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A CHARACTERIZATION OF BAER-IDEALS

A. TAHERIFAR

Abstract. An ideal I of a ring R is called a right Baer-ideal if
there exists an idempotent e ∈ R such that r(I) = eR. We know
that R is quasi-Baer if every ideal of R is a right Baer-ideal, R is
n-generalized right quasi-Baer if for each I ⊴ R the ideal In is a
right Baer-ideal, and R is right principaly quasi-Baer if every prin-
cipal right ideal of R is a right Baer-ideal. Therefore the concept
of Baer ideal is important. In this paper we investigate some prop-
erties of Baer-ideals and give a characterization of Baer-ideals in
2-by-2 generalized triangular matrix rings, full and upper triangu-
lar matrix rings, semiprime ring and ring of continuous functions.
Finally, we find equivalent conditions for which the 2-by-2 gener-
alized triangular matrix ring be right SA.

1. Introduction

Throughout this paper, R denotes an associative ring with identity.
Let ∅ ̸= X ⊆ R. Then X ⊴R denotes that X is an ideal of R. For any
subset S of R, l(S) and r(S) denote the left annihilator and the right
annihilator of S in R. The ring of n-by-n (upper triangular) matrices
over R is denoted by Mn(R) (Tn(R)). An idempotent e of a ring R is
called left (right) semicentral if ae = eae (ea = eae) for all a ∈ R. It
can be easily checked that an idempotent e of R is left (right) semicen-
tral if and only if eR (Re) is an ideal. Also note that an idempotent e
is left semicentral if and only if 1 − e is right semicentral. See [4] and
[6], for a more detailed account of semicentral idempotents. Thus for a
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left (right) ideal I of a ring R, if l(I) = Re (r(I) = eR) with an idem-
potent e, then e is right (left) semicentral, since Re (eR) is an ideal,
and we use Sl(R) (Sr(R)) to denote the set of left (right) semicentral
idempotents of R.

In [11], Clark defines R to be a quasi -Baer ring if the left annihilator
of every ideal of R is generated, as a left ideal, by an idempotent. He
uses the quasi-Baer concept to characterize when a finite-dimensional
algebra with identity over an algebraically closed field is isomorphic to
a twisted matrix units semigroup algebra. The quasi-Baer condition
are left-right symmetric. It is well known that R is a quasi-Baer if and
only if Mn(R) is quasi-Baer if and only if Tn(R) is a quasi-Baer ring
(see [3], [7], [8] and [18]).

In [17], Moussavi, Javadi and Hashemi define a ring R to be n-
generalized right quasi-Baer if for each I ⊴ R, the right annihilator of
In is generated (as a right ideal) by an idempotent. They proved in [17,
Theorem 4.7] that R is n-generalized quasi-Baer if and only if Mn(R)
is n-generalized. Moreover, they found equivalent conditions for which
the 2-by-2 generalized triangular matrix ring be n-generalized quasi-
Baer, see [17, Theorem 4.3].

In [9], Birkenmeier, Kim and Park introduced a principally quasi-
Baer ring and used them to generalize many results on reduced (i.e., it
has no nonzero nilpotent elements) p.p.-rings. A ring R is called right
principally quasi-Baer (or simply right p.q.-Baer) if the right annihila-
tor of a principal right ideal is generated by an idempotent.

The above results are motivation for us to introduce Baer-ideal. An
ideal I of R is called right Baer-ideal if r(I) = eR for some idempotent
e ∈ R, and if l(I) = Rf , for some idempotent f ∈ R, then we say I is
a left Baer-ideal. In section 2, we see an example of right Baer-ideals
which are not left Baer-ideal. We also see that the set of Baer-ideals
are closed under sum and direct product.

In section 3, we characterize Baer-ideals in 2-by-2 generalized trian-
gular matrix rings, full and upper triangular matrix rings. By these re-
sults we obtain new proofs for the well-known results about quasi-Baer
and n-generalized quasi-Baer rings. Also, we find equivalent conditions
for which the 2-by-2 generalized triangular matrix ring be right SA (i.e.,
for any two I, J ⊴R there is a K ⊴R such that r(I) + r(J) = r(K)).

