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GENERALIZED π-BAER ∗-RINGS

A. SHAHIDIKIA∗ AND H. H. S. JAVADI

Abstract. A ∗-ring R is called a generalized π-Baer ∗-ring, if for
any projection invariant left ideal Y of R, the right
annihilator of Y n is generated, as a right ideal, by a projection,
for some positive integer n, depending on Y. In this paper, we
study some properties of generalized π-Baer ∗-rings. We show that
this notion is well-behaved with respect to polynomial extensions,
full matrix rings, and several classes of triangular matrix rings. We
indicate interrelationships between the generalized π-Baer ∗-rings
and related classes of rings such as generalized π-Baer rings,
generalized Baer ∗-rings, generalized quasi-Baer ∗-rings, and π-
Baer ∗-rings. We obtain algebraic examples which are generalized
π-Baer ∗-rings but are not π-Baer ∗-rings. We show that for pre-
C*-algebras these two notions are equivalent. We obtain classes of
Banach ∗-algebras which are generalized π-Baer ∗-rings but are not
π-Baer ∗-rings. We finish the paper by showing that for a locally
compact abelian group G, the group algebra L1(G) is a generalized
π-Baer ∗-ring, if and only if so is the group C*-algebra C∗(G), if
and only if G is finite.

1. Introduction

Throughout this paper R denotes an associative ring with unity. Let
us recall that a ∗-ring (or an involutive ring) R is a ring with a map
∗ : R → R, called involution, such that (x+y)∗ = x∗+y∗, (xy)∗ = y∗x∗,
and (x∗)∗ = x, for all x, y ∈ R. An idempotent p of a ∗-ring R is called
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a projection if p is self-adjoint (i.e., p∗ = p). An idempotent e ∈ R
is called right (resp., left) semicentral if ex = exe (resp., xe = exe),
for all x ∈ R [9]. We denote by Sr(R) (resp., Sℓ(R)) the set of all
right (resp., left) semicentral idempotents of R. If X is a nonempty
subset of R, then rR(X) (resp., ℓR(X)) is used for the right (resp., left)
annihilator of X over R. We use Mn(R), R[x], and R[[x]] for the n
by n full matrix ring over R, the ring of polynomials, and the ring of
formal power series, respectively. The ring of integers and the ring of
integers modulo n are denoted by Z and Zn, respectively.

Recall from [24] that, a ring R is called a Baer ring if the right
annihilator of every nonempty subset of R is generated, as a right ideal,
by an idempotent. If R is a ∗-ring, then R is called a Baer ∗-ring if the
right annihilator of every nonempty subset is generated, as a right ideal,
by a projection. In [24] Kaplansky has shown that the definitions of a
Baer ring and a Baer ∗-ring are left-right symmetric. The subject of
Baer ∗-rings is essentially pure algebra, with historic roots in operator
algebras and lattice theory. Baer ∗-rings are a common generalization
of AW*-algebras and complete ∗-regular rings. The AW*-algebras are
precisely the Baer ∗-rings that happen to be C*-algebras, the complete
∗-regular rings are the Baer ∗-rings that happen to be regular in the
sense of von Neumann.

Various weaker versions of Baer and Baer ∗-rings have been studied.
From [20], a ring R is quasi-Baer if the right annihilator of every
right ideal is generated, as a right ideal, by an idempotent. This is a
nontrivial generalization of the class of Baer rings. For example, prime
rings with nonzero right singular ideal are quasi-Baer and not Baer,
since Baer rings are nonsingular. The quasi-Baer ring property is left-
right symmetric.

Recall from [27] that, a ring R is called a generalized quasi-Baer ring
if for every ideal I of R, the right annihilator of In is generated by
an idempotent for some positive integer n depending on I. In [15],
Birkenmeier and Park introduced a quasi-Baer ∗-ring as a ∗-ring R in
which the right annihilator of every ideal is generated by a projection.
As in the case of Baer ∗-rings, the involution can be used to show that
this notion is left-right symmetric. If R is a commutative non-Prüfer
domain then Mn(R), with the transpose involution, is a quasi-Baer
∗-ring which is not a Baer ∗-ring.

In [10], Birkenmeier et al. introduced another generalization of Baer
rings. Recall that a ring R is said to be a π-Baer ring if the right
annihilator of every projection invariant left ideal Y (i.e., Y e ⊆ Y for
all e = e2 ∈ R) is generated by an idempotent.



GENERALIZED π-BAER ∗-RINGS 349

Recall from [31] that, a ∗-ring R is said to be a π-Baer ∗-ring if the
right annihilator of every projection invariant left ideal Y is generated
by a projection.

Like the Baer and Baer ∗ properties, the π-Baer and π-Baer ∗
properties are left-right symmetric. The π-Baer condition is strictly
between the Baer and quasi-Baer conditions, and the π-Baer ∗
condition is strictly between the Baer ∗ and quasi-Baer-∗ conditions.

In [31], the authors generalized the notion of π-Baer rings. Recall
that a ring R is said to be a generalized π-Baer ring if for every
projection invariant left ideal Y of R, the right annihilator of Y n is
generated by an idempotent for some positive integer n depending on
Y .

From [4], a ∗-ring R is a generalized Baer ∗-ring if for any nonempty
subset S of R, the right annihilator of Sn is generated, as a right ideal,
by a projection for some positive integer n depending on S, where
Sn = {s1s2 · · · sn| s1, s2, . . . , sn ∈ S}.

Recall from [3] that, a ∗-ring R is said to be a generalized quasi-
Baer ∗-ring if for any ideal I of R, the right annihilator of In is
generated, as a right ideal, by a projection for some positive integer
n depending on I.

To transfer the generalized quasi-Baer ∗-condition from a ∗-ring R to
various extensions (e.g., R[x] or R[[x]] or full matrix rings over R) one
needs no additional conditions which is certainly not the case for the
generalized Baer ∗-condition (see [3, Theorem 3.17] and [4, Example
2.24]). So, it is natural to ask: is there a condition strictly between
the generalized Baer ∗ and generalized quasi-Baer ∗-conditions, which
is able to combine some of the notable features of the generalized Baer
∗ and generalized quasi-Baer ∗-conditions?

