m,n) and some families of
groups whose central quotient is isomorphic to Ds,, or Z, X Z,, for
some prime p, are CN-integral but not CN-hyperenergetic.

1. INTRODUCTION

Let G be a finite non-abelian group. The commuting conjugacy
class graph of G, denoted by I'(G), is defined as a simple undirected
graph whose vertex set is the set of conjugacy classes of the non-central
elements of G and two vertices a® and b“ are adjacent if there
exist some elements @’ € a® and b’ € b such that a'b’ = b'a’. The
study of commuting conjugacy class graphs of groups was initiated by
Herzog, Longobardi and Maj [10] in the year 2009. In 2016,
Mohammadian et al.[l1] have characterized finite groups such that
their commuting conjugacy class graphs are triangle-free. Later on
Salahshour and Ashrafi [16, 15], obtained structures of commuting
conjugacy class graphs of several families of finite CA-groups.
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Salahshour [11] also described I'(G) for the groups whose central quo-
tient is isomorphic to a dihedral group. In [3], Bhowal and Nath have
characterized certain finite groups such that I'(G) is hyperenergetic,
L-hyperenergetic and Q-hyperenergetic. They also have characterized
certain finite groups such that I'(G) is planar, toroidal, double-toroidal
and triple-toroidal in [2].

Let G be a simple graph with vertex set V(G) := {v; : i =1,2,...,n}.
The common neighbourhood (abbreviated as CN) of two distinct
vertices v; and v;, denoted by C(v;,v;), is the set of all vertices other
than v; and v;, which are adjacent to both v; and v;. The common
neighbourhood matrix of G, denoted by CN(G), is defined as

Clos,vy)l, i # )
(ON(9)):s {0, if i = j.
The set of all eigenvalues of CN(G) with multiplicities, denoted
by CN-spec(G), is called the common neighbourhood spectrum
(abbreviated as CN-spectrum) of G.  If A, Ag,..., A\ are the
eigenvalues of CN(G) with multiplicities a, ag, . . . , v respectively then
we write CN-spec(G) = {(A1)**, (A2)*2, ..., (Ax)*}. A graph G is called
CN-integral if CN-spec(G) contains only integers. The common neigh-
bourhood energy (abbreviated as CN-energy) of a graph G, denoted by
Ecn(G), is defined as

Ecn(G) = Zai|/\i|~
i=1

A graph G is called CN-hyperenergetic if Ecn(G) > Ecen(K,), where
n=1|V(G)|. f Ecn(G) = Ecn(K,,) then G is called CN-borderenergetic.
In 2011, Alwardi, Soner and Gutman [!] introduced the concepts of
CN-spectrum and CN-energy of a graph. Fasfous et al. [9] and Nath
et al. [12] have computed CN-spectrum and CN-energy of commuting
graphs of finite non-abelian groups, respectively. Various spectra and
energies (spectrum, Laplacian spectrum, Signless Laplacian spectrum
and their corresponding energies) of commuting graphs of finite groups
are computed in [1, 7, 5, 6, & 17]. Recently, Rather et al. [13] have
investigated the A,-matrix and the A,-spectrum for commuting graphs
of dihedral, semidihedral and dicyclic groups.

In this paper, we compute the common neighbourhood spectrum
and the common neighbourhood energy of commuting conjugacy class
graph for several families of finite non-abelian groups. As a
consequence of our results, we show that the commuting conjugacy
class graphs of the groups Day, Tun, SDsn, Umm)s Usn, Van, G(p, m,n)
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and some families of groups whose central quotient is isomorphic to Dsy,
or Zy, X Z,, for some prime p, are CN-integral but not CN-hyperenergetic.

2. COMPUTATION OF CN-SPECTRUM AND CN-ENERGY

In this section, we compute the CN-spectrum and the CN-energy of
commuting conjugacy class graph for several families of finite groups.
We write G = Gy UGy, U ... UG, to denote that a graph G has n
components namely Gi,Gs,...,G,. Also, [K,, denotes the disjoint
union of [ copies of the complete graph K,, on m vertices. By
[9, Theorem 1] and [12, Theorem 2] we get the following result which
is very useful in computing the CN-spectrum and the CN-energy of
commuting conjugacy class graphs of the groups considered in this

paper.

Theorem 2.1. Let G = 1 K,,, U L K,,,, U [3K,,,, where [;K,,, denotes
the disjoint union of l; copies of the complete graphs K,,, on m; vertices
fori=1,2,3. Then

CN-spec(G) = {(—(my = 2)" ™Y, ((my = 1)(ma = 2))",
(—(ma —2))2"27 ((mg — 1)(ms — 2))",
(—(my —2))"0 Y, ((my — 1)(my — 2))"}
and
ECN(Q) = 2[1(7711 — 1)(m1 — 2) + 2[2(m2 — 1)(m2 — 2)
—|—213(m3 — 1)(m3 — 2)
2.1. Certain 2-generated finite groups. In this subsection, we
consider dihedral groups, dicyclic groups, semidihedral groups along

with some other 2-generated finite groups and compute the CN-spectrum
and the CN-energy of their commuting conjugacy class graphs.

Theorem 2.2. If G is the dihedral group
Doy =(z,y: a"=y*=1, yoy ' =a7")
then the CN-spectrum and the CN-energy of I'(G) are given by
CN-spec(I'(@))

_ {{(—%(n—sw =3

(n=3)(n=5),(00}, if2fn
{(—=1(n—6))z09 ( }

(n—=4)(n=6))", (0}, i 2[n

1
1
1
1
and

Eox(I'(G)) = {
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Proof. By [15, Proposition 2.1], we have
Kanl U K, if 24n
I(G) =T(Dy,) = Kn 4 U2K;, if 2|nand
Kn 1 UKy, if 2 |n and
Now, applying Theorem 2.1, we get
CN-spec(I'(@))

_ {{(_(HT—I —2))5 D (2L — 1) (2 —2)L, (0)1), if 24m

is even

is odd.