In section 4, we prove that the product of two Baer ideals in a
semiprime ring R is a Baer-ideal. Also we show that an ideal I of
a semiprime ring R is a Baer-ideal if and only if intV (I) is a clopen
subset of Spec(R). Moreover, it is proved that an ideal I of C(X) is a
Baer-ideal if and only if int

∩
f∈I Z(f) is a clopen subset of space X.
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2. Preliminary results and examples

Definition 2.1. An ideal I of R is called right Baer-ideal if there exists
an idempotent e ∈ R such that r(I) = eR, similarly, we can define left
Baer-ideal and we say I is a Baer-ideal if I is a right and left Baer-ideal.

Example 2.2. (i) The ideals 0 and R are Baer-ideals in any ring R.
(ii) For e ∈ Sr(R) the ideal ReR is a right Baer-ideal. Since, we have

r(ReR) = r(eR) = r(Re) = (1− e)R.
(iii) For f ∈ Sl(R), the ideal RfR is a left Baer-ideal. Since,

l(RfR) = l(Rf) = l(fR) = R(1− f).

In the following, we provide an example of right Baer-ideals which
are not left Baer-ideal. Also we see a non-quasi-Baer ring which has a
Baer-ideal.

Example 2.3. Let R =

(
Z Z2

0 Z2

)
= {

(
n a
0 b

)
: n ∈ Z, a, b ∈ Z2},

where Z and Zn are rings of integers and integers modulo n, respec-
tively.

(i) For ideal I =

(
0 Z2

0 Z2

)
, we have l(I) =

(
2Z 0
0 0

)
, and is not con-

taining any idempotent. Therefore I is not a left Baer-ideal. On the

other hand r(I) =

(
Z Z2

0 0

)
=

(
1 1
0 0

)
R. Thus I is a right Baer-ideal.

(ii) For ideal J =

(
2Z 0
0 0

)
, we have l(J) =

(
0 Z2

0 Z2

)
= R

(
0 1
0 1

)
,

and r(J) =

(
0 Z2

0 Z2

)
=

(
0 1
0 1

)
R. Hence J is a Baer-ideal.

Lemma 2.4. [20, Lemma 2.3]. Let e1 and e2 be two right semicentral
idempotents.

(1) e1e2 is a right semicentral idempotent.
(2) (e1 + e2 − e1e2) is a right semicentral idempotent.
(3) If S ⊆ Sr(R) is finite, then there is a right semicentral idempo-

tent e such that RSR = ReR =< e >.

Proposition 2.5. The sum of two Baer-ideals in any ring R is a Baer-
ideal.

Proof. Let I and J be two Baer-ideals ofR. Then there are idempotents
e, f ∈ Sl(R) such that r(I) = eR = r(R(1 − e)) and r(J) = fR =
r(R(1− f)). Therefore r(I + J) = r(I)∩ r(J) = r(R(1− e))∩ r(R(1−
f)) = r(R(1− e) +R(1− f)). Since 1− e, 1− f ∈ Sr(R) . By Lemma
2.4, we have

h = ((1− e) + (1− f)− (1− e)(1− f)) ∈ Sr(R).
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On the other hand, we can see that

r(I + J) = r(R(1− e) +R(1− f)) = r(Rh) = (1− h)R.

Hence I + J is a right Baer-ideal. Similarly, we can see that I + J is a
left Baer-ideal. □
Proposition 2.6. An ideal J of R =

∏
x∈X Rx a direct product of

rings is a right Baer-ideal if and only if each πx(J) = Jx is a right
Baer-ideal of Rx, where πx : R 7→ Rx denote the canonical projection
homomorphism.

Proof. If J is a right Baer-ideal of R, then there exists an idempotent
e ∈ R such that r(J) = eR. This implies that r(Jx) = πx(e)Rx = exRx.
Therefore each Jx is a right Baer-ideal of Rx. Conversely, each Jx is
a right Baer-ideal, hence for each x ∈ X there exists an idempotent
ex ∈ Rx such that r(Jx) = exRx. Thus r(J) = (ex)x∈XR. Therefore J
is a right Baer-ideal of R. □
Corollary 2.7. Let R =

∏
x∈X Rx, a direct product of rings.

