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ADMISSIBLE (REES) EXACT SEQUENCES AND FLAT
ACTS

E. NAFARIEH TALKHOONCHEH, M. SALIMI*, H. RASOULI, E. TAVASOLI
AND A. TEHRANIAN

ABSTRACT. Let S be a commutative pointed monoid. In this
paper, some properties of admissible (Rees) short exact sequences
of S-acts are investigated. In particular, it is shown that every
admissible short exact sequence of S-acts is Rees short exact. In
addition, a characterization of flat acts via preserving admissible
short exact sequences is established. As a consequence, we show
that for a flat S-act F, the functor F ®g — preserves admissible
morphisms. Finally, it is proved that the class of flat S-acts is a
subclass of admissibly projective ones.

1. INTRODUCTION

Throughout this paper, the term monoid will always mean a
commutative, pointed monoid. For a monoid S, the notion of an S-
act is defined and well-studied in literature. An S-act is a pointed
set together with an action by S. We show the category of S-acts by
S-Actg. In S-Acty, epimorphisms are not cokernels, and the “First
Isomorphism Theorem” is not true in general. So, in [2] and [3], the
authors considered admissible morphisms. In this paper, we recall the
notion of admissible short exact sequence of S-acts and we investigate
some properties of these sequences. The notion of Rees short exact
sequence of S-acts is introduced in [1]. Also, the problem of when a
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Rees short exact sequence of S-acts is left and right split is devoted
in [I]. In this paper, we study some properties of Rees short exact
sequences, and we show that every admissible short exact sequence of
S-acts is Rees exact, and every Rees short exact sequence is
exact. Also, in Example 3.13, we present an exact sequence which is not
admissible (Rees) exact.

For an S-act X, the functor X ®¢ — does not preserve admissible
morphisms. In Section 4, we characterize flat acts via preserving
admissible short exact sequences. Also, we show that for a flat S-
act F', the functor F'®g — from S-Actg to S-Acty, preserves admissible
morphisms. The notion of admissibly projective S-acts was defined
in [3] as a generalization of projective S-acts. Note that any torsion
free S-act is admissibly projective, by [3, Proposition 3.3.10]. Also,
every projective S-act is admissibly projective, but not vice versa, see
[3, Example 3.3.9]. Finally, we show that the class of flat S-acts is a
subclass of admissibly projective S-acts.

2. PRELIMINARIES

In this section, we recall some necessary definitions and properties
which will be used in the next sections. We follow standard nota-
tion and terminology from [7, 3]. Let S be a commutative pointed
monoid and let X be a pointed set, i.e., X has a distinguished basepoint
denoted Ox. A left S-act is a pointed set together with a left S-action
-8 x X — X satisfying:

(i) 1-x =z, for every z € X.
(ii) Og -2 =0x and s-0x = Ox, for every x € X and s € S.
(iii) (st) -z =s-(t-x), for every s,t € S and x € X.

One may define a right S-act in the obvious way. If T is another
commutative pointed monoid, a two-sided (S, T)-act is a pointed set
X that is both a left S-act and a right T-act with actions satisfying
(sx)t = s(at), forall x € X, s € Sand t € T. When S =T, hence X
has both a left and right S-action, X is an (non-commutative) S-biact.
The action of an S-biact commutes when sx = xs, for all s € S and
x € X; then S-biacts with a commutative S-action are commutative.
Throughout this paper, an S-act is a commutative S-biact and these
objects are our primary concern.

For S-acts X and Y, a function f : X — Y is called S-act morphism,
or simply homomorphism, when f(0x) = Oy and f(sz) = sf(z), for
every s € S and x € X. The category of S-acts together with their
S-act morphisms will be denoted by S-Acty. The image of an S-act
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morphism f: X — Y is the subset

Im(f)={yeY |3z e X, f(z)=y}
together with the induced S-action. Since 0 = f(0) and

sy = sf(x) = f(sz)

for y = f(x), this is indeed an S-subact of Y. Recall that a subset
U # () of an S-act X is said to be a set of generating elements or a
generating set of X if every element x € X can be presented as x = us
for some u € U, s € S. A set U of generating elements of S-act X is
said to be a basis of X if for every element x € X there exist a unique
u € U and s € S such that x = us, i.e., if x = w11 = w89, then
u; = ug and s; = s5. An S-act X is called free, when X has a basis.
An S-act P is called projective, when it satisfies the following universal
lifting property, for any epimorphism f: X — Y:

X —Y

Meaning that, given any epimorphism f : X — Y of S-acts and any
homomorphism g : P — Y of S-acts, there exists ¢ : P — X such that
g = fop. Also, recall that an S-act F is flat if the functor F' ®g —
from S-Acty to S-Acty, preserves monomorphisms. Note that every
free S-act is projective by [7, Proposition 2.3.4] and every projective
S-act is flat by [7, Proposition 3.17.5] and [7, Lemma 3.9.2].