[SISENIB

{(=(5=3)E2.((5 —2(5 = 3)" (0}, if 2[n
and
2(2L —1)(%2 —2), if 2¢n
Ecn(T(G) =9 5% ovim .
Hence, the result follows on simplification. O

Theorem 2.3. The CN-spectrum and the CN-energy of commuting
conjugacy class graph of the dicyclic group

T = (z,y: 2" =1,2" =9 y oy =a)
are given by
CN-spec(T(Tin)) = {(~(n = 3)"2, ((n = 2)(n — 3))", (0%}
and
Eon(T'(Tyn)) = 2(n — 2)(n — 3).
Proof. By [15, Proposition 2.2], we have
N(T,) = {Knl 26Ky, if2]n
K, 1 UKo, if 21 n.
Applying Theorem 2.1, we get
CN-spec(T(Tin)) = {(—(n = 3)™ 2, ((n = 2)(n — 3))", (0%}
and Eox(T'(Ty,)) = 2(n — 2)(n — 3). O
Theorem 2.4. The CN-spectrum and the CN-energy of commuting
conjugacy class graph of the semidihedral group
SDg, = (z,y: 2" =y* = 1,yzy = 2™
are given by
CN-spec(I'(SDs,))
{(=(2n = 3))®"=2 ((2n - 2)(2n - 3))", (0)*}, if2|n
- {{(—(2n —4)@ ((2n = 3)(2n — 4))',(=2)%,(6)'}, if 24 n
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and
2(2n —2)(2n — 3), if2|n

Ecn(I'(SDsy)) = {2(2n —3)(2n—4)+12, if2¢n.

Proof. By [15, Proposition 2.5], we have

Kgn_1U2K1, if 2 |TL

['(SDg,) =
( s ) {Kgn_QUK4, lf2J[TL

Now, applying Theorem 2.1, we get

({(—((2n — 1) = 2))C=D-1,
(((2n = 1) = 1)((2n - 1) = 2)),(0)*}, if 2| n

CN-spec(I'(SDsy))= (—((2n — 2) — 2))(@=2-1),

{
(((2n —2) = 1)((2n - 2) - 2))",
( 1

(
(
(4—-1)(—-2)", if2¢n

[(—(4—2))4Y,
and
Eex(I'(Vsn))
22n—1)—1)((2n—1)—2) +2x 21 —1)(1—-2), if2|n
2(2n—2)—1)((2n—2) —2)+2(4 - 1)(4 —2), if 2+ n.
Hence, we get the required result on simplification. O

Theorem 2.5. The CN-spectrum and the CN-energy of commuting
conjugacy class graph of the group

U(n,m) = <x7y : :L,Qn = ym = 17 'xilyl‘ = y71>

are given by

({(=(n—2)*"V, (n* = 3n +2)%,

(~(3mn — 20 — 4))om-202)
(3(mn —2n —2)(mn —2n —4))'}, if 2| m
CN-spec(I'(Ugn,m))) =
((~(n = 2)Y, (n2 — 3 1 2",

(— %(mn —n— 4))5(”‘"_”_2)

L(3(mn—n—2)(mn—n—4))'},  if2{m

I
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and

Eex(P'(Ugn,m)))

_ J4(n? =3n+2)+ $(mn—2n—2)(mn —2n—4), if2|m
~ 202 = 3n+2) + (mn —n — 2)(mn —n —4), if 24 m.

Proof. By [15, Proposition 2.3], we have

2K, UK

Now, applying Theorem 2.1, we get

m_1), if2]m
2
1y, if 2¢m.

n(

({(=(n—=2))*""V, ((n = 1)(n - 2))*,
(~(n(’g — 1) =)0,
(n(5 =1 =Dn(g —1)=2))}, if2]m
CN-spec(I'(Upn,m)) )=
{(=(n =2)" D ((n - 1)(n —2))*,
(~(n(mst) = 2))e=r,
L (n(52) ~ D(n(252) ~ )}, if 24m
and
(2 x2(n—1)(n—2
+2(n(g —1) = 1)(n(F —1)—=2), if2[m
Een(T(Utnm))) =
2(n—1)(n —2)
(+2(n("FH) — D) (n("5H) — 2), if 24 m.
Hence, the result follows on simplification. O

Corollary 2.6. The CN-spectrum and the CN-energy of commuting
conjugacy class graph of the group

Un = (r,y: 2 =y’ =1, a7 lyz =y ")
are given by
CN-spec(I'(Usn)) = {(—(n —2))*""Y, ((n — 1)(n — 2))*}
and Ecn(T'(Usn)) = 4(n — 1)(n — 2).

Proof. The result follows from Theorem 2.5 noting that U, 3) = Usy.
O
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Theorem 2.7. The CN-spectrum and the CN-energy of commuting
conjugacy class graph of the group

Van=(z,y: 2 =y' =1, yr=a""y ", yla=a""y)

are given by
CN-spec(I'(Vsn))

_ {{(—(% —4))2 ((2n = 3)(2n —4))",(0)"}, if2(n
{(=(2n —3))"=2 ((2n — 2)(2n - 3))*, (0)*}

and
22n —3)(2n—4), if2|n
Een(T'(Vgy,)) =
on(['(Ven)) {2(2n—2)(2n—3), if 24 n.
Proof. By [15, Proposition 2.4], we have
F(‘/Sn) _ Kgn_QUZKQ, 1f2 | n
KQn_l U2K1, 1f2)(n
Now, applying Theorem 2.1, we get
{(—((2n —2) — 2))(Cr=271),

(((2n —2) = 1)((2n - 2) - 2)),
)2

(
CN-SpeC(F(Vgn)): (0 ,(0)2}’ if 2 | n

{(=((2n —1) — 2))(Ce=D=1),
((2n = 1) = 1)(2n - 1) = 2))",(0)*}, if2{n

and

Een(T(Vin)) = {2((2” -2)—-1)((2n—2)—2), if2]n

202n—1)—1)((2n—1)=2), if2¢n.