(1) R is quasi-Baer if and only if each Rx is quasi-Baer.
(2) R is n-generalized quasi-Baer if and only if each Rx is n-

generalized quasi-Baer.

Proof. This is a consequence of Proposition 2.6. □

3. Baer-ideals in extension rings

Throughout this section, T will denote a 2-by-2 generalized (or for-

mal) triangular matrix ring

(
S M
0 R

)
, where R and S are rings and

M is an (S,R)-bimodule. If N is an (S,R)-submodule of M (briefly,

SNR ≤S MR) , then AnnRN = {r ∈ R : Nr = 0} and AnnSN =
{s : sN = 0}, see [16] . In this section we use a similar method as
in Birkenmeier, Kim and Park in [10] and characterize Bear-ideals of
2-by-2 generalized triangular matrix rings. Also we characterize Baer-
ideals in full and upper triangular matrix rings. By using of these
results , we can prove the well-known results about quasi-Baer rings
and generalized right quasi-Baer rings.

Theorem 3.1. An ideal J of Mn(R) is a right Baer-ideal if and only
if J = Mn(I), for some right Baer-ideal I of R.

Proof. Let J be a right Baer-ideal of Mn(R). By [15, Theorem 3.1],
J = Mn(I), for some ideal I of R. We claim That I is a right Baer-
ideal. By hypothesis, there exists E ∈ Sl(Mn(R)) such that r(J) =
EMn(R). Hence e11R ⊆ r(I), where e11 is the (1, 1)-th entries in E.
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We show that r(I) ⊆ e11R. Suppose that x ∈ r(I). By [5, Lemma
3.1], r(J) = Mn(r(I)). Hence A ∈ r(J), where a11 = x and zero
elsewhere. Therefore A ∈ EMn(R). By [20, Theorem 3.3], in matrix
E, eij = e11eij. This implies that x ∈ e11R. Now let J = Mn(I) and
I be a right Baer-ideal in R. Then there exists an idempotent e ∈ R
such that r(I) = eR. By [5, Lemma 3.1], r(Mn(I)) = Mn(r(I)) =
Mn(eR) = EMn(R), where in matrix E for each 1 ≤ i ≤ n, eii = e
and eij = 0 for all i ̸= j. Thus J is a right Baer-ideal of Mn(R). □
Theorem 3.2. The following statements hold.

(1) For every I ⊴ Tn(R), there are ideals Jik of R, 1 ≤ i, k ≤ n
such that

I =


J11 J12 J13 . . . J1n

0 J22 J23 . . . J2n

. . . . . . .

. . . . . . .

. . . . . . .
0 0 . . . 0 Jnn

 , Jik ⊆ Jik+1

and Ji+1k ⊆ Jik.
(2) I is a right Baer-ideal of Tn(R) if and only if each J1k is a

right Baer-ideal of R.
(3) If K is a right Baer-ideal of R, then Tn(K) is a right Baer-ideal

of Tn(R).

Proof. (1) Let I⊴Tn(R) and for each 1 ≤ i ≤ n, Ki is the set consisting
of all entries in the i,th column of elements of I. Then for each 1 ≤ i ≤
n, Ki ⊴R. Put Jij = Ki + ...+Kj. Then Jik ⊆ Jik+1 and Ji+1k ⊆ Jik.
Always we have

I ⊆


K1 K1 +K2 K1 +K2 +K3 . . . K1 + ...+Kn

0 K2 K2 +K3 . . . K2 + ...+Kn

. . . . . . .

. . . . . . .

. . . . . . .
0 0 . . . 0 Kn

 .

On the other hand
K1 K2 K3 . . . Kn

0 K2 K3 . . . Kn

. . . . . . .

. . . . . . .

. . . . . . .
0 0 . . . 0 Kn

 ⊆ I,
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and I ⊴Tn(R), hence
K1 K1 +K2 K1 +K2 +K3 . . . K1 + ...+Kn

0 K2 K2 +K3 . . . K2 + ...+Kn

. . . . . . .

. . . . . . .

. . . . . . .
0 0 . . . 0 Kn

 =


K1 K2 K3 . . . Kn

0 K2 K3 . . . Kn

. . . . . . .