Proposition 2.1. Let I be an ideal of the monoid S, and let F' be a
flat S-act. Then a: F ®g I — IF, defined by f @i — 1f, for every
feF andi€ I, is an isomorphism.

Proof. Let v: F ®g S — F such that v(f ® s) = fs, for every f € F
and s € S. By [7, Proposition 2.5.13], v is isomorphism. For the
inclusion §: I — S, the S-homomorphism 1p ® f: F ®s [ — F ®g S
is monomorphism, by assumption. Hence y(1p ® §) : F ®g [ — F
is a monomorphism and its image is IF. Therefore, a = y(1p ® () :
F ®g 1 — [F' is isomorphism.

O

Let T be a multiplicatively closed subset of a monoid S. Define
T71S to be a monoid with elements s/t, s € S and t € T, where
s/t = s'/t" if there is an element u € T such that u(st') = u(s't). The
multiplication in 715 is induced by S, (s/t)(s'/t') = ss'/tt’. Note
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that (1/t)(t/1) = 1, so that any element of 7' becomes a unit in T-1S.
The monoid 7715 is called the monoid of fractions of S with respect to
T or the localization of S at T. Let X be an S-act. Define T-*X, the
localization of X at T, to be the (T1S)-act with elements z/t, r € X
and t € T, where x/t = 2’/t' when u(t'z) = u(tz’) for some u € T.
The action of T71S on T7'X is simply (s/t)(z/t') = sx/tt'. We refer
the readers to [1] for more details about localization. Also, we recall
that an S-act X is faithful when sx = tx for all z € X implies s = t.
In the following, we investigate faithfully flat property of T-1X.

Proposition 2.2. Let X be a flat S-act, and let T be a multiplicatively
closed subset of S such that T acts injectively on X. Then T—'X is
faithfully flat (T~1S)-act, provided that X is faithful.

Proof. By [5, Theorem 2.3], T-'X is a flat (T~1S)-act. Also, T7'X is
a faithful (T71S)-act by [4, Lemma 1.3]. So, we get the result. O

3. ADMISSIBLE AND REES EXACT SEQUENCES

The (co)kernel of an S-act morphism f : X — Y is defined as the
(co)equalizer of the diagram

X ?Y)

where the map * is defined by x(x) = 0y for all x € X. One can
see that the kernel of f, denoted by Ker(f), is the subset f~!(0) of
X, and the cokernel of f, denoted by Coker(f), is the quotient of Y’
by the equivalence relation defined as y ~ ¢ if and only if y = 3/ or
v,y € Im(f). We denote this quotient by Y/Im(f). This means that
the quotient Y/Z for any S-subact Z of Y exists as it is the cokernel
of the inclusion map 7 : Z — Y. All kernels and cokernels exist in
S-Acty but we do not have f is injective when Ker(f) = 0 and the
First Isomorphism Theorem does not hold in general. So, we consider
admissible morphisms which are defined as follows:

Definition 3.1. [3] An S-homomorphism f : X — Y is called
admissible whenever the surjection f : X — f(X) is a cokernel. In
this case, Ker(f) = 0 implies that f is injective.

In the following, we collect some properties of admissible morphisms
from [2], and [3] which will be used in the next sections.

Proposition 3.2. The following statements hold.
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(i) Let X and Y be S-acts. Then all injections X < Y are clearly
admissible.

(ii) An S-homomorphism f : X — Y is admissible if and only if
flx\Ker(s) @S an injection.

(iii) An admissible morphism is an injection if and only if it has
trivial kernel.

(iv) Admissible morphisms have “First Isomorphism Theorem?”, i.e.
if f: X =Y is an admissible S-homomorphism, then
X/Ker(f) = m(f).

(v) Let f : X — Y be an admissible S-homomorphism. Then,
there exists an admissible monomorphism g : X — P and an
admissible epimorphism h : P —Y such that f = hog.