On the other hand, in the presence of an involution, the projections
are “vastly easier to work with than idempotents”. In this paper, we
introduce a generalized π-Baer ∗-ring as a ∗-ring R in which the right
annihilator of every projection invariant left ideal of R is generated by
a projection. These ∗-rings are generalizations of π-Baer ∗-rings, and
there are examples distinguishing these classes.

The organization of our paper is as follows. In Section 2, we introduce
the notion of generalized π-Baer ∗-rings, and we study its properties
and relations with other Baer-type rings such as generalized π-Baer
rings, generalized Baer ∗-rings, generalized quasi-Baer ∗-rings, and
π-Baer ∗-rings.

Section 3 is devoted to the study of extensions of generalized π-Baer
∗-rings. We prove that the n by n full matrix rings over generalized
π-Baer ∗-rings are generalized π-Baer ∗-rings. It is shown that being a
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generalized π-Baer ∗-ring is preserved by polynomial extensions. Also,
it is proved that the essential overrings of generalized π-Baer ∗-rings are
generalized π-Baer ∗-rings. The analytic part of the paper is presented
in Section 4. In Section 4 we show that for pre-C*-algebras the notions
of a generalized π-Baer ∗-ring and a π-Baer ∗-ring are equivalent. We
give examples of Banach ∗-algebras which are generalized π-Baer ∗-
rings but are not π-Baer ∗-rings. Also, we characterize locally compact
abelian groups G where the group algebra L1(G) and the group C*-
algebra C∗(G) are (generalized) π-Baer ∗-rings.

2. Basic Results

In this section, the generalized π-Baer ∗-rings and their basic
properties are introduced. Furthermore, the relations between the
notion of a generalized π-Baer ∗-ring and other Baer-type notions are
verified.

Definition 2.1. A ∗-ring R is called a generalized π-Baer ∗-ring if
for any projection invariant left ideal Y of R, the right annihilator of
Y n is generated, as a right ideal, by a projection for some positive
integer n, depending on Y ; i.e., there is a projection p ∈ R such that
rR(Y

n) = pR.

Remark 2.2. Let R be a ∗-ring.
(1) Taking Y = 0 in Definition 2.1 yields that R has a unity

element.
(2) The definition of a generalized π-Baer ∗-ring is left-right

symmetric. For this, let Y be a projection invariant right ideal
of R. It is not hard to see that Y ∗ is a projection invariant left
ideal of R. Then rR((Y

∗)n) = pR, for some projection p ∈ R
and some positive integer n. Hence

ℓR(Y
n) = (rR((Y

n)∗))∗ = (rR((Y
∗)n))∗ = Rp.

The following example demonstrates that there exists a ∗-ring which
is a generalized π-Baer ∗-ring, but it is not a π-Baer ∗-ring.

Example 2.3. Let R =

(
C C
0 C

)
. Define ∗ : R → R by

(
a b
0 c

)∗

=

(
c b
0 a

)
,
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where a (resp., b, and c) is the conjugate of a (resp., b, and c). Then
all the projection invariant left ideals of R are

0, R,

(
0 C
0 0

)
,

(
C C
0 0

)
and

(
0 C
0 C

)
.

Since rR(

(
0 C
0 0

)
) is not generated by a projection of R, R is not a

π-Baer ∗-ring. But, it is a generalized π-Baer ∗-ring, since

rR(

(
0 C
0 0

)2

) = rR(0) = R.

In the next example we see that there exists a ∗-ring which is not a
generalized π-Baer ∗-ring, but it is a generalized π-Baer ring.
Example 2.4. Let n be an integer and R = T2n(Z⊕Z) be the ring of
2n×2n upper triangular matrices over Z⊕Z. Take S = R⊕Rop, where
Rop denote the opposite ring of R. Then by [31, Corollary 3.4] S is a
generalized π-Baer ring. Let ∗ : S → S be the exchange involution;
i.e., (A,B)∗ = (B⋇, A⋇) (see Definition 3.5 for the definition of ⋇). We
will now show that S is not a generalized π-Baer ∗-ring. Note that R
is a projection invariant left ideal of S, and the set of all projections of
S is

{(A,A) | A ∈ S,A = A2 = A⋇}.
One can show that rS(Rn) = rS(R) = (0, I2n)S , for each integer n ≥ 1.
Thus rS(R

n) does not contain a nonzero projection of S. Hence S is
not a generalized π-Baer ∗-ring.

A ∗-ring R is called symmetric if, for every x ∈ R, 1 + x∗x is an
invertible element of R (see [7, Exercise 7c, p. 9]).
Proposition 2.5. Let R be a symmetric ∗-ring. Then the following
statements are equivalent:

(1) R is a generalized π-Baer ∗-ring;
(2) R is a generalized π-Baer ring.

Proof. Clearly (1) implies (2). Assume that (2) holds and let Y be
a projection invariant left ideal of R. Then rR(Y

n) = eR, for some
idempotent e ∈ R and some positive integer n. Since R is symmetric,
[24, Theorem 26, p. 34] yields that there is a projection p ∈ R such
that eR = pR. Hence rR(Y

n) = pR and so R is a generalized π-Baer
∗-ring. □

We need the following proposition in the sequel
Lemma 2.6 ([30], Lemma 1.4). Let R be a ∗-ring.



352 SHAHIDIKIA AND JAVADI

(1) If p ∈ R is a projection and pR is a projection invariant right
ideal, then p is central.

(2) If p ∈ R is a projection and Rp is a projection invariant left
ideal, then p is central.

The following result will be used many times in the sequel.
Proposition 2.7. The following are equivalent for a ∗-ring R.

(1) R is a generalized π-Baer ∗-ring;
(2) R is a generalized π-Baer ring in which every left (right) semi-

central idempotent is a central projection;
(3) For each projection invariant left (right) ideal Y , there exist a

central projection p ∈ R (q ∈ R), and a positive integer n (m)
such that rR(Y n) = pR (ℓR(Y

m) = Rq).
Proof. (1)⇒(2) Let R be a generalized π-Baer ∗-ring. Then obviously
R is a generalized π-Baer ring. The second part of the statement follows
from Proposition 2.9 and [3, Lemma 2.3(ii)].