. . . . . . .

. . . . . . .
0 0 . . . 0 Kn

+


K1 K2 K3 . . . Kn

0 K2 K3 . . . Kn

. . . . . . .

. . . . . . .

. . . . . . .
0 0 . . . 0 Kn




0 1 1 . . . 1
0 0 1 . . . 1
. . . . . . .
. . . . . . .
. . . . . . 1
0 0 . . . 0 0

 ⊆ I.

Therefore I =


J11 J12 J13 . . . J1n

0 J22 J23 . . . J2n

. . . . . . .

. . . . . . .

. . . . . . .
0 0 . . . 0 Jnn

 .

(2) Assume that I is a right Baer-ideal of Tn(R). Then there exists
an idempotent E ∈ Tn(R) such that r(I) = ETn(R). On the other
hand by (i), we can see that

r
Tn(R)

(I) =


rR(J11) rR(J11) . . . rR(J11)

0 rR(J12) . . . rR(J12)
. . . . . .
. . . . . .
. . . . . .
0 0 . . . rR(J1n)

 .

Thus for each 1 ≤ k ≤ n, r(J1k) = ekkR, where ekk is the (k, k)-th
entries in E. Conversely, let for each 1 ≤ k ≤ n, J1k be a right Baer-
ideal of R. Then there is an e1k ∈ Sl(R) such that r(J1k) = e1kR.
Consider matrix F , where for each 1 ≤ k ≤ n, fkk = e1k and elsewhere
is zero. Then we have IF = 0. If A ∈ r(I), then for each 1 ≤ j ≤ n,
akj ∈ r(J1k). Hence there exists ckj ∈ R such that akj = e1kckj =
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fkkckj, for all 1 ≤ j ≤ n. Thus A = FC ∈ FTn(R), where C = [ckj].
Therefore r(I) = FTn(R). Hence I is a right Baer-ideal of Tn(R).

(3) By (2), this is evident. □
Corollary 3.3. The following statements hold.

(1) [18, Proposition 2]. R is quasi-Baer if and only if Mn(R) is
quasi-Baer.

(2) [17, Theorem 4.7]. R is n-generalized right quasi-Baer if and
only if Mn(R) is n-generalized right quasi-Baer.

Proof. (1) Let R be quasi-Baer and J ⊴Mn(R). Then J = Mn(I) for
some I ⊴ R and I is a Baer-ideal. By Theorem 3.1, J is a right Baer-
ideal, hence Mn(R) is a quasi-Baer ring. Now let I ⊴ R and Mn(R)
be quasi-Baer. Then Mn(I) is a right Baer-ideal of Mn(R). Again by
Theorem 3.1, I is a right Baer-ideal in R, thus R is a quasi-Baer-ring.

(2) Assume that J ⊴ Mn(R) and R is n-generalized right quasi-
Baer. Then J = Mn(I), where In is a right Baer-ideal. By Theorem
3.1, Jn = Mn(I

n) is a right Baer-ideal. This shows that Mn(R) is
n-generalized right quasi-Baer. The converse is evident. □
Corollary 3.4. [18, Proposition 9]. R is quasi-Baer if and only if
Tn(R) is quasi-Baer.

Proof. Let J ⊴ Tn(R). By Theorem 3.2,

J =


J11 J12 J13 . . . J1n

0 J22 J23 . . . J2n

. . . . . . .

. . . . . . .

. . . . . . .
0 0 . . . 0 Jnn

 .

By hypothesis, each Jik is a right Baer-ideal. Theorem 3.2, implies
that J is a right Baer-ideal. Thus Tn(R) is quasi-Baer. The converse
is evident. □

Lemma 3.5. [10, Lemma 2.3]. Let e =

(
e1 k
0 e2

)
be an idempotent

element of T =

(
S M
0 R

)
.

(1) e ∈ Sl(T ) if and only if
(a) e1 ∈ Sl(S);
(b) e2 ∈ Sl(R);
(c) e1k = k; and
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(d) e1me2 = me2, for all m ∈ M .

(2) e1k = k if and only if eT ⊆
(
e1 0
0 e2

)
T.