(vi) Let f: X — Y be an admissible S-homomorphism. Then, there
exists an admissible epimorphism h : X — P and an admissible
monomorphism g : P —'Y such that f = goh.

(vii) The composition of admissible S-homomorphisms is admissible.

A sequence

..._>Xn+1f"_+l>Xn£>Xn+l_>...

of S-homomorphisms is admissible when every morphisms in the
sequence is admissible. The sequence is ezact when Im(f;11) = Ker(f;),
for all 7. An admissible short exact sequence is an admissible
exact sequence of the form

0=-X =X —=>X"—>0.

In this case, Proposition 3.2 implies that
(i) X’ — X is an injection,
(ii) X — X" is a surjection and X/ X' = X",
Remark 3.3. Let X be an S-act. Since functors — ®g X and X ®g —

do not preserve monomorphisms, we should not expect any of these
functors preserve admissible morphisms.

Proposition 3.4. Consider the following commutative diagram with
admissible exact row of S-acts and S-homomorphisms:

J q
X Y Z
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Let k be an isomorphism with inverse . Then X LW B Z s an
admissible exact sequence.

Proof. Let w € Ker(p). Then gk(w) = p(w) = 0. Hence,
Fw) € Ker(g) = Tm(j).
So, there exists x € X such that j(z) = k(w). Therefore,
i(z) =lj(x) = lk(w) = w.

Hence w € Im(i) which implies that Ker(p) C Im(i). Now, suppose
that w € Im(i). Then there exists z € X such that i(x) = w, and
j(z) € Im(j) = Ker(q). Therefore,

qk(w) = qk(i(z)) = q(ki)(z) = qj(x) =0,

and so w € Ker(p) which implies the exactness. Also, the admissible
property of i and p follows from Proposition 3.2. 0

Proposition 3.5. Let X Ly 5 28w AT be an admissible exact
sequence of S-acts and S-homomorphisms. Then

0 — Coker(f) > Z LN Ker(k) — 0

is an admissible short exact sequence such that a([ylm(s) = 9(y) and
B(z) = h(z), for everyy € Y and z € Z.

Proof. Let [y1]im(s) = [y2mm(s) € Coker(f). Then

Y1 = Y2 Or Y1, Y € Im(f).

If y1 = ya, then g(y1) = g(ye). Otherwise, y1,y» € Im(f) = Ker(g).
Hence, g(y1) = 0 = g(y2) and « is well-defined. Also, for every s € S,
o[yl s) = alyslme)) = 9(ys) = 9(y)s = a([ylm(p))s. So, o is an
S-homomorphism. Now, suppose that a([y1]im()) = @([y2)im(s)). Then
9(y1) = 9(y2). If g(y1) = g(y2) = 0, then y1,y» € Ker(g) = Im(f),
and so [Y1]m(r) = [Y2)im(p). Otherwise, g(y1) = g(y2) # 0. Since g is
admissible, we get that y; = y2, and s0 [y1]im(s) = [Y2)im(s). Therefore,
« is a monomorphism and so « is admissible by Proposition 3.2. It
is evident that § is an epimorphism. Also, it is easy to check that
Im(a) = Ker(). For completing the proof, we must show that f is
admissible. Suppose that 21, zo € Z such that §(z;) = 5(22) # 0. Then
h(z1) = h(z2) # 0 which implies that z; = 25, as desired. O
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Proposition 3.6. Consider the following commutative diagram with
admissible exact rows of S-acts and S-homomorphisms:

X‘.y-_r.7

bk

0 X oy Loz

Then the sequence

Ker(a) i> Ker(5) = Ker(7y)

D
is admissible exact, where i(z) = i(x) and p(y) = p(y) for every
z € Ker(a) and y € Ker(p).

Proof. Since

p(i(z)) = pli(z)) = p(i(z)) =0,
we get that Im(i) C Ker(p). Now, suppose that y € Ker(p). Then
ply) = p(y) = 0 and B(y) = 0. So, there exists x € X such that

i(x) = y. Therefore, 0 = B(y) = 5(i(z)), and so i(x) € Ker(5). On the
other hand, j(a(x)) = 8(i(z)) = 0 which implies that z € Ker(«). So,

y € Im(7). Therefore, Im(i) = Ker(p). Let
T1, 79 € Ker(a) \ Ker(7).
Then
a(zy) = a(xe) =0, i(z1) #0

and i(xy) # 0. Now, if i(z;) = i(zs), then i(z;) = i(z2) and since
i|x\Ker(s) 15 monomorphism, we have r; = x5 and so, i is admissible.
Now, let y1,y» € Ker(53) \ Ker(p). Then B(y1) = 8(y2) = 0, p(y1) # 0
and p(y2) # 0. Now, if P(y1) = DP(y2), then p(y1) = p(y2) and since
i|y\Ker(p) is a monomorphism, we have y; = ys and so, p is admissible.