Hence, the result follows on simplification.

0

Theorem 2.8. The CN-spectrum and the CN-energy of commuting
conjugacy class graph of the group

G(p,m,n) = (zr,y: " =y =[x,y =1,[z, [z, 9] = [y, [z, 9] = 1)
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CN-spec(I'(G(p,m,n)))

(( m+n—1 pm+n—2 . 1)(pm+n—
(—(p™ — pt — 2))@" Hpm—
(8 — D" -p -
and
ECN(F(G<p7 m, n))) = 4(pm+n—1 - pm—l—n—Q
+ 2(pn o pn—l)(pm
Proof. By [15, Proposition 2.6], we have
['(G(p,m,n))

m-+n— m-n— m+n—1_,m+n—2__
e

Y

1 pm+n—2 o 2))27
P 1 1)
n__n—1
2))P" P )}
_ 1)(pm+n—1 _ pm+n—2 o 2)

—p" =1 (" —p" ! = 2).

- Kpm—l(pn,pn—l) U Kpn—l(pm,pm—l)
Now, applying Theorem 2.1, we get
CN-SpQC(F(G(p, m, TL)))

U (pn - pnfl

)Kpm—n(pn,pn—l) .

{ (= (" — ) — 2)) ",

(=

(™"
(="' "
("™
(=" ("

=D "

— 2))(19"*1(19
D" ™
2))(1?"—1)”‘

—p
—p
—p" ) —
_ p”_l) _

m—l)

-D
m_pmfl)_l)

n71>

-2))",

—p" ) —2))!
HemreEr-ptTh-1)

Y

(""" =" ) = """~ pt) = 2) 1)}

and

ECN(F<G(p7 m, n)))

n

— 2<pm—1(p
+2(p"

m

(p

+2(p" —p"”

-D

=D "

- )" "
" —p" "

_ pm—l)

DIl

Hence, the result follows.

=™

—p") —2)

—p" ) —2)

"t —p"h) —2).
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2.2. Certain groups with given central quotients. In this sub-
section, we mainly consider finite groups whose central quotients are
isomorphic to a group of order p?, p® or a dihedral group of order 2n
and compute the CN-spectrum and the CN-energy of their commuting
conjugacy class graphs.

Theorem 2.9. Let G be a non-abelian finite group with centre
Z =7(G) and % =7, X ZL,, where p is a prime. Then
CN-spec(I'(G)) = {(=(n —2))"*V0Y ((n = 1)(n — 2))®*V}

and
Ecn(I(G)) =2(p + 1)(n — 1)(n — 2),

~1)|z
where n = @=IZl p)| L

Proof. By [16, Theorem 3.1], we have

I'G)=(p+1)K,, wheren = %

Hence, the result follows from Theorem 2.1. O

Corollary 2.10. If G is a non-abelian p-group of order p" and |Z(G)|
= p" 2, pis prime and n > 3, then

CN-SpQC(F(G)) :{(_(pn*Q _ pnf?) o 2))(P+1)(pn727p”7371)’
(P 2—p" =1 2 —p" 3 — 2))(p+1)}

and
Ecn(T(G) =20+ D)(p" 2 —p" > = 1)(p" > = p" > = 2).

Proof. We have % = Zy, X Zyp and n = % = (p — Dp"*.

Hence, the result follows from Theorem 2.9. U

Theorem 2.11. Let G be a non-abelian group with centre Z such that
|%| = p3, for a prime p. Then one of the following is satisfied:
(a) If € is abelian then

(i)

CN-spec(I(G)) ={(—(m —2))" "V, ((m — 1)(m - 2))*,
(=(n=2)P"" . (n = 1)(n - 2))"}

and Ecn(T(G)) = 2(m — 1)(m — 2) + 2p*(n — 1)(n — 2) when
I(G) = K, Up*K,.
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(i) CN-spec((G)) = {(~ (=200, (n=D) (=207}

Ecn(T(G) = 2(p* +p+1)(n — 1)(n - 2)
when I'(G) = (P +p+ 1) K,.

Here m = @02 4pgp = —(p_plg)‘z‘.
(b) If & is non-abelian then
(i)

CN-spec(L(G)) = {(~(m — 2))" Y, ((m — 1)(m - 2))",
(=(n1 = 2)7D, (g = 1) (n1 — 2))*7,
(= = 2)902,(my — 1)y —2))7)
and
Eex(I'(G)) = 2(m — 1)(m = 2) + 2kp(n1 — 1)(n — 2)
+2(p = K)(ny — 1)(nz — 2
when I'(G) = K,,, UkpK,,, U (p — k) K,,.
(i)
CN-spec(L(G))={(—(n1 —2)) V0D ((ny — 1) (my — 2)) "+,
(=l = 2))P70020,((y — 1), — 2)) ¥+ 0)
and
En(T(G)) = 2(kp + 1)y — 1)(my —2)
+2(p+1—Ek)(ng — 1)(ny — 2)
when N'(G) = (kp+ V) K,,, U(p+ 1 — k) K,,.
(i)
CN-spec(I(G)) = {(~(m —2))"Y, ((m — 1)(m — 2))",
(=(nz = 2))P"7Y, ((ng — 1)(n2 — 2))}
and Ecn(I'(G)) = 2(m — 1)(m — 2) 4 2p(ny — 1)(ng — 2) when
[(G) = K, UpKy,.
(iv)
CN-spec(I'(@))
= {(~(m = )N, (g — 1)y )04
and
Eon(D(G)) =2(p* +p+1)(n1 — 1)(ny — 2)
when T'(G) = (p* +p+ 1)K, .
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(v)
CN-spec(I'(G)) = {(=(n1 = 2))"™ Y, (1 = 1)(m - 2))",
(= (nz = 2)P002D ((ny — 1) (ng - 2))**V}
and
Een(I(G)) = 2(n1 — 1)(n1 = 2) +2(p + 1)(n2 — 1)(n2 — 2)
when I'(G) = K,,, U (p+ 1)K,