(2)⇒(3) Let Y be a projection invariant left ideal of R. Then there is
an idempotent e ∈ R and a positive integer n such that rR(Y n) = eR.
By [10, Lemma 2.1(i)] eR is a projection invariant right ideal. By [10,
Lemma 2.1(iii)] e is a left semicentral idempotent. So (2) implies that
e is a central projection.

(3)⇒(1) It is clear. □
Recall from [6] that, a ring R is said to satisfy the IFP (insertion

of factors property) if rR(x) is an ideal of R for all x ∈ R. A ring R
is called abelian if every idempotent in it is central. It is evident that
any reduced ring satisfies IFP and any ring with IFP is abelian.
Proposition 2.8. Let R be a ∗-ring satisfying IFP. Then the following
conditions are equivalent.

(1) R is a generalized π-Baer ∗-ring.
(2) If S is a nonempty subset of R such that Se ⊆ S for all

idempotent e ∈ R, then there exist some projection p ∈ R and
integer n ≥ 1 such that rR(Sn) = pR.

Proof. (1)⇒(2) Let R be a generalized π-Baer ∗-ring and S a nonempty
subset of R such that Se ⊆ S, for all idempotent e ∈ R. Then RS is
a left ideal of R and RSe = R(Se) ⊆ RS. Thus RS is a projection
invariant left ideal of R. Hence

rR(S
n) = rR(R(S)n) = rR((RS)n) = pR

for some projection p ∈ R and some positive integer n, and the result
follows.
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(2)⇒(1) It is straightforward. □
Proposition 2.9. Let R be a ∗-ring. Consider the following conditions.

(1) R is a generalized Baer ∗-ring;
(2) R is a generalized π-Baer ∗-ring;
(3) R is a generalized quasi-Baer ∗-ring.

Then (1)⇒(2)⇒(3).
Proof. The fact that every projection invariant left ideal is a subset
yields the implication (1)⇒(2). The implication (2)⇒(3) follows from
the fact that every two-sided ideal is a projection invariant left ideal.

□
We remark that when R is commutative, conditions (1), (2), and (3)

of Proposition 2.9 are equivalent. The next example shows that the
converse of each of the implications in Proposition 2.9 does not hold
true.
Example 2.10. (i) Let R = M2(C)[x]. By [4, Example 2.24] the ring
M2(C)[x], with the conjugate transpose involution on coefficients, is
not a generalized Baer ∗-ring. On the other hand, by Theorem 3.3
below, C[x], with the conjugate map on coefficients as the involution,
is a generalized π-Baer ring. Now Proposition 3.4 below implies that
R is a generalized π-Baer ∗-ring.

(ii) Let R be a prime ring with trivial idempotents which is not
domain. For example, let R = KG, where K is a field of characteristic
p > 0, and G = Cp ≀A be the restricted wreath product of Cp, the cyclic
group of order p, and an infinite elementary abelian p-group (see [19,
Example 3.4]). Let ∗ be the involution on the group ring R defined
by (

∑
agg)

∗ =
∑

a∗gg
−1. By [15, Corollary 1.2], R is a quasi-Baer ∗-

ring. On the other hand R is not π-Baer (see [10, Theorem 2.1]). Then
[31, Proposition 2.11] implies that R is not generalized π-Baer and so
it is not a geeralized π-Baer ∗-ring. By Theorem 3.6 below, the ring
Sn(R) with the involution ⋇ is not a generalized π-Baer ∗-ring, for each
integer n ≥ 2 (See Definition 3.5 for the definitions of Sn(R) and ⋇).
But [3, Theorem 3.4] implies that Sn(R) is a generalized quasi-Baer
∗-ring.

We include the following results to demonstrate the conditions in
which the generalized π-Baer ∗-ring, π-Baer ∗-ring, and generalized
quasi-Baer ∗-ring are coincide.
Proposition 2.11. Let R be a ∗-ring, then:

(1) If R is semiprime, then R is a generalized π-Baer ∗-ring if and
only if it is a π-Baer ∗-ring.
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(2) If R satisfies IFP , then R is a generalized π-Baer ∗-ring if and
only if it is a generalized quasi-Baer ∗-ring.

(3) If R is generated by its idempotents, then R is a generalized π-
Baer ∗-ring if and only if it is a generalized quasi-Baer ∗-ring.

Proof. (1) Let R be a generalized π-Baer ∗-ring and Y a projection
invariant left ideal of R. Then rR(Y

n) = pR, for some positive integer
n, and some central projection p ∈ R. So Y np = (Y p)n = 0. Since
R is semiprime, Y p = 0. Thus pR ⊆ rR(Y ) ⊆ rR(Y

n) = pR. Hence
rR(Y ) = pR and that R is a π-Baer ∗-ring. The converse is obvious.

(2) Let Y be a projection invariant left ideal of R. Since R satisfies
IFP , rR((Y R)n) = rR(Y

n) for each positive integer n. Thus if R is
a generalized quasi-Baer ∗-ring, then it is a generalized π-Baer ∗-ring.
The converse follows from Proposition 2.7.

(3) Note that every projection invariant one-sided ideal of R is an
ideal of R by [10, Corollary 2.2(iii)]. Then Proposition 2.7 yields the
result. □

The following is an example of a ∗-ring which is not a generalized
π-Baer ∗-ring.
Example 2.12. Let R be the ring constructed in [12, Example 1.6].
More precisely, let Cn = C for n = 1, 2, . . ., and let

R =

(∏∞
n=1Cn

⊕∞
n=1Cn⊕∞

n=1Cn ⟨
⊕∞

n=1 Cn, 1⟩

)
which is considered as a subring of M2(

∏∞
n=1Cn), where ⟨

⊕∞
n=1Cn, 1⟩

denotes the C-algebra generated by
⊕∞

n=1Cn and 1∏∞
n=1 Cn . Consider

the conjugate transpose as an involution for R. By [3, Example 2.35]
R is not a generalized quasi-Baer ∗-ring. Thus Proposition 2.9 implies
that R is not a generalized π-Baer ∗-ring.