O

Proposition 3.7. Consider the following commutative diagram with
admissible exact rows of S-acts and S-homomorphisms:

p

X—‘.y A 0
)
X oy Loy 0

Let B be an admissible S-homomorphism. Then there exists a unique
admissible S-homomorphism ~ : Z — Z' which commutes the
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following diagram.

p

X'y A 0
)
Xty g 0

Proof. Let z € Z. Then there exists y € Y such that p(y) = z. Define
amap vy :Z — Z by y(z) = qB(y). Let 21,22 € Z. Then there exists
y1,y2 € Y such that p(y;) = 21 and p(y2) = 29. So, Y(z1) = ¢B(y1) and
V(22) = qB(y2). If p(y1) = p(y2) = 0, then

Y1, 42 € Ker(p) = Im(3).

Hence, there exists 1,25 € X such that i(z1) = y; and i(x2) = yo.
Therefore, fi(x1) = B(y1). So, ja(z1) = B(y1). Thus

B(y1) € Im(j) = Ker(q)

and then ¢B(y1) = 0. So, v(z1) = 0. By the same way, we have
v(z2) = 0. Then v(z1) = 7(22). Otherwise, p(y1) = p(y2) # 0. Since
p is admissible, p|y\Ker(p) is a monomorphism. So, y; = y. Then
v(z1) = qB(y1) = qB(y2) = Y(22). This shows that ~y is well-defined. It
is routine to check that v is an S-homomorphism and yop = go3. Now,
we prove that ~ is admissible. For this, let 21,20 € Z \ Ker(y) such
that v(z1) = 7(22). Hence, there exists y;,y2 € Y such that p(y;) =
and p(ya) = z2. Also,

qB(y1) = aB(y2) # 0,

and so B(y1), B(y2) € Y\ Ker(q). Hence, 8(y1) = B(y2) # 0, since g is
admissible. Therefore, y;,yo € Y \ Ker(3). Since [ is admissible, we
get that y; = yo. Hence z; = 25, as desired. For the uniqueness, let
~'" . Z — Z' be an admissible S-homomorphism such that v op = gof3,
and let z € Z. Then there exists y € Y such that p(y) = z. Therefore,
V() = (p(y)) = 7" o ply) = g Bly) = 7(2), which implies that
Y= O

Proposition 3.8. Consider the following commutative diagram with
admissible exact rows of S-acts and S-homomorphisms:

p

0 X =Y Z
I
0— X sy Loz
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Then there exists a unique admissible S-homomorphism v : X — X'
which commutes the following diagram.

0 Xty -2tsz
Pl
0— X sy Loz

Proof. This is proved as the same line as Proposition 3.7. 0

In the following, we recall the notion of Rees exact sequences of S-
acts as defined in [1].

Let f: X — Y be an S-homomorphism. Set
Ki={(z1,22) € X x X | f(21) = f(x2)}, and

Lo = (Im(f) x Tm(f)) U Ay,

where Ay is the identity congruence on Y. It is clear that both Ky and
Lin(s) are congruences on X and Y respectively, and f(X) = X/Ky as
S-acts. The sequence

of S-acts is called Rees ezact at Y if Ky = Ly (5). If the sequence

0—X-Ly -4 2720 (3.1)

of S-acts is Rees exact at X, Y and Z, then it is called a Rees short
exact sequence. Note that if the sequence 3.1 is Rees short exact, then
f is @ monomorphism and ¢ is an epimorphism. Moreover, let x € X.
Then

(f(x), £(0)) € Im(f) X Im(f) S Lim(p) = Ky

So, g(f(x)) = g(f(0)) = g(0) = 0. Then go f =0.
We also use the term “Rees exact sequence” for sequences of the
forms

0—x-Ly-%z
and
xLy -4 z-—0
being Rees exact at X, Y and Y, Z, respectively.
Remark 3.9. Let X be an S-act, and let L - M — N — 0 be a Rees

exact sequence of S-acts. Then X g L - X ®s M — X ®g N — 0 is
also a Rees exact sequence of S-acts, by [0, Theorem 3.1].
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Proposition 3.10. Let 0 — X Ly % 7 50 be an admissible short
exact sequence of S-acts and S-homomorphisms. Then it is Rees short
exact.