Here m — (p2—pl)\Z\; ny = (p—plQ)\Z\ and ny = (p—;)IZI’ 1<k<p.
Proof. (a) If £ is abelian then, by [16, Theorem 3.3], we have
[(G) = Ky Up*K, or (p* +p+ 1)K,

where m = &2 4nd g = —(p;lQ)‘Z‘.

)
If T'(G) = K,,, Up*K,, then, using Theorem 2.1, we get
CN-spec(I(G)) ={(=(m —2))" Y, ((m — 1)(m — 2))*,

2

(—(n —2))7"" D ((n = 1)(n — 2))*"}
and
Ecn(D(GQ)) = 2(m — 1)(m — 2) + 2p*(n — 1)(n — 2).
If T(G) = (p* + p+ 1)K, then, using Theorem 2.1, we get
CN-spec(T'(G)) = {( (n — )) p*+p+1)(n— D (n—1)(n— 2)>(pz+p+1)}
and
Eex(D(G)) = 202 + p+ 1)(n — 1)(n —2).
This completes the proof of part (a).

(b) If £ is non-abelian then, by [16, Theorem 3.3], we have
I'G) = K,,,UkpK,,U(p—k) nQ,(k‘p—i—l)KnlU(p—l—l k) Ky, KnUpK,,
(0 49+ DI, o1 Ky U(p+ )y, where m = 0021, — G-l
mo= Y <<

IfI'(G) = K, UkpK,,, U(p— k)Kn2 then, using Theorem 2.1, we get

CN-spec(T'(G)) ={(—(m — 2))™ D, ((m — 1)(m — 2))",
(—(na = 2))=Y ((ny — 1)(ny — 2))™
(—(ng — 2)®FP=D ((ny — 1)(n, — 2)) )}

and
Eon(T(G)) = 2(m — 1)(m — 2) + 2kp(ny — 1)(ny — 2)
+2(p — k)(ne — 1)(ny — 2).
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If I'(G) = (kp+ 1)K, U (p+ 1 — k)K,, then, using Theorem 2.1, we
get
CN-spec(L(G)) ={(—(n —2) DY ((ny —1)(ny — 2))*#HY,
(—(ng — 2))PH=RE=0 () — 1) (ny — 2))PH 0}
and
Ecn(T(GQ)) =2(kp+1)(ny — 1)(n1 — 2) +2(p+ 1 — k)(ng — 1)(ny — 2).
If I'(G) = K,,, UpK,, then, using Theorem 2.1, we get
CN-spec(I(G)) ={(~(m —2))™ Y, ((m —1)(m - 2))",
(= = 217D, (my ~ 1)(my — 2))"}
and
Ecn(T'(G)) = 2(m — 1)(m — 2) + 2p(ne — 1)(ne — 2).
If I(G) = (p* + p+ 1)K, then, using Theorem 2.1, we get
CN-spec(I'(G)) = {(—=(n1 —2) #7000 ((ny — 1) (ny —2))®+7+0}
and
Eox(D(G)) = 2(p* +p + 1)(m — 1) (1 — 2).
If I'(G) = Ky, U (p + 1)K, then, using Theorem 2.1, we get
CN-spec(I(G)) ={(~(n —2))" Y, ((n1 = 1)(m1 - 2))",
(~(n2 = 2))*00D, (my — 1)(my — 27V}
and
Ecn(I(G)) =2(ny — 1)(ny — 2) +2(p+ 1)(n2 — 1)(ng — 2).
This completes the proof of part (b). O

Corollary 2.12. Let GG be a non-abelian p-group of order p™ and
|Z| = p"3, where p is prime and n > 4. Then one of the
following are satisfied:
(a) If € is abelian then

(i)
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and
Eon(T(G)) = 2(p" 2 = p" ' = )(p" 2 = p" " = 2)
+ 2p2(pn74 . pnf5 - 1)(pn74 - pn75 - 2)
when F(G) = Kpn74(p2_1) U p2Kpn—5(p_1).
(i)
ON-spec(I(G) = (~(p"~* — =2 — )+ =)
((pn—4 _ pn—5 _ 1)(pn—4 _ pn—5 _ 2))(p2+p+1)}
and
Eon(T(G)) = 200" +p+ (" = p" > = 1)(p" " = p"° —2)
when T'(G) = (p* + p+ 1) Kpn—sp_1).
(b) If & is non-abelian then

(i)

and
Eon(T(G)) = 200" 2 = p" = )" ? = p" 1 = 2)
+2kp(p = " — 1) ("t — O = 2)
+2(p— k)" —p T = ) = - )

when T'(G) = Kpn-age_1) UkpKpn—s4-1) U (p — k) Kpn-a(p_1).