(3) If e1me2 = me2, for all m ∈ M , then

(
e1 0
0 e2

)
T ⊆ eT .

(4) If e ∈ Sl(T ), then

(
e1 0
0 e2

)
T = eT .

Lemma 3.6. [10, Lemma 3.1]. Let J =

(
I N
0 L

)
be an ideal of

T =

(
S M
0 R

)
. Then r(J) =

(
rS(I) rM(I)
0 rR(L) ∩ AnnR(N)

)
and l(J) =(

lS(I) ∩ AnnS(N) lM(L)
0 lR(L)

)
.

Theorem 3.7. Let J =

(
I N
0 L

)
be an ideal of T =

(
S M
0 R

)
.

Then J is a right Baer-ideal of T if and only if

(1) I is a right Baer-ideal of S;
(2) rM(I) = (rS(I))M ; and
(3) rR(L) ∩ AnnR(N) = aR, for some a2 = a ∈ R.

Proof. Let J be a right Baer-ideal of T . Then there exists e ∈ Sl(T )

such that r(J) = eT . By Lemma 3.5, e =

(
e1 k
0 e2

)
, for some e1 ∈

Sl(S), e2 ∈ Sl(R), k ∈ M and kR = e1kR. Thus e1M = e1M + kR.
By Lemma 3.5, e1S = rS(I), rM(I) = e1M = e1SM = (rS(I))M and
rR(L) ∩ AnnR(N) = e2R.

Conversely, by hypothesis, there are e1 ∈ Sl(S) and a2 = a ∈ R such
that rS(I) = e1S and rR(L) ∩ AnnR(N) = aR. Since AnnR(N) ⊴ R,
then a ∈ Sl(R). By (ii), rM(I) = (rS(I))M = e1M . Now let e =(
e1 0
0 a

)
. Then eT =

(
e1S e1M
0 aR

)
=

(
rS(I) rM(I)
0 rR(L) ∩ AnnR(N)

)
.

From Lemma 3.6, eT = r(J). Therefore J is a right Baer-ideal of
T . □

Corollary 3.8. [10, Theorem 3.2]. Let T =

(
S M
0 R

)
. Then the

following are equivalent.

(1) T is quasi-Baer.
(2) (i) R and S are quasi-Baer;

(ii) rM(I) = (rS(I))M for all I ⊴ S; and
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(iii) If SNR ≤S MR, then we have AnnR(N) = aR for some
a2 = a ∈ R.

Proof. 1 ⇒ 2. Let I ⊴ S, N be a (S,R) submodule of M and J ⊴
R. Then

(
I M
0 0

)
,

(
0 N
0 0

)
and

(
0 0
0 J

)
are Baer-ideals of T . By

Theorem 3.7, I and J are Baer-ideals, hence R, S are quasi-Baer and
rR(0) ∩ AnnR(N) = AnnR(N) = aR, for some a2 = a ∈ R.

2 ⇒ 1. let J =

(
I N
0 L

)
⊴ T. By hypothesis, there are a, e ∈ Sl(R)

such that AnnR(N) = aR, rR(L) = eR and I is a Baer-ideal. Hence
rR(L) ∩ AnnR(N) = r(R(1 − e)) ∩ r(R(1 − a)) = eaR. By Theorem

3.7, J =

(
I N
0 L

)
is a Baer-ideal, thus T is a quasi-Baer ring. □

Corollary 3.9. [17, Theorem 4.3]. Let T =

(
S M
0 R

)
. Then the

following are equivalent.

(1) T is n-generalized right (principally) quasi-Baer.
(2) (i) S is n-generalized right quasi-Baer;

(ii) rM(In) = (rS(I
n))M for all I ⊴ S; and

(iii) If

(
I N
0 J

)
⊴ T , then there is some e2 = e ∈ R such that

rR(J
n) ∩ AnnR(I

n−1N) ∩ AnnR(i
n−2NJ) ∩ ... ∩ AnnR(NJn−1) = eR.

Proof. 1 ⇒ 2. (i), (ii) Let I ⊴ S. Then

(
In In−1M
o o

)
is a Baer-ideal

of T . By Theorem 3.7, In is a Baer-ideal in S, hence S is n-generalized
right (principally) quasi-Baer and rM(In) = (rS(I

n))M .