Proof. Let (y1,42) € Ky Then g(y1) = g(y2). If g(s1) = g(y2) = 0,
then yi,y2 € Ker(g) = Im(f) and so (y1,42) € Lim(p). Otherwise,

g(y1) = g(y2) # 0. Therefore, y; = yo, since g is admissible. So,
(yl,yg) € E[m(f). NOW, let (yl,yg) < E[m(f). If Y1,Y2 € IHI(f), then
g(y1) = g(y2) = 0, and so (y1,y2) € K, Otherwise, y; = y, which
implies that (y1,y2) € K. O

Corollary 3.11. Let X be an S-act, and let L — M — N — 0 be
an admissible exact sequence of S-acts and S-homomorphisms. Then
X®RsL —-X®RM—X®5N —0is a Rees exact sequence.

Proof. This follows from Proposition 3.10 and Remark 3.9. O

Proposition 3.12. Let 0 — X LY % Z 50 be a Rees short exact
sequence of S-acts and S-homomorphisms. Then it is short exact.

Proof. Tt is enough to show that Ker(g) = Im(f). Let y € Ker(g).
Then g(y) = 0 = g(0). Hence, (y,0) € Ky = Liw(s). Therefore, y = 0
or (y,0) € Im(f) x Im(f). Since 0 € Im(f), we get that y € Im(f).
Hence Ker(g) € Im(f). Now, suppose that y € Im(f). Then

(y,0) € Im(f) x Im(f) C Lim(p) = K.
Hence g(y) = g(0) = 0. So, y € Ker(g) as desired. O

Let R be a commutative unital ring, and let U(R) denote the monoid
(R,.). This construction induces a functor U : R-Mod — U(R)-Acty,
where R-Mod is the category of R-modules. To every R-module M, the
U(R)-act U(M) has no addition and retains its R-action. The functor
U which is called the forgetful functor was introduced in [3].

Example 3.13. Let C5 and C4 be the pointed cyclic group of order 3
and 4, respectively, and let (1,0) : C3 — C3x Cyand my : C3 x Cy — Cy
be the canonical inclusion and projection. The sequence

U(mo

0 UG " ey x c) U ey = o (3.2)
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is short exact, because

Ker(U(m))

= Ker(m)

={(z,9) € Cs x Cy [ ma((2, ) = y = Ocu }

= Im(U((1,0)))

= Im((1,0))

= {(:B7y) €y x Cy | dz € Cj, <170>($) = (SE,OC4) = (:va)}a
and U((1,0)) = (1,0) is a monomorphism and U(m) = my is an
epimorphism. Note that my is not admissible, because its restriction

to (C3 x Cy) \ Ker(my) is not an injection. So, the sequence 3.2 is not
admissible. Notice that the element

(Z, t) = ((103’ 104)7 (0037 104)) S/
and (z,t) ¢ L, ,,- Hence, the sequence 3.2 is not Rees short exact.

Proposition 3.14. Consider the following commutative diagram with
Rees short exact sequence in row of S-acts and S-homomorphisms:

Let k be an isomorphism with inverse . Then 0 — X WAz 50
is a Rees short exact sequence.

Proof. Let (w,w') € /Cp. Then p(w) = p(w’) and so, gk(w) = gk(w )

Hence, (k(w),k(w")) € = L. Therefore, k( ) = k(w') o
(k(w), k(w")) E Im(j) x Im( ). If k(w) = k(w'), then w = w'. Now, let
(k(w), k(w")) € Im(j) x Im(j). Then there exists (z,2") € X x X such
that (j(x),j(z")) = (k

(F(w), k(w")). So,
(i(x),i(z") = (L), Li(2")) = (k(w), lk(w) = (w,w').

Hence (w,w') € L) which implies that K, € Ling). Now, suppose
that (w,w') € Lime). Then w = w' or (w,w') € Im(i) x Im(i). If
w = w', then p(w) = p(w'). Now, suppose that

(w,w") € Tm(z) x Im(4).
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Then there exists (z, x ) € X x X such that (i(x),i(2")) = (w,w’), and
(j(z),j(«")) € Im(j) x Im(j) C IC,. Hence gj(x) = ¢j(«’). Note that

(p(w), p(w’)) = (gk(w), gk(w"))

= (gk(i(z)), gk(i(z")))

= (q(ki)(x), q(ki)(z"))

= (¢j (%), qi (=),
and then p(w) = ¢j(z) = ¢j(z') = p(w’). Therefore, (w,w’) € K,.