CN-SpGC(F(G)) :{(_ pn*4 o pn75 . 2))(kp+1)(p"—4fp“—571)’
((pn_4 —p" 0 - 1)(p"_4 — vt — 2))(’@—&-1)7
( n—3 n—4 2))(P+1—k)(p”_3—p”—4_1)7
(

(pn73 . pn74 _ 1)(pn73 - pnf4 _ 2))(p+17k)}
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and
Eon(D(G)) = 2(kp + 1)(p™4 — p=% — 1)(p"t — pn=° — 2)
LA 1=K = =D = =)
when T(G) = (kp + 1) Kp-s(p-1) U (p + 1 = k) Kpn-agp1).
(iii)
CN-spec(D(G)) ={(—(p"~2 — p"* — 2))@" 7“7 =1

(

(P2 =p" " =" = p" = 2)),
( n—3 n—4 2))p(p"*3—p”*4—1)
(

Y

(pn—?) o pn—4 o 1)(pn—3 o pn_4 i 2))1)}
and
Ecn(T(G)) =2(p" 2 = p" ' = 1)(p" > = p" " = 2)
+2p(p" T — Tt — 1)(p"_3 i 2)
when F(G) = Kp —4(p2-1) Uprnﬂ;(p_l),
(iv)
CN-spec(I'(@)) :{(_<pnf4 o 2))(p2+p+1)(pn74fpn,571)’
((pn—4 _ pn—5 _ 1)(pn—4 _ pn—5 . 2))(p2+p+1)}

and Ecx(D(G)) = 29 +p+ D) (p" = p"° = 1) (p"* —p"° = 2)
when T'(G) = (p* + p+ 1) Kpn—sp_1)-

CN-spec((G)) ={ (— (1~ — =2 — 2)) 0"~ 1),

(

<<pnf4 - pn75 - 1)(pn74 o pnfs o 2))17
( n—3 n—4 2))(p+1)(p"*3—p”*4—1)
(

)

(=gt = ) - 2)) )
and
Eon(T(G)) = 2(p" " =p" > = 1)(p" " = p" 7 —2)
2+ )" =" =D - - 2)

when I'(G) = Kpn—sp—1) U (p + 1) Kpn-a¢p_1)-
Here1 <k <p.
Proof. We have |£| = p* and m = % =P —-1p"tn=n =
e-DIZ] _ (p—1)p" 5 and ny = % = (p—1)p"*. Hence, the result
follows from Theorem 2.11. 0
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Corollary 2.13. Let G be a non-abelian p-group of order p*. Then
(a)
(T(@) ={(=(p* —p — 2))r V&1,
(0 =p =) —p—2)¥*Y}
and
Eox(D(G) =20+ D(* —p - D(p* —p - 2)

ifT(G) = (p+ 1)Kp(p71)'
(b)

CN-spec(I(G)) ={(=(* = 3))" 2, (P> = 2)(»* - 3))",
(=(p=3)" " ((p—2)(p - 3)}
and
Ecx(T(G)) = 2(p* = 2)(p* — 3) + 2p(p — 2)(p — 3)
if T(G) = K21y UpK,_

Proof. If G is a non-abelian p-group of order p* then |Z(G)| = p or p*.
Suppose that |Z(G)| = p?. Then by Corollary 2.10, we get

CN-spec(I'(@))
= {(=@* = p =) (5~ p - ) - p - 2))"Y)}
and
Eox(D(G) =2(p + D(* —p - D" —p - 2).

In this case, by [16, Corollary 3.2], it follows that I'(G) = (p+1) K1)
If |Z(G)| = p then, by [16, Corollary 3.5], we have

I(G) = Koy UpKy_y
Using Corollary 2.12(b)(iii), we get
CN-spec(I(G)) = {(—(p* = 1= 2)® "V (p* =1 - 1)(p* = 1-2))},
(—(p—=1=2))"""V (p—1-1)(p—1-2))"}
and
Eon(T(G) =200 =1 -1D)(p* =1-2)+2p(p—1-1)(p — 1 - 2).

After some simplification we get our required result. O
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Theorem 2.14. Let G be a non-abelian finite group with center
Z=2(G) and |Z| = z. If £ = D,,. Then

CN-spec(I'(@))

{<_ ((”_21)2 o 2) (<n21>21)7 (((n—21)z)2 - 3(n;1)z + 2)1,
- (G- )2(5_1)7 (67 -%+2)} wzn

- =Dz _y 1
{( _2))( 2 )7<<(n21)z)2_3(n21)z+2> :
( z—2)21)7(22—3z+2)1}, if 24n
and
2 n2? —3nz+ 3 —32412, if2|n

Een(I'(G)) = {nziz

= —nz? —3nz+ % —3z+8, if 24 n.

Proof. By [11, Theorem 1.2], we have

( ) K(n 1)z UKZ, 1f2’1’n

Now, applying Theorem 2.1, we get
CN-spec(I'(@)) =

(- (o) () ()’

and
Eon(I'(G))
{( ; — ) 9y o x2(:—1)(2-2), if2|n
o2l (gl 9y 1202~ 1)(2-2),  if2{n
Hence the result follows on simplification. O

We conclude this section with the following remark.
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Remark 2.15. We have Z%; ) = DQX% or Dy, according as n is even
n

or odd, Z(T;“Zn) = D,, and % = Dyy3. Therefore, Theorem 2.2,

Theorem 2.3 and Corollary 2.6 can also be obtained from Theorem
2.14.

3. SOME CONSEQUENCES

We begin this section with the following consequence of the results
obtained in Section 2.

Theorem 3.1. (a) If G is isomorphic to Doy, Tan, SDsn, Umm),
Usn, Van or G(p,m,n) then commuting conjugacy class graph of
G is CN-integral.