(iii) If

(
I N
0 J

)
⊴ T . Then

(
In In−1N + In−2NJ + ...+NJn−1

0 Jn

)
is a Baer-ideal in T . By Theorem 3.7, there is some e2 = e ∈ R such
that

rR(J
n) ∩ AnnR(I

n−1N) ∩ AnnR(I
n−2NJ) ∩ ... ∩ AnnR(NJn−1) = eR.

2 ⇒ 1. Let K =

(
I N
0 J

)
⊴ T . By hypothesis and Theorem

3.7, Kn =

(
In In−1N + In−2NJ + ...+NJn−1

0 Jn

)
is a Baer-ideal in

T . Hence T is n-generalized right (principally) quasi-Baer. □
Recall that a ring R is a right SA if for each I, J ⊴ R there exists

K ⊴R such that r(I) + r(J) = r(K) (see [5]).



46 TAHERIFAR

Theorem 3.10. Let T =

(
S M
0 R

)
. Then the following are equivalent.

(1) T is a right SA-ring.
(2) (i) For I1, I2⊴S, there exists I3⊴S, such that rM(I1)+rM(I2) =

rM(I3), rS(I1) + rS(I2) = rS(I3) (i.e., S is right SA); and
(ii) For each I, J⊴R and (S,R) submodules N1, N2, ofM , there
are K ⊴R and SNR ≤S MR, such that

rR(I) ∩ AnnR(N1) + rR(J) ∩ AnnR(N2) = rR(K) ∩ AnnR(N).

Proof. 1 ⇒ 2. (i) Let I1, I2 ⊴ S. Then

(
I1 M
0 0

)
and

(
I2 M
0 0

)
are

ideals of T . By hypothesis, there is

(
I N
0 J

)
⊴ T such that

r(

(
I1 M
0 0

)
) + r(

(
I2 M
0 0

)
) = r(

(
I N
0 J

)
).

By Lemma 3.6, we have rS(I1)+ rS(I2) = rS(I) and rM(I1)+ rM(I2) =
rM(I).

(ii) Let I, J ⊴ R and N1, N2 are (S,R) submodules of M . Then(
0 N1

0 I

)
and

(
0 N2

0 J

)
are ideals of T . By hypothesis, there areK⊴R,

I ⊴ S and SNR ≤S MR, such that

r(

(
0 N1

0 I

)
) + r(

(
0 N2

0 J

)
) = r(

(
I N
0 K

)
).

Now, Lemma 3.6, implies that

rR(I) ∩ AnnR(N1) + rR(J) ∩ AnnR(N2) = rR(K) ∩ AnnR(N).

2 ⇒ 1. Suppose that K1 =

(
I1 N1

0 J1

)
and K2 =

(
I2 N2

0 J2

)
are two

ideals of T . By Lemma 3.6, we have r(K1) + r(K2) =(
rS(I1) + rS(I2) rM(I1) + rM(I2)

0 rR(J1) ∩ AnnR(N1) + rR(J2) ∩ AnnR(N2)

)
.

By hypothesis, there are I3 ⊴ S, K ⊴R and SNR ≤S MR, such that

rS(I1) + rS(I2) = rS(I3), rM(I1) + rM(I2) = rM(I3),

and

rR(J1) ∩ AnnR(N1) + rR(J2) ∩ AnnR(N2) = rR(K) ∩ AnnR(N).

Therefore, by Lemma 3.6, r(K1) + r(K2) = r(

(
I3 N
0 K

)
. □
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Corollary 3.11. The following statements hold.

(1) Let R = S and for every I ⊴ S, rM(I) = (rS(I))M . Then T is
right SA if and only if R is right SA.

(2) Let R = S and M ⊴ R, then T is right SA if and only if R is
right SA.

(3) Let S = M . Then T is right SA if and only if S is a right
SA and for each I, J ⊴R and N1, N2 ⊴S, there are K ⊴R and
N ⊴ S, such that rR(I) ∩ AnnR(N1) + rR(J) ∩ AnnR(N2) =
rR(K) ∩ AnnR(N).