Since p is an epimorphism and ¢ is a monomorphism, we get the result.

O

Proposition 3.15. Consider the following commutative diagram with
Rees exact sequences in rows of S-acts and S-homomorphisms:

p

XY Z 0
I s
X ey ez 0

Then there exists a unique S-homomorphism ~y : Z — Z' which com-
mutes the following diagram:

p

X—‘.y A 0
EO
X ey Lo p 0

Proof. Let z € Z. Then there exists y € Y such that p(y) = z. Define
amap vy : Z — Z' by v(z) = qB(y). If there exists y # ¢ € Y with
p(y') = 2, then p(y) = p(y') and so (y,y') € K, = Lim@). This gives
that (y, ) € Im(7) x Im(i), then there exists (z,2") € X x X such that

(i(2). il /)) = (4,%/)- So,
(B(y), W) = (Bli(x)), B(i(x))) = (i(a(x)), j(alz’))).

Then (8(y), B(y')) € Limg) = K, and therefore, ¢(8(y)) = q(B(y"))
which implies that v is well-defined. It is routine to check that ~ is

an S-homomorphism and yop = go 8. Now, let v/ : Z — Z’ be an
S-homomorphism such that v op = qo . Since v op =~ op and p is
an epimorphism, v = /. O

Proposition 3.16. Consider the following commutative diagram
with Rees exact horizontal and diagonal rows of S-acts and S-
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homomorphisms:

If « is an epimorphism, then B is a monomorphism.

Proof. Let z1,2z0 € Z such that B(z;) = [B(22). Then there exists
y1,y2 € Y such that g(y1) = 21 and g(y2) = z2. Hence

r(y1) = B(g(y1)) = B(z1) = B(z2) = B(9(y2)) = r(y2).

Therefore, (y1,92) € Kr = Limn)- If y1 = yo, then 21 = 2y, as desired.
Otherwise, there exist 7, x4 € X' such that h(z}) = y; and h(x}) = yo.
Also, there exist 1,29 € X such that a(x;) = 2| and a(xs) = .
Therefore, f(x1) = h(a(z1)) = h(z}) = y1 and

f(@2) = h(a(x2)) = h(xy) = ya.
But (y1,¥2) € L) = Ky, and so 21 = g(y1) = g(y2) = 2, which
shows that 3 is a monomorphism. O
Proposition 3.17. Consider the following commutative diagram with
Rees exact rows of S-acts and S-homomorphisms:

p

X',y 7 0

b
0 X 2oy g

Then the sequence

Ker(a) -5 Ker(8) 2 Ker(y) (3.3)

is Rees exact at Ker(f3), where i = i

Ker(a) a'nd p = p Ker(B) °

Proof. Let x1, x5 € Ker(a). Then pi(x,) = pi(z;) = 0 and

Di(xe) = pi(za) = 0.
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Therefore, (i(21),4(x2)) € Ky so that Ly,; € K. Now suppose that
(y1,92) € Ky Then B(y1) = B(y2) = 0, and B(y1) = P(y2). So,
(11, y2) € Ky = Lim()- Hence, y1 =y, or there exists (z1,22) € X x X
such that (i(z1),i(z2)) = (y1,y2). Therefore,

(Bi(x1), Bi(x2)) = (jalwr), jalw2)) = (B(yr), B(y2))-
So,
joxr) = ja(rs) =0
and then a(z1) = a(zz) = 0. Hence, (y1,¥2) € Ly, which implies
that Kp C Lyy,;)- Therefore, 3.3 is Rees exact at Ker(8). O

4. CHARACTERIZATION OF FLAT ACTS

Let X be an S-act. As we mentioned in Remark 3.3, the functor
X ®g — does not preserve admissible morphisms. In this section, we
characterize flat acts via preserving admissible short exact sequences.
As a consequence, we prove that the functor F ®g — preserves admis-
sible morphisms, provided that F'is a flat S-act.

Theorem 4.1. The following statements are equivalent for an S-act
F:
(i) If0 — X LY £y Z — 0 is a Rees short ezact sequence
of S-acts and S-homomorphisms, then

0—FesX " FPosv Y FogZ — 0

is also a Rees short exvact sequence of S-acts and S-
homomorphisms.