Let R be a ring with an involution ∗. Recall that, ∗ is called a proper
involution if for every x ∈ R, xx∗ = 0 implies x = 0 [7]. Also, ∗ is
called a semiproper involution if xRx∗ = 0 implies x = 0 [17]. Recall
from [3] that, ∗ is said to be a quasi-proper involution if for every
x ∈ R, xRx∗ = 0 implies xn = 0, for some n ∈ N depending on x.
Observe that if ∗ is a semiproper involution, then it is quasi-proper.
Thus the involution of every C*-algebra is quasi-proper since it is a
proper involution [7].
Proposition 2.13. Let R be a generalized π-Baer ∗-ring. Then ∗ is a
quasi-proper involution.
Proof. The proof follows from Proposition 2.9 and [3, Proposition 2.13].

□
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Proposition 2.14. The following are equivalent for a ∗-ring R.
(1) R is a generalized π-Baer ∗-ring.
(2) For each projection invariant left (right) ideal Y of R, there

exist a central projection p ∈ R and a positive integer n such
that Y n ⊆ Rp and rR(Y

n) ∩Rp = 0 (ℓR(Y n) ∩ pR = 0).

Proof. (1)⇒(2) Suppose that R is a generalized π-Baer ∗-ring. Let Y
be a projection invariant left ideal of R. Then there exist a central
projection p ∈ R and a positive integer n such that rR(Y n) = pR. So
Y n ⊆ ℓR(rR(Y

n)) = R(1 − p). Set q = 1 − p. Then q is a projection
and rR(Y

n) ∩Rq = (1− q)R ∩Rq = 0.
(2)⇒(1) Let Y be a projection invariant left ideal of R. Choose a

central projection p ∈ R and an integer n ≥ 1 such that Y n ⊆ Rp and
rR(Y

n)∩pR = 0. Then (1−p)R = rR(Rp) ⊆ rR(Y
n). Let a ∈ rR(Y

n),
then a = ap+ a(1− p). Since ap ∈ rR(Y

n) ∩Rp, ap = 0. Thus

a = a(1− p) = (1− p)a ∈ (1− p)R.

Hence, rR(Y n) ⊆ (1 − p)R. Therefore, R is a generalized π-baer ∗-
ring. □

Let MR be a right R-module. A submodule NR of MR is called
essential in MR if for any x ∈ M \ {0}, there exists r ∈ R such that
0 ̸= xr ∈ N . Also recall a right essential overring T of R is an overring
of R such that RR is essential in TR. Recall that for a ring R, the left
socle of R, Soc(RR), is defined as the sum of all minimal left ideals of R.
Equivalently, Soc(RR) is the intersection of all essential left ideals of R
(see [25, Exercise 6.12]). The right socle, Soc(RR), is defined similarly.
One can easily check that both socles are ideals of R.

Corollary 2.15. Let R be a generalized π-Baer ∗-ring and Y a
projection invariant left ideal of R. Then there exist a central
projection p ∈ R and a positive integer n such that Y n is left essential
in Rp.

Proof. By Proposition 2.14, there exist a central projection p and a
positive integer n such that Y n ⊆ Rp and rR(Y

n) ∩ Rp = 0. Suppose
that Y n is not left essential in Rp. Then there exists a nonzero left ideal
X of the ring Rp such that Y n ∩ X = 0. So X ⊆ rR(Y

n) ∩ Rp = 0,
which is a contradiction. □

Proposition 2.16. Let R be a ∗-ring and e ∈ R a central projection.
If R is a generalized π-Baer ∗-ring, then so is eRe.

Proof. The proof is straightforward. □
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Proposition 2.17. The center of a generalized π-Baer ∗-ring is a
generalized Baer ∗-ring (and hence a generalized π-Baer ∗-ring).

Proof. Let R be a generalized π-Baer ∗-ring. Then by Proposition 2.7,
R is a generalized π-Baer ring in which every left (right) semicentral
idempotent is a central projection. Thus every idempotent of C(R),
the center of R, is a projection. Also, by [31, Proposition 2.22] C(R)
is a generalized π-Baer ring. Therefore, C(R) is a generalized π-Baer
∗-ring. □
Proposition 2.18. Let {Rγ | γ ∈ Γ} be a family of ∗-rings, and
R =

∏
γ∈ΓRγ. Then we have the following.

(1) If R is a generalized π-Baer ∗-ring, then Rγ is a generalized
π-Baer ∗-ring for each γ ∈ Γ.

(2) If |Γ| < ∞ and for each γ ∈ Γ, Rγ is a generalized π-Baer
∗-ring, then R is a generalized π-Baer ∗-ring.

Proof. (1) The proof follows immediately from Proposition 2.16.
(2) It is enough to take Γ = {1, 2, . . . , k} for some k ∈ N. Put

R =
∏k

i=1Ri. Assume that Ri be a generalized π-Baer ∗-ring, for each
i = 1, . . . , k. Let Y be a projection invariant left ideal of R. It is
easy to see that Y =

∏k
i=1 Yi, for some projection invariant left ideal

Yi of Ri. Since Ri is a generalized π-Baer ∗-ring, rRi
(Y ni

i ) = piRi,
for some central projection pi ∈ Ri and some positive integers ni. Put
n = max{n1, n2, . . . , nk}. By [31, Lemma 2.18] rRi

(Y n
i ) = piRi for each

i. Then rR(Y
n) =

∏k
i=1 piRi. Put p = (p1, . . . , pk) ∈ R, it is clear that

p is a projection of R. So rR(Y
n) = pR. Therefore, R is a generalized

π-Baer ∗-ring. □

Let R be a ∗-ring. A right (left, two-sided) ideal I of R is said to be
a ∗-essential right (left, two-sided) ideal in R if I ̸= 0 and I ∩ J ̸= 0
for any nonzero self-adjoint ideal J of R. An ideal P of R is said to be
a ∗-prime ideal of R if IJ ⊆ P implies that I ⊆ P or J ⊆ P , where I
and J are self-adjoint ideals of R (see [8]).

Proposition 2.19. Every ∗-prime (prime) ideal of a generalized π-
Baer ∗-ring R is either a ∗-essential (essential) ideal or is generated
by a central projection.