(b) If G is a finite group and % is isomorphic to Z, X Z, or Dy,

then commuting conjugacy class graph of G is CN-integral.
(¢c) If G is a finite group and % is of order p® then commuting
conjugacy class graph of G is CN-integral.

Theorem 3.2. Let G be the semidihedral group SDs, (n > 2). Then
the commuting conjugacy class graph of G is not CN-hyperenergetic.

Proof. We have |V (I'(G))| = 2n+ 1 or 2n + 2 according as n is even or
odd. By Theorem 2.1 and Theorem 2.4, we get

Eon(Kvr@))) — Een(I'(G))
) 4n(2n —1) —2(2n - 3)(2n — 2), if2|n
Cl4n(2n+1) —2(2n —4)(2n —3) — 12, if 24 n.

Since n > 2 we have
dn(2n—1)—2(2n—-3)(2n—2) =2(8n—6) > 0
and
dn(2n+1) —2(2n — 4)(2n — 3) — 12 = 2(16n — 18) > 0.

Therefore, Ecn(Kjvra))) > Ecn(I'(G)) and so I'(G) is not
CN-hyperenergetic. O

Theorem 3.3. Let G be the group Uy ) (n > 2 and m > 3). Then
the commuting conjugacy class graph of G is not CN-hyperenergetic.
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Proof. We have |V (I'(G))| = n+ " or § + " according as m is even
or odd. If m is even then, by Theorem 2.1 and Theorem 2.5, we have

Eox(Kjvr@))) — Een(I'(G))

1
= 5(271 +nm —2)(2n +nm — 4)

—4(n* —3n+2) — %(mn —2n —2)(mn — 2n — 4)
=4(n*(m—1)—2) >0,

since n > 2 and m > 3. If m is odd then, by Theorem 2.1 and Theorem
2.5, we have

Ecn(Kjvr@)) — Eexn(I'(G))

1
:§(n+nm—2)(n+nm—4)

—2(n2—3n+2)—%(mn—n—Z)(mn—n—él)

=2n*(m—1)—4
> 0,
since n > 2 and m > 3. Hence, the result follows. O

Theorem 3.4. Let G be the group Vg,, where n > 2. Then the
commuting conjugacy class graph of G is not CN-hyperenergetic.

Proof. We have |V(I'(G))| = 2n+2 or 2n + 1 according as n is even or
odd. By Theorem 2.1 and Theorem 2.7, we get

Eox(Kvr@))) — Eon(I'(G))
dn(2n+1) —2(2n —3)(2n —4), if2|n

- {4n(2n —1)—22n-3)(2n—2), if2fn.
Since n > 2 we have

dn(2n+1) —22n —3)(2n —4) =8(4n—3) >0
and

dn(2n —1) —2(2n — 3)(2n — 2) = 4(4n — 3) > 0.
Therefore,

Eon(Kvr@n) > Een(I'(G))

and so I'(@) is not CN-hyperenergetic. O

Theorem 3.5. The commuting conjugacy class graph of the group
G(p, m,n), where p is a prime and m,n > 1, is not CN-hyperenergetic.
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Proof. We have |V(I'(G(p,m,n)))| = p™™™ — p™*t"=2. Using Theorem
2.1 and Theorem 2.8, we get

2m+n—3 2m—+n—2

Eon(Kjvr@mmmny)) — Eoen(T(G(p,m,n)))= 2p — 6p
_ 2p2m+2n—4 + 8p2m+2n—3

. 8p2m+2n—2 + 2p2m+2n
+Ap"t —4p" — 4
= 0.
Let Sl — 8p2m+2n73 + 2p2m+2n _ 2p2m+2n74 _ 8p2m+2n72 and

Sy = 6p? =t — 6p?mtn=2 _ 4 Then
Sy = p" (2P (p° — 4) + (8p— 2)) > 0,
and
Sy = 6p* M1 —p ) — 4 =6p* T2 (p— 1) —4 > 8,

since p*> —4 >0, 8p — 2 > 14 and 6p*™™2(p — 1) > 12.
Let Sz = 2p*™ =3 4 4pn=1 — dpn = 2p"3(p?™ + 2p* — 2p3). If m > 2
then 2m —3>1 = p?™ 3 —-2>0. So,

me + 2p2 o 2p3 — p3(p2m73 o 2) _'_ 2p2 Z O

Hence S; > 0.

Let Sy = Sy —2p*™+n = p?mHn(8pn=34-2p™ —2p" =4 —8p"~2—2). Then
8p 3 4 2p" —2pn Tt —8pn2 — 2 = " A (PP (PP —4) +4p—1)—2 > 12,
if n > 4 (in this case 2p"~* > 2 and p*(p* —4) +4p — 1 > 7). Therefore
Sy > 0. Hence, =55+ 53+ .54 >0, for all m > 2 and n > 4.

We shall now consider the following cases:

Casel. m>2and n=1.

In this case 8 = 2p*™ }(p—1)%(p+ 1) —4p > 0, since p+ 1 > 3 and
2m —1 2> 3.

Case 2. m>2and n = 2.

In this case 8 = 2p*™ H(p3(p? = 5) +p(Tp—4) + 1) —4(p* —p+ 1).
We have 2p?™~! > 16, since m > 2. If p = 2 then 8 = 13.22" — 12 > 0.
Suppose that p > 3. Then p? —5 >4, Tp—4 > 17 and p*> > p?. Hence,
g > 0.

Case 3. m > 2 and n = 3.

In this case

B =2p""(1+43p(p* — 1) + 2p°) + 2p""(p* — 4) — 4p° + 4(p* — 1).