Proof. This is a consequence of Theorem 3.10. □

4. Baer-ideals in semiprime ring and ring of continuous
functions

In this section, first, we show that an ideal I of C(X) is a Baer-ideal
if and only if int

∩
f∈I Z(f) is a clopen subset of X. Then we show that

an ideal I of semiprime ring R is a Baer-ideal if and only if intV (I)
is a clopen subset of Spec(R). Also we prove that the product of two
Baer-ideals in a semiprime ring R is a Baer-ideal.

A non-zero ideal I of R is an essential ideal if for any ideal J of R,
I ∩ J = 0 implies that J = 0. Also an ideal P of a commutative ring
R is called pseuodoprime ideal if ab = 0, implies that a ∈ P or b ∈ P
(see [13]).

We denote by C(X), the ring of all real-valued continuous functions
on a completely regular Hausdorff space X. For any f ∈ C(X), Z(f) =
{x ∈ X : f(x) = 0} is called a zero-set. We can see that a subset A ofX
is clopen if and only if A = Z(f) for some idempotent f ∈ C(X). For
any subset A of X we denote by intA the interior of A (i.e., the largest
open subset of X contained in A). For terminology and notations, the
reader is referred to [12] and [14].

Lemma 4.1. For I, J⊴C(X), r(I) = r(J) if and only if int
∩

f∈I Z(f) =

int
∩

g∈J Z(g).

Proof. (⇒) Let x ∈ int
∩

f∈I Z(f). Then x /∈ X \ int
∩

f∈I Z(f). By

completely regularity of X, there exists h ∈ C(X) such that x ∈ X \
Z(h) ⊆ int

∩
f∈I Z(f). Therefore fh = 0 for all f ∈ I. This implies

that h ∈ r(I) = r(J). Hence gh = 0 for each g ∈ J . Thus x ∈ X \
intZ(h) ⊆ int

∩
g∈J Z(g). Similarly, we can prove that int

∩
g∈J Z(g) ⊆

int
∩

f∈I Z(f).

(⇐) Suppose that h ∈ r(I). Then X \ Z(h) ⊆ int
∩

f∈I Z(f), so

X \ Z(h) ⊆ Z(f) for all f ∈ I. Hence for each f ∈ I, fh = 0. This
implies that r(I) ⊆ r(J). Similarly, we can prove that r(J) ⊆ r(I). □
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Proposition 4.2. The following statements hold.

(1) An ideal I of C(X) is a Baer-ideal if and only if int
∩

f∈I Z(f)
is a clopen subset of X.

(2) Every pseuodoprime ideal of C(X) is a Baer-ideal.

Proof. (1) Let I be a Baer-ideal of C(X). Then there exists an idem-
potent e ∈ C(X) such that r(I) = eC(X) = r(C(X)(1 − e)). By
Lemma 4.1, int

∩
f∈I Z(f) = intZ(1 − e) = Z(1 − e). This shows

that int
∩

f∈I Z(f) is a clopen subset of X. Now let int
∩

f∈I Z(f) is a

clopen subset of X. Then there exists an idempotent e ∈ C(X) such
that int

∩
f∈I Z(f) = Z(e) = intZ(e). By Lemma 4.1, r(I) = r(e) =

(1− e)C(X). Hence I is a Baer-ideal.
(2) By [1, Corollary 3.3], every pseudoprime ideal in C(X) is either

an essential ideal or a maximal ideal which is at the same time a min-
imal prime ideal. Now let P be a pseuodoprime ideal in C(X). If P
is essential, then by [1, Theorem 3.1], int

∩
f∈P Z(f) = ∅, so (i), im-

plies that P is a Baer-ideal. Otherwise P is a maximal ideal which is
also a minimal prime ideal. Then there exists an isolated point x ∈ X
such that P = Mx = {f ∈ C(X) : x ∈ Z(f)}. This shows that
int

∩
f∈P Z(f) = {x} is a clopen subset of X, so P is a Baer-ideal. □

Recall that a topological space X is extremally disconnected if the
interior of any closed subset is closed, see [14, 1.H]. The next result is
proved in [2, Theorem 3.5] and [21, Theorem 2.12]. Now we give a new
proof.