Proof. We prove the case of ∗-prime ideal, the other one can be shown
similarly. Let P be a ∗-prime ideal of R. If P is not a ∗-essential
ideal of R, then there exists a nonzero self-adjoint ideal I of R such
that P ∩ I = 0. Since R is a generalized π-Baer ∗-ring, there exists a
positive integer n such that rR(I

n) = qR for some central projection
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q ∈ R. It is clear that P ⊆ rR(I) ⊆ rR(I
n) = qR. On the other hand,

In and qR are self-adjoint ideals and In(qR) = 0. Then In ⊆ P or
qR ⊆ P , since P is a ∗-prime ideal. If In ⊆ P then I ⊆ P and so
I ∩ P = I = 0, which is a contradiction. Hence q ∈ P and this implies
that P = qR. □
Proposition 2.20. Let R be a generalized π-Baer ∗-ring and Y a
projection invariant left (right) ideal of R. If rR(Y ) (ℓR(Y )) is a ∗-
essential ideal of R, then Y is nilpotent.

Proof. Let Y be a projection invariant left ideal of R such that rR(Y )
is ∗-essential in R. Since R is a generalized π-Baer ∗-ring, there is
a central projection p ∈ R such that rR(Y

n) = pR for some positive
integer n. We show that Y n = 0. Assume to the contrary that Y n ̸= 0,
so p ̸= 1. Then (1− p)R is a nonzero self-adjoint ideal and

rR(Y ) ∩ (1− e)R ⊆ rR(Y
n) ∩ (1− p)R = pR ∩ (1− p)R = 0,

which is a contradiction as rR(Y ) is a ∗-essential ideal of R. Thus
Y n = 0. □

3. Extensions

Let R be a ring and T be an overring of R. Recall that T is called
a right essential overring of R if RR is essential in TR. Also, recall
from [31] that, R is said to satisfy the power intersection of projection
invariant right (left) ideals property (right (left) PII for short) related
to T , if for every projection invariant right (left) ideal Y of T and every
positive integer n, there exists m ≥ n such that (Y ∩R)m = Y m ∩R.

In the following Theorem, we provide some conditions to ensure
the transfer of generalized π-Baer ∗ property between a ∗-ring to its
overrings.

Theorem 3.1. Let R be a generalized π-Baer ∗-ring, T a right (or
left) essential overring of R, and the involution of R extends to T . If
R has the left (right) PII property related to T , then T is a generalized
π-Baer ∗-ring and R contains all central projections of T .

Proof. Assume that R is a generalized π-Baer ∗-ring. First, we note
that T has a unity element 1T with 1T = 1R. Indeed, if t ̸= t1R for
some t ∈ T \ {0}, then there exists r ∈ R such that

0 ̸= (t− t1R)r = tr − tr = 0,

a contradiction. Let Y be a projection invariant left ideal of T and
X = Y ∩R. It is easily seen that X is a projection invariant left ideal
of R. So there exist a central projection p ∈ R and a positive integer n
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such that rR(Xn) = pT . We claim that rT (Y n) = pT . Let a ∈ rT (Y
n).

Assume that (1−p)a ̸= 0. Since RR is essential in TR, there exists r ∈ R
with 0 ̸= (1 − p)ar ∈ R. Then 0 ̸= (1 − p)ar ∈ rR(Y

n) ⊆ rR(X
n),

a contradiction. So (1 − p)rT (Y
n) = 0. Therefore, rT (Y

n) ⊆ pT .
Now assume that there exists y ∈ Y n such that yp ̸= 0. One can
show that T is also a left essential overring of R. Then there exists
s ∈ R with 0 ̸= syp ∈ R. Hence syp ∈ Y n ∩ R = (Y ∩ R)n = Xn.
But sye ∈ Xnp = 0, a contradiction. Hence Y np = 0. Therefore,
rT (Y

n) = pT , and so T is a generalized π-Baer ∗-ring.
To prove the last part of the statement, let p ∈ T be a central

projection, and set Y = T (1 − e) and X = Y ∩ R. Then there exist
a projection q ∈ R and an integer n such that rR(X

n) = qR. Then
rT (Y

n) = qT . On the other hand, rT (Y n) = rT (Y ) = pT . So pT = qT
and p = q. Thus R contains all central projections of T . □

The following Lemma will be useful.

Lemma 3.2 ([9], Theorem 2.3). For a ring R, let T be R[X] or
R[[X]], where X is a nonempty set of not necessarily commuting
indeterminates. If e(x) ∈ Sℓ(T ), then e0 ∈ Sℓ(R), where e0 is the
constant term of e(x). Moreover, e(x)T = e0T .

In [5], Armendariz has shown that a reduced ring R is a Baer ring
if and only if R[x] is a Baer ring. In the next theorem, we show that
being a generalized π-Baer ∗-ring is preserved by polynomial
extensions. Note that the involution of a ∗-ring R can be naturally
extended to an involution on R[x] and R[[x]].

Theorem 3.3. Let R be a ∗-ring and let X is an arbitrary nonempty
set of commuting indeterminates. Then the following conditions are
equivalent.

(1) R is a generalized π-Baer ∗-ring;
(2) R[X] is a generalized π-Baer ∗-ring;
(3) R[[X]] is a generalized π-Baer ∗-ring.

Proof. We will prove the equivalence (1)⇔(2). The other one can be
proved similarly. For this, we show that R is generalized π-Baer ∗-ring
if and only if R[x] is generalized π-Baer ∗-ring. This result can be
generalized to X by analogy. Assume that R is a generalized π-Baer
∗-ring. Let Y be a projection invariant right ideal of T := R[x]. By [31,
Theorem 4.4], T is a generalized π-Baer ring. Thus, ℓT (Y n) = Te(x)
for some idempotent e(x) ∈ Sℓ(T ) and some positive integer n. By
Lemma 3.2, e0 ∈ Sℓ(R) where e0 is the constant term of e(x). By
Proposition 2.7, e0 is a central projection, since R is a generalized
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π-Baer ∗-ring. By Lemma 3.2, e(x)T = e0T . Then
T (e(x))∗ = Te∗0 = e0T = e(x)T,

and hence e(x) = e(x)(e(x))∗ = (e(x))∗. So e(x) is a projection of T .
Thus T is a generalized π-Baer ∗-ring.