If p=2then 8 = 27.22™*1 —20 > 0. If p > 3 then p*(p? —4) > p?® and
2p?™ > 4. Therefore, 2p*™ ™ (p? — 4) > 4p3. Hence 3 > 0.
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Case 4. m=1and n > 1.
In this case

B=6p" ' —4+2p"(3—-5p ")
+p (=2 = 2p" T - 8 TP = 8p R 4 2p")
=6p" 4+ 2p" (3 —5p )
+p" P (- 4) +4p — 1) — 2).

Note that > 0, if n > 4. If n =1 then
B=2p" —2p" —2p* = 2p = 2p(p(p(p — 1) = 1) = 1) > 0,
since p—1> 1. If n = 2 then
B = 6p—12p* + 14p® — 10p* 4+ 2p° — 4
= 2p%(7—6p~ 1) +2p%(1 4+ 3p~° — 5p~?) — 4.
It is clear that 8 > 0, if p > 3. If p = 2 then § =40 > 0. If n = 3 then
B=(6p* —4)+2p*(2—5p ' +3p) +2p°(1 — 4p~?) > 0.
Hence,
Eex(Kyr@ay)) > Een(I'(G))
and so I'(G) is not CN-hyperenergetic. O

Theorem 3.6. Let G be a finite group with centre Z and |Z| = z
such that % = Dy,. Then the commuting conjugacy class graph of
G is not CN-hyperenergetic. In particular, if G = Dg then I'(G) is
CN-borderenergetic.

Proof. 1f n is even then |V(I'(G))| = % +2xZ="242% By
Theorem 2.1 and Theorem 2.14, we get
nz z nz z
Een(Kjvr@y)) — Een(I'(G)) = 2 (— + = — 1) (— + - — 2)
2 2 2 2
2.2 32
_{n; —nz2—3nz+§—3z+12}

=2*(2n—1) -8
>0,
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since n > 3and z > 2. If nis odd then |V (I'(G))| = = 1)Z+z =+
By Theorem 2.1 and Theorem 2.14, we get

Eox (K@) — Een(T(G)) = (m +i- 1) (% + % - 2)

{ T

222(n—1)—4{ 0, forn=3,z2

zZ
5

We have

> (0, otherwise.

Hence the result follows. O

In view of Theorem 3.6 and Remark 2.15 we get the following
corollary.

Corollary 3.7. The commuting conjugacy class graph of

a) the dihedral group Doy, where m > 3, is no -hyperenergetic.
the dihedral D h > 3, is not CN-h ti

(b) the dicyclic group Ty, where n > 2, is not CN-hyperenergetic.

(c) the group Us, is not CN-hyperenergetic.

Theorem 3.8. Let G be a non-abelian finite group with centre Z(QG)
and % & Z, X Ly, where p is a prime. Then the commuting conjugacy
class graph of G is not CN-hyperenergetic.
Proof. We have |V (I'(G))| = np+n, where n = %ﬁ(c)'. By Theorem
2.1 and Theorem 2.9, we get
Eex(Kjv @) = Een(I'(G)) = 2(np +n — 1)(np+n —2)
—2(n—1)(n—-2)(p+1)
= 2n*p + 2p(n*p — 2)
> 0,

since p > 2 and n is a positive integer. Hence, ['(G) is not CN-
hyperenergetic. OJ

Corollary 3.9. Let G be a non-abelian p-group of order p" and
|Z(G)| = p"2, where p is a prime and n > 3. Then the commuting
conjugacy class graph of G is not CN-hyperenergetic.

Proof. If G is a non-abelian p-group of order p" and |Z(G)| = p" 2
then m = Zyp X Ly, p is prime and n > 3. Hence, the result follows
from Theorem 3.8. 0
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Theorem 3.10. Let G be a non-abelian p-group of order p*. Then
['(G) is not CN-hyperenergetic.

Proof. By Theorem 2.1 and Corollary 2.13, we get
Ecn(Kjvr@)) — Een(I'(G))
_ {2p<p2<p ~ D@ 1) = 2) = u(p), £ T(G) = (p+ DEpp)
2p((p— 1) + p*(3p = 5)) = pa(p), H T(G) = Kooy UpKps
noting that [V ((p + 1)Kpp-1))| = p* — p and
V(Kpo1 UpKypa)| = 2p" —p— L.

Case 1. ECN(K|V(F(G))|) — ECN(F<G)) = U1 (p)
Since p > 2 we have p*> > 4, p—1 > 1, p* — 3 and so
2

1>
p*(p — 1)(p* — 1) > 12. Therefore, p*(p — 1)(p? — 1) — 2 > 10. Hence,
Therefore, p1(p) > 0.

Case 2. ECN(K|V(I‘(G))|) — ECN(F(G)) = ,ug(p).
Since p > 2 we have p —1 > 0 and 3p — 5 > 0 and so us(p) > 0. O

Theorem 3.11. Let G be a non-abelian p-group of order p™ and
|Z(G)| = p™3, where p is a prime and n > 4.

(a) If % is abelian then I'(G) is not CN-hyperenergetic.

(b) If % is non-abelian then I'(G) is not CN-hyperenergetic.
Proof. (a) If % is abelian then, by Theorem 2.1 and Corollary 2.12,
we get
Eox(Kjvr@))) — Eex(I'(G))

—4p® + 2" (p* = 2) + 2" (2p°(p — 2) + 4p — 1) = Bu(p, ),
when F(G) = Kpn 4(p2-1) Up K n=5(p—1)

2> (p* —p — 1) = (4p° + 4p) + 2077 = Ba(p, ),

when I'(G) = (p* + p+ 1) Kpn—s 1)

noting that [V (Kyn-1g2_1) Up*Kpn-sp-1))| = 2p" 2 — p"~* — p"~* and
V(" +p+ DEprspn)l = p" " = p"

Case 1. Ecn(Kjvray)) — Een(I'(G)) = Bi(p, n).
In this case p > 2 and n > 5. Since 2p*(p —2) +4p — 1 > 0 and
2p*"~8(p* — 2) > 4p* we have fy(p,n) > 0.