Corollary 4.3. C(X) is a Baer-ring if and only if X is an extremally
disconnected space.

Proof. Let F be a closed subset of X and C(X) is a Baer-ring. By
completely regularity of X, there exists an ideal I of C(X) such that
F =

∩
f∈I Z(f). By Proposition 4.2, intF is closed, hence X is ex-

tremally disconnected. Conversely, suppose that I ⊴ C(X). Then
int

∩
f∈I Z(f) is closed. By Proposition 4.2, I is a Baer-ideal, thus

C(X) is a Baer-ring. □

For any a ∈ R, let supp(a) = {P ∈ Spec(R) : a /∈ P}. Shin [19,
Lemma 3.1] proved that for any R, {supp(a) : a ∈ R} forms a basis
of open sets on Spec(R). This topology is called hull-kernel topology.
We mean of V (I) is the set of P ∈ Spec(R), where I ⊆ P . Note that
V (I) =

∩
a∈I V (a).

Lemma 4.4. [5, Lemma 4.2]. The following statements hold.
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(1) If I and J are two ideals of a semiprime ring R, then r(I) = r(J)
if and only if intV (I) = intV (J).

(2) A ⊆ Spec(R) is a clopen subset if and only if there exists an
idempotent e ∈ R such that A = V (e).

Proposition 4.5. Let R be a semiprime ring.

(1) An ideal I of R is a Baer-ideal if and only if intV (I) is a clopen
subset of Spec(R).

(2) The product of two Baer-ideals is a Baer-ideal.
(3) If R is a commutative ring, then any essential ideal of R is a

Baer-ideal.

Proof. (1) Let I be a Baer ideal of R. Then there exists an idempotent
e ∈ R such that r(I) = eR = r(R(1 − e)). By Lemma 4.4, intV (I) =
intV (1− e) = V (1− e). Thus intV (I) is closed. Conversely, let I ⊴R.
By hypothesis and Lemma 4.4, there exists an idempotent e ∈ R such
that intV (I) = V (e). So, Lemma 4.4, implies that r(I) = r(Re) =
(1− e)R. Therefore, I is a right Baer-ideal. By semiprime hypothesis,
I is a left Baer-ideal.

(2) Let I, J be two Baer-ideals of R. Then there are idempotents
e, f ∈ R such that r(I) = eR and r(J) = fR. We will prove r(IJ) =
fR + eR + feR. By Lemma 2.4, there exists h ∈ Sl(R) such that
r(IJ) = fR + eR + feR = hR. Therefore IJ is a right Baer-ideal.
By semiprime hypothesis, IJ is a left Baer-ideal. Now let x ∈ r(IJ).
Then Jx ⊆ r(I) = r(R(1− e)). So R(1− e)Jx = 0. This implies that
(JxR(1 − e))2 = 0. Since R is semiprime, we have JxR(1 − e) = 0.
Thus x(1− e) ∈ r(J) = r(R(1− f)). Hence (1− f)x(1− e) = 0. This
shows that x = −fxe+fx+xe = fexe+exe+fx ∈ feR+eR+fR. On
the other hand we have (IJ)(feR+eR+fR) = 0, so feR+eR+fR ⊆
r(IJ).

(3) It is easily seen that an ideal I of a commutative semiprime ring
R is essential if and only if r(I) = 0 = r(R). Now, Lemma 4.4, implies
that I is a Baer-ideal. □

Now we apply the theory of Baer ideals to give the following well-
known result.

Corollary 4.6. Let R be a semiprime ring. Then R is quasi-Baer if
and only if Spec(R) is extremally disconnected.

Proof. Let A be a closed subset of Spec(R) and R is quasi-Baer. Since
{V (a) : a ∈ R} is a base for closed subsets in Spec(R), there exists
S ⊆ R such that A =

∩
a∈S V (a). Take I = RSR. Then A = V (I). By

Lemma 4.5, intA is closed. Thus Spec(R) is extremally disconnected.
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Conversely, let I⊴R. We know that V (I) is a closed subset of Spec(R).
By hypothesis and Lemma 4.5, intV (I) is a clopen subset of Spec(R),
and hence I is Baer-ideal. Thus R is a quasi Baer-ring. □
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