Conversely, let Y be a projection invariant left ideal of R. Then
by [10, Lemma 4.1(iii)], Y [x] is a projection invariant left ideal of
R[x]. Since R[x] is a generalized π-Baer ∗-ring, there exists a projec-
tion e(x) ∈ R[x] such that rR[x]((Y [x])n) = e(x)R[x] for some positive
integer n. Assume that e0 be the constant term of e(x). Since e(x) ∈ T
is a projection, it follows that e0 is a projection of R. We show that
rR(Y

n) = e0R. Since e(x)(Y [x])n = e(x)Y n[x] = 0, e0Y n = 0. Thus,
e0R ⊆ rR(Y

n). Now, let a ∈ rR(Y
n), then

a ∈ rR[x](Y
n[x]) = rR[x]((Y [x])n) = e(x)R[x].

Hence, a = e(x)f(x). So e(x)a = a and that a = e0a. Hence
a ∈ e0R. Therefore, rR(Y

n) = e0R, and that R is a generalized
π-Baer ∗-ring. □
Proposition 3.4. Let R be a generalized π-Baer ∗-ring and n be a
positive integer. Then Mn(R), with the ∗-transpose involution, is a
generalized π-Baer ∗-ring.
Proof. Let R be a generalized π-Baer ∗-ring. Then by Proposition 2.9,
R is a generalized quasi-Baer ∗-ring. Now [3, Theorem 2.22] implies
that Mn(R) is a generalized quasi-Baer ∗-ring. It is easy to see that
Mn(R) is generated by its idempotents. So [10, Corollary 2.2(iii)] yields
that every projection invariant one-sided ideal of Mn(R) is an ideal of
Mn(R). Therefore, Mn(R) is a generalized π-Baer ∗-ring. Moreover,
this assertion follows from [31, Proposition 3.1] and Proposition 2.7.

□
In the remainder of this section, we are concerned with the matrix

rings Tn(R), Sn(R), An(R), Bn(R), Un(R), and Vn(R).
We will see that an abelian ∗-ring R is a generalized π-Baer ∗-ring

if and only if so are these matrix rings, for n ≥ 2 (see Theorem 4.4
below).
Definition 3.5 ([3], Definition 3.1). Let n ≥ 2 be an integer, and let
Vn =

∑n−1
i=1 Ei,i+1, where the Eij, 1 ≤ i, j ≤ n, be the standard matrix

units. Following Lee and Zhou [26], we define

An(R) = RIn +

[n
2
]∑

ℓ=2

RV ℓ−1
n +

[n+1
2

]∑
i=1

n∑
j=[n

2
]+i

REij,
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and

Bn(R) = RIn +

[n
2
]∑

ℓ=3

RV ℓ−2
n +

[n+1
2

]+1∑
i=1

n∑
j=[n

2
]+i−1

REij.

According to [3] we define

Un(R) = RIn +

[n−1
2

]∑
i=1

n∑
j=[n

2
]+1

REij +
n∑

j=[n−1
2

]+2

RE[n−1
2

]+1,j.

The ring Sn(R) is defined as a subring of Tn(R) by

Sn(R) = RIn +
∑

1≤i<j≤n

REij.

Also, the ring Vn(R) is defined as a subring of Sn(R) by

Vn(R) = RIn +
n∑

ℓ=2

RV ℓ−1
n .

There are two involutions ⋇ and ⋆ on the triangular matrix ring over
any unital ∗-ring (see [3, Definition 3.1]).

Let R be a unital ring with an involution ∗, and for each n ≥ 2
consider the ring Mn(R). Let ∗ denote the ∗-transpose involution on
Mn(R). Put E =

∑
i+j=n+1Eij. The involution ⋇ on Mn(R) is defined

by A⋇ = (EAE)∗, for A = (aij) ∈ Mn(R). By inspection, we can see
that the subrings Tn(R), Sn(R), An(R), Bn(R), Un(R), and Vn(R) of
Mn(R) are self-adjoint with respect to the involution ⋇. Hence they
are ∗-rings with the involution ⋇.

Now, let n = 2m with m ∈ N. Consider

D =
m∑
i=1

Eii −
n∑

i=m+1

Eii ∈ Mn(R).

The involution ⋆ on Mn(R) is defined by A⋆ = DA⋇D−1, for each
A ∈ Mn(R). It is easy to see that the subrings Tn(R), Sn(R), and
Un(R) of Mn(R) are self-adjoint with respect to the involution ⋆. Hence
these algebras are also ∗-rings with the involution ⋇.
Theorem 3.6. Let R be an abelian ∗-ring and let n ≥ 2 be an integer.
Then the following conditions are equivalent.

(1) R is a generalized π-Baer ∗-ring;
(2) Sn(R) with the involution ⋇ is a generalized π-Baer ∗-ring;
(3) An(R) with the involution ⋇ is a generalized π-Baer ∗-ring;
(4) Bn(R) with the involution ⋇ is a generalized π-Baer ∗-ring;
(5) Un(R) with the involution ⋇ is a generalized π-Baer ∗-ring;



GENERALIZED π-BAER ∗-RINGS 361

(6) Vn(R) with the involution ⋇ is a generalized π-Baer ∗-ring.

Proof. This follows by using [31, Lemma 3.7] and a similar argument
as in the proof of [3, Theorem 3.4]. □

A similar proof as that of Theorem 3.6, proves the following.

Theorem 3.7. Let R be an abelian ∗-ring and let n ≥ 2 be an even
integer. Then the following conditions are equivalent.

(1) R is a generalized π-Baer ∗-ring;
(2) Sn(R) with the involution ⋆ is a generalized π-Baer ∗-ring;
(3) Un(R) with the involution ⋆ is a generalized π-Baer ∗-ring.

4. Banach ∗-algebras

In this section we give examples of Banach ∗-algebras which are
generalized π-Baer ∗-rings but are not π-Baer ∗-rings. To motivate
the significance of these examples, observe that every Baer ∗-ring is a
π-Baer ∗-ring, and every π-Baer ∗-ring is a generalized π-Baer ∗-ring.
There are algebraic examples distinguishing these classes. Since these
algebraic notions have their roots (and some applications) in Functional
Analysis, it is important to have analytic examples distinguishing these
classes. We show that if a pre-C*-algebra is a generalized π-Baer ∗-
ring, then it is a π-Baer ∗-ring (Theorem 4.6). Thus, a C*-algebra is
a generalized π-Baer ∗-ring if and only if it is a π-Baer ∗-ring. We
construct examples of Banach ∗-algebras which are generalized π-Baer
∗-rings but are not π-Baer ∗-rings. At the end of this section, we
characterize locally compact abelian groups G where the group algebra
L1(G) and the group C*-algebra C∗(G) are generalized π-Baer ∗-rings.