Case 2. ECN(K|V(F(G))|> - ECN(F(G)) = ﬂg(p, n)
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In this case p > 2 and n > 5. Since p** " > p*and p* —p—1 > 4 we

have p?"~7(p® —p — 1) > 4p? and so p**~"(p*> — p — 1) > 4p. Therefore,

2p*"~"(p® —p — 1) > 4p + 4p*. Hence, Ba(p,n) > 0.
(b) If % is non-abelian then, by Theorem 2.1 and Corollary 2.12, we
get

Eex(Kjvr@y)) — Eex(I'(G)) =

(2/<:p2”_8(3 —p 1) + 2kp?0(1 — 3p~t) + 2p* (3 — HpY)
+4k + 2p(p* % = 2) + 2p(p** " = 2k) := pa(p, n, k),
when F(G) = Kpn74(p2_1) U kapn—5( 1) (p k‘) pr—i(p—1)

Ak — 1)+ {2p" (L =p™) —=p™°} + {2p" (L — p™') — 4p}
+{2kp?"%(1 — 3p~ 1) — 4kp} + 2kp*™3(3 — p7 1)

+4p?" 0 = uy(p, k),

when I'(G) = (kp + 1) Kpn—s(p—1) U (p + 1 — k) Kpn—a(p_1)

p

2p2n—4<3 _ 5p—1) + 2p(p2n—8 + p2n—7 o 2) = M?)(p’ n>,
when F(G) = Kpn—4(p2,1) U prn—z;(p,l)

2077 (p3 — p— 1) — (4p% + 4p) + 2p™ 9 == pa(p, n),
when I'(G) = (p* + p+ 1) Kpn—s(p)

4p2n—9 — 4+ 2p2n—7(p _ 1) _ 4]) + 2p2n—4(1 _ p—l _ 2p—4)
= p5(p,n), when I'(G) = Kpn-sp_1y U (p + 1) Kpn-s(p1)

noting that
[V (Epn—sp2 1>U7<PKn - y U (0= k) Kpn-1p-1))]
= —p" =" 2"
VV((’fP+ DK pn-sp-) (P+ 1= k) Kp-agpy)| = p" 7 = p" 7,
|V (Epn-1g21) UpKpn-1gp-1y)| = —p" = p" 7%+ 2p" 72,
V(0" +p+ D Epn-spn)| = p" 2 = p"°
and |V (Kpn-s(p-1) U (p + 1) Kpn-agpory)| = p" 72 = p"7°
Case 1. Ecx(Kjvray|) — Ecn(I(G)) = m(p, n, k).
In this case p > 2and n > 5. Forp > 3 and n > 5 we have 1 > 3p~!,

p*8 > 2 and p*"~7 > 2k. Therefore, py(p,n, k) > 0.
If p=2and n > 5 then

p1(2,m, k) = (8kn — 5) 4+ (5k x 22"78 — 4k) + 7 x 270 > 0,
since k = 1,2 and 2278 > 4.
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Case 2. ECN(K|V(F(G))|> — ECN(F(G)) = ,ug(p, n, k’)
In this case p > 2 and n > 5. For p > 5 we have
2p2n74<1 o pfl) _ 4p2n78 — 2p2n75(p o 1) o 4p2n78 2 0’
2" (1 —p ) —dp=2p"""(p—1)—4p>0
and
2kp*0(1 — 3p~ 1) — 4kp = 2kp*™ " (p — 3) — 4kp > 0.
Therefore, po(p,n, k) > 0. For p =3 and n > 5 we have
p2(3,m, k) = — 16 — 8k + 3*"9(352 + 16k)
=(352 x 3*"7? — 16) + (16k3*"? — 8k).
Since n > 5, 3% > 3 and so py(3,m,k) > 0. For p=2 and n > 5 we
have
pa(2,m, k) = — 12 — 4k + 22" %k + 18 x 2278
=(18 x 22"7% — 12) + (2*" ®k — 4k).
Since n > 5, 22778 > 4 and so us(2,n,k) > 0.
Case 3. Ecx(Kyry)) — Ecn(I'(G)) = ps(p,n). In this case p > 2

and n > 4. Therefore, 3 — 5p~! > 0 and p?* % + p?»~7 — 2 > 0. Hence,
1u3<p7 n) > 0.
Case 4. Ecx(Kjvra))) — Een(I'(G)) = pa(p, n).

As shown in Case 2 of part (a), we have u4(p,n) > 0 since
n) = Ba(p, n).

Case 5. Ecx(Kjvra))) — Een(I'(G)) = ps(p, n).
In this case p > 2 and n > 5. We have 2p*"~4(1 — p~' — 2p™*) > 0.
Since p*=? > 1 we have 4p*=? > 4. Also,

2p”""(p—1) = 2p)p*™ B(p—1) > 4p

since 2p > 4 and p?*~®(p — 1) > p. Therefore, u5(p,n) > 0.
Thus, in all the cases Ecn(Kjvr(a))) — Ecn(I'(G)) > 0. Hence, I'(G)
is not CN-hyperenergetic. O

pa(p,

Concluding Remark: It is observed that the commuting conjugacy
class graphs of all the groups considered in this paper are not CN-
hyperenergetic. It may be interesting to find a finite group G such that
['(G) is CN-hyperenergetic or to prove that there is no finite group G
whose I'(G) is CN-hyperenergetic.
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