(i) F is flat.

(iii) If 0 — X Ly %5 Z — 0 is an admissible short ezact
sequence of S-acts and S-homomorphisms, then the sequence

0—>F®5XM—®JF®SY1F*®§F®SZ—>Oz'salsoanad—
missible short exact sequence of S-acts and S-homomorphisms.

Proof. (i) = (ii) Let f: X — Y be a monomorphism of S-acts. Then
the sequence 0 — X — Y — Y/X — 0 is Rees exact (see [1]).
Hence, the sequence 0 — F g X — FRgY — FRgY/X — 0
is Rees exact, by assumption. Therefore, FF ®¢ X — F ®gY is a
monomorphism, as desired.

(ii) = (i) Follows from [0, Corollary 3.1.1].

(i) = (iii) Let

0—X-Ly-4 2720 (4.1)
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be an admissible exact sequence of S-acts and S-homomorphisms. Then
the sequence 4.1 is a Rees exact sequence by Proposition 3.10. Hence,

0—FosX " FPosy Y FosZ — 0

is a Rees exact sequence by assumption. Therefore, the sequence 4.1 is
exact by Proposition 3.12. Hence, FF'®g¢ X red @ ®gsY is an admissible
homomorphism by Proposition 3.2. Then it is sufficient to show that
1r ® g is an admissible S-homomorphism. Note that the epimorphism
g:Y — g(Y) = Z is a cokernel, since g is an admissible. Therefore,
the epimorphism 1p®¢g : FRsY — F®Rgsg(Y) = F®gZ is a cokernel
by [3, Proposition 2.3.3]. So, it is an admissible S-homomorphism by
[3, Remark 3.2.3]. Hence, the sequence

0—FosX " FPosy Y FosZ — 0

is admissible exact. So, we get the assertion.

(iii) = (ii) This is proved as the same line as (i) = (ii), since for
S-monomorphism X — Y, the sequence 0 - X — Y — Y/X — 0 is
admissible exact by Proposition 3.2. U

Corollary 4.2. Let F' be a flat S-act, and let f : X — 'Y be a monomor-

F®sY
phism of S-acts. Then 7 ng = F®s (Y/X).

Proof. Consider admissible exact sequence 0 - X - Y — Y/X — 0
of S-acts and S-homomorphisms. By Theorem 4.1, the sequence

05> FRsX > FRsY - FRs(Y/X)—0

®sY
FoqX

Corollary 4.3. Let F be a flat S-act. Then the functor F ®g —
preserves admissible morphism.

Proof. Let F' be a flat S-act, and let f : X — Y be an admissible
S-homomorphism. By Proposition 3.2, the sequences

0 — Ker(f) - X — Im(f) — 0,

is admissible exact. Hence, >~ Fes(Y/X). O

and

0—Im(f) =Y — Y/Im(f) — 0
are admissible exact. Therefore, the sequences

0— F®sKer(f) » F®s X - F®sIm(f) — 0,

and
0= FRsIm(f) > FRsY = F®s (Y/Im(f)) =0
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are also admissible exact, by Theorem 4.1. Hence, the morphism F ®g
X — F ®gY is admissible, by Proposition 3.2. 0

Let {X; | i € I} be a family of S-acts. The coproduct of this family
is VX; = (UX; \ {0x,})U{0} with z;s = 0, if 2;s = Oy, in X; and
iel
Os=0forall seS.
Proposition 4.4. Let {F; | i € I} be a family of flat S-acts. Then
\ F; is flat.

el

Proof. Let 0 — X Iy ¥ 25 Z — 0 be an admissible short exact
sequence of S-acts and S-homomorphisms. Then

1p. 1p.
05 FesX 2 resy "Y P esZ —0

is an admissible exact sequence for every ¢ € I. We show that

0— \(Fos X)L \(Fesy) 5 \/(FesZ) — 0
i€l iel iel
is an admissible exact sequence, where

F((fi @ x)ier) = (1r, ® f)(fi @ 2))ier
and
9((fi ®yier) = ((1r, ® 9)(fi ® y))ier
for ;xr € F; ¢ X and f;, ® y € F; ®s Y. It is clear that f and

g are admissible S-homomorphisms. It is evident to see that g is an
epimorphism and f is a monomorphism. Note that

(g ®@g)o(1r® f) = 0.