Let us first recall some definitions from Functional Analysis for the
convenience of the reader.

Definition 4.1 ([28]). Let A be an algebra over C. Then A is called
a normed algebra if there is a norm ∥·∥ on A such that ∥xy∥ ≤ ∥x∥∥y∥,
for all x, y ∈ A . A normed algebra A is called a Banach algebra if it
is complete in the norm. If, in addition, A has a unity element 1 such
that ∥1∥ = 1, it is called a unital Banach algebra. If a normed algebra
A admits an involution ∗ such that (αx)∗ = αx∗, and ∥x∗∥ = ∥x∥, for
every x ∈ A and every α ∈ C, then A is called a normed ∗-algebra. A
Banach ∗-algebra (or involutive normed algebra) is a complete normed
∗-algebra. A C*-norm on a complex ∗-algebra A is a norm ∥ · ∥ such
that ∥xy∥ ≤ ∥x∥∥y∥, and ∥x∗x∥ = ∥x∥2, for all x, y ∈ A . A complex
∗-algebra equipped with a C*-norm is called a pre-C*-algebra. If A
is a pre-C*-algebra which is complete in the norm then it is called a
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C*-algebra. Also, if A is a pre-C*-algebra then there is a unique C*-
algebra B, called the enveloping C*-algebra of A , containing A as a
dense ∗-subalgebra.

Definition 4.2 ([21]). Let A be a Banach algebra. An approximate
identity for A is a net (uγ)γ∈Γ of elements of A , possessing the
following properties:

(1) ∥uγ∥ ≤ 1 for every γ ∈ Γ;
(2) ∥uγx− x∥ → 0 and ∥xuγ − x∥ → 0 for every x ∈ A .

We say that (uγ)γ∈Γ is a left approximate identity for A if (1) holds
and instead of (2) we have ∥uγx− x∥ → 0 for every x ∈ A . Similarly,
one defines the notion of a right approximate identity.

Note that an approximate identity (uγ)γ∈Γ for a C*-algebra A is
defined as in Definition 4.2 except that we also require that each uλ is
positive and that the net (uγ)γ∈Γ is increasing [28].

Lemma 4.3 ([3], Corollary 5.10 and Theorem 5.14 ). Let A be a unital
C*-algebra. Then we have the following.

(1) For each n ≥ 2, the algebras Sn(A ), An(A ), Bn(A ), Un(A )
and Vn(A ) with involution ⋇ are Banach ∗-subalgebra of Tn(A ).

(2) For each even integer n ≥ 2, the algebras Sn(A )and Un(A )
with involution ⋆ are Banach ∗-subalgebra of Tn(A ).

In the next theorem we obtain classes of finite dimensional Banach ∗-
algebras which are generalized π-Baer ∗-rings, but they are not π-Baer
∗-rings.

Theorem 4.4. Let A be a C*-algebra. If A is a generalized π-Baer
∗-ring, then

(1) for each n ≥ 2, the Banach ∗-algebras Sn(A ), An(A ), Bn(A ),
Un(A ) and Vn(A ) with involution ⋇ are generalized π-Baer ∗-
rings, but they are not π-Baer ∗-rings. In particular, the Banach
∗-algebras Sn(C), An(C), Bn(C) and Un(C) are generalized π-
Baer ∗-rings, but they are not π-Baer ∗-rings.

(2) for each even integer n ≥ 2, the Banach ∗-algebras Sn(A )
and Un(A ) with involution ⋆ are generalized π-Baer ∗-rings,
but they are not π-Baer ∗-rings. In particular, the Banach ∗-
algebras Sn(C) and Un(C) are generalized π-Baer ∗-rings, but
they are not π-Baer ∗-rings.

Proof. We prove part (1), the other part can be shown similarly. By
Lemma 4.3, the normed ∗-algebras Sn(A ), An(A ), Bn(A ) and Un(A )
are Banach ∗-algebras. Now let n ≥ 2 and R be any of the ∗-rings
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Sn(A ), An(A ), Bn(A ), Un(A ) and Vn(A ). Then by Theorem 3.6, R
is a generalized π-Baer ∗-ring. The involution⋇ onR is not semiproper.
To see this, we have E1nRE⋇

1n = E1nRE1n = 0 but E1n ̸= 0. Therefore,
by [30, Proposition 2.9], R is not a π-Baer ∗-ring. □

Lemma 4.5. Let A be a pre-C*-algebra, Y a left (right) ideal Y of
A , and n ∈ N. Then

rA (Y ) = rA (Y ) = rA (Y n)

(ℓA (Y ) = ℓA (Y ) = ℓA (Y n)), where Y denotes the closure of Y in A .

Proof. First, we can easily see that for any nonempty subset S of A ,
rA (S) = rA (S). Indeed, if r ∈ rA (S) and s ∈ S, then there exists a
sequence (sn)n∈N in S such that sn → s. Thus sr = lim

n→∞
snr = 0, and

so r ∈ rA (S). Hence rA (S) = rA (S).
Now we prove that rA (Y ) = rA (Y n), where Y is a left ideal of A .

Let B denote the enveloping C*-algebra of A . Let X be the closure
of Y in B. Then rA (Y ) = rB(Y ) ∩ A = rB(X) ∩ A and

rA (Y n) = rB(Y
n) ∩ A = rB(X

n) ∩ A .

Thus we need to show that rB(X) = rB(X
n). Since X is a closed

left ideal of B, it has a right approximate identity (xγ)i∈Γ (see [18,
II.5.3.3, p. 96]). Let a ∈ rA (Xn). We show that a ∈ rA (X). Let
x ∈ X. Then xxγ1xγ2 · · ·xγn−1a = 0 for each γ1, γ2, . . . , γn−1 ∈ Γ. Since
lim

γn−1→∞
xxγn−1 = x, we get

xxγ1xγ2 · · ·xγn−2a = 0.

Continuing this procedure, we obtain xa = 0. Thus a ∈ rA (X), and so
rA (Xn) ⊆ rA (X). The reverse inclusion is obvious.

Similarly, if Y is a right ideal we get ℓA (Y ) = ℓA (Y ) = ℓA (Y n). □

As a consequence of Lemma 4.5, we obtain the following result.

Proposition 4.6. Let A be a pre-C*-algebra. Then A is a generalized
π-Baer ∗-ring if and only if it is a π-Baer ∗-ring.

The following proposition shows that the previous result can be
extended to certain normed ∗-algebras.

Proposition 4.7. Let A be a normed ∗-algebra such that every closed
projection invariant one-sided ideal of A has a left (or right)
approximate identity. Then A is a generalized π-Baer ∗-ring if and
only if it is a π-Baer ∗-ring.
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Proof. It is enough to prove that rA (Y n) = rA (Y ) for every projection
invariant left ideal Y of A and every positive integer n. For this,
let Y be a projection invariant left ideal of A and let n ∈ N. Since
rA (Y ) = rA (Y ) and rA (Y n) = rA ((Y )n), we may assume that Y is a
projection invariant closed left ideal of A . Now a similar argument as
in the proof of Lemma 4.5 shows that rA (Y n) = rA (Y ). □

In the next result, we characterize locally compact abelian groups G
where the group algebra L1(G) and the group C*-algebra C∗(G) are
generalized π-Baer ∗-rings. Recall the definition of the group algebra
L1(G) and the group C*-algebra C∗(G) for a locally compact Hausdorff
group G [22]. Specially, recall that every such group has a unique (up
to a positive constant) nonzero left invariant Borel measure µ, called
the Haar measure, and L1(G) is the set{

f : G → C | f is mesurable and
∫
G

|f |dµ < ∞
}

modulo the equivalence relation of being equal almost everywhere.
Also, recall the definition of the Pontrjagin dual Ĝ of a locally

compact Hausdorff abelian group G [22, Section 4.1]. In particular,
Cc(G) ⊆ L1(G) ⊆ C∗(G) and Cc(G) and L1(G) are dense ∗-subalgebras
of C∗(G) in the universal norm.

Theorem 4.8. Let G be a locally compact Hausdorff abelian group.
The following statements are equivalent:

(1) L1(G) is a generalized π-Baer ∗-ring;
(2) L1(G) is a π-Baer ∗-ring;
(3) L1(G) is a quasi-Baer ∗-ring;
(4) L1(G) is a generalized quasi-Baer ∗-ring;
(5) L1(G) is a Baer ∗-ring;
(6) C∗(G) is a generalized π-Baer ∗-ring;
(7) C∗(G) is a π-Baer ∗-ring;
(8) C∗(G) is a quasi-Baer ∗-ring;
(9) C∗(G) is a generalized quasi-Baer ∗-ring;
(10) C∗(G) is a Baer ∗-ring;
(11) Ĝ is a Stonean space;
(12) G is finite.

Proof. Since G is abelian, C∗(G) and L1(G) are commutative. Also,
since L1(G) is a ∗-subalgebra of C∗(G), it is a pre-C*-algebra with the
induced norm of C∗(G).

(1)⇔(2) and (6)⇔(7) follow from Proposition 4.6.
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(2)⇔(3) and (7)⇔(8) follow from the fact that a commutative ∗-ring
is a π-Baer ∗-ring if and only if it is a quasi-Baer ∗-ring.

(3)⇔(4)⇔(5), (8)⇔(9)⇔(10)⇔(11)⇔(12), and (3)⇔(8) follow from
[3, Theorem 5.18]. □
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GENERALIZED π-BAER ∗-RINGS

A. SHAHIDIKIA AND H. H. S. JAVADI

تعمیم یافته π-بئر ∗-حلقه های

جوادی٢ سید حاج حمید و کیا١ شهیدی علی

ایران دزفول، اسلامی، آزاد دانشگاه دزفول، واحد ریاضی، ١گروه

ایران تهران، شاهد، دانشگاه کامپیوتر، مهندسی ٢دانشکده

،R از Y تصویر پایای چپ ایده آل هر برای هرگاه گوییم تعمیم یافته π-بئر ∗-حلقه ی را R ∗-حلقه ی
مثبت صحیح عدد برای شود، تولید تصویر یک توسط راست ایده آل یک عنوان به Y n راست پوچساز
می کنیم. بررسی را تعمیم یافته π-بئر ∗-حلقه های ویژگی های از برخی مقاله، این در .Y به وابسته ،n
از کلاس چندین و ماتریسی، حلقه های چندجمله ای، توسیع های به نسبت ویژگی این می دهیم نشان
کلاس های و تعمیم یافته π-بئر ∗-حلقه های بین روابط است. خوش رفتار مثلثی ماتریس های حلقه های
شبه- بئر ∗-حلقه های تعمیم یافته، بئر ∗-حلقه های تعمیم یافته، π-بئر حلقه های جمله از آن با مرتبط
تعمیم یافته π-بئر ∗-حلقه های از جبری مثال های می کنیم. بررسی را π-بئر ∗-حلقه های و تعمیم یافته
معادل مفهوم دو این پیش-∗C-جبرها برای می دهیم نشان نیستند. π-بئر ∗-حلقه ی که می دهیم ارائه
اما هستند تعمیم یافته π-بئر ∗-حلقه ی که می آوریم دست به باناخ ∗-جبرهای از کلاس هایی هستند.
موضعاً آبلی گروه برای که می رسانیم پایان به زیر نتیجه ی اثبات با را مقاله نیستند. π-بئر ∗-حلقه ی
گروهی ∗C-جبر اگر تنها و اگر است، تعمیم یافته π-بئر ∗-حلقه ی یک L١(G) گروهی جبر ،G فشرده ی

باشد. متناهی G اگر تنها و اگر باشد، تعمیم یافته π-بئر ∗-حلقه ی یک C∗(G)

تعمیم یافته، شبه-بئر ∗-حلقه ی تعمیم یافته، π-بئر ∗-حلقه ی تعمیم یافته، π-بئر حلقه ی کلیدی: کلمات
تعمیم یافته. بئر ∗-حلقه ی تعمیم یافته، بئر حلقه ی
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