So,gof = ((1g®g)o(1r®f))icr = (0);er = 0. Hence, Im(f) C Ker(g).
Let (fi®y)ier € Ker(g). Then g((fi®y)ier) = ((1r,®9)(fi®Yy))ier = 0.
Therefore, f; @ y € Ker(1lp, ® g) = Im(1p, ® f) for all i € I. So, there
exists f;®@x € F;®g X such that (15, ® f)(fi®x) = f; ®y and we have

Ker(g) € Im(f). Now, [7, Proposition 2.5.14] implies the result. OJ
Proposition 4.5. If F' and F' are flat S-acts, then so is F ®g F".

Proof. Let 0 - X — Y — Z — 0 be an admissible short exact
sequence of S-acts. By assumption,

0> FRsX 5> F ®@sY = F ®sZ—0,
and so

0—>F®S<F,®SX)—)F@S(F/(X)SY)—>F®5(F,®SZ)—>O,
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are admissible exact sequences. Hence
0— (F@SF/) ®SX% (F@SF/) ®5Y—> (F@SF/)®SZ—>O,

is an admissible short exact sequence, by [3, Proposition 2.3.3]. Now,
in view of Theorem 4.1 the result follows. O

Corollary 4.6. Let T' be a multiplicatively closed subset of S, and let
F be a flat S-act. Then T~ 'F is a flat S-act.

Proof. By [3, Proposition 2.4.4(ii)], T'F % F®¢T~1S. Also, T"'S is
flat by [5, Theorem 2.2]. Now, the assertion follows from Proposition
4.5. O

Corollary 4.7. Let I be an ideal of the monoid S such that S/I is a
flat S-act. Then F/IF is flat, provided that F is a flat S-act.

Proof. By [0, Theorem 3.2|, S/I ®g F' = F/IF. Hence, we get the

assertion by Proposition 4.5. O
The notion of admissibly projective S-act was defined in [3] as
follows:

Definition 4.8. An S-act Q) is called admissibly projective if it satisfies
the lifting property:

L’ f
X —Y
whenever f : X — Y is an admissible surjection, that is, for any S-

homomorphism ¢g : @ — Y there exists an S-homomorphism
@ : Q) — X such that g = f o .

Recall that a non-zero element s € S is called zero-divisor, if there
exists a non-zero element ¢ € S such that st = 0. An element s € S is
called cancelable, if rs = ts implies that r = t where r,t € S. An S-act
X is called torsion free, if for any x,2’ € X and for any cancelable
element s € S the equality xs = 2's implies that = 2’. Note that any
torsion free S-act is admissibly projective, by [3, Proposition 3.3.10].
Also, every projective S-act is admissibly projective, but not vice versa,
see [3, Example 3.3.9].

In the following, we show that the coproduct of a family of admissibly
projective S-acts are also admissibly projective.
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Proposition 4.9. Let {Q; | i € I} be a family of admissibly projective
S-acts. Then \/ Q; is admissibly projective.
iel
Proof. Let @ = \/Q;. Since @Q; is admissibly projective for each
icl
i € I, we have the following commutative diagram of S-acts and S-
homomorphisms:

Qi
y
3901‘," Q
g
v f
X Y 0

where f is an admissible epimorphism and h; is the canonical injection
map. Define ¢ : ) — X by

(q) = 0i(q) if 0Og # ¢ € Q; for some i € I,
U= 0y if g=0,.

It is easily seen that f o ¢ = ¢, which means that () is admissibly
projective. O

In the following, we show that the class of flat S-acts is a subclass
of admissibly projective S-acts.

Proposition 4.10. Every flat S-act is admissibly projective.

Proof. Let X be a flat S-act. By [7, Lemma 3.9.2 and Proposition
3.10.3], X is torsion free. Now, the assertion follows from [3, Proposi-
tion 3.3.10]. O

It is natural to ask whether the tensor products of admissibly pro-
jective S-acts is admissibly projective and whether the localization of
admissibly projective S-act is admissibly projective. In the following,
we answer to these questions in the special cases.

Corollary 4.11. Let T be a multiplicatively closed subset of S. Then
the following statements hold.
(i) T71S is admissibly projective S-act.
(ii) Let F be a flat S-act. Then T—'F is an admissibly projective
S-act.
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(iii) Let F' and F' be flat S-acts. Then F ®@g F' is an admissibly
projective S-act.
(iv) Let {F; | © € I} be a family of flat S-acts. Then \/F; is
i€l
admissibly projective.
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