A CHARACTERIZATION OF BAER-IDEALS

A. TAHERIFAR

ABSTRACT. An ideal I of a ring R is called a right Baer-ideal if there exists an idempotent $e \in R$ such that $r(I) = eR$. We know that R is quasi-Baer if every ideal of R is a right Baer-ideal, R is n-generalized right quasi-Baer if for each $I \subseteq R$ the ideal I^n is a right Baer-ideal, and R is right principaly quasi-Baer if every principal right ideal of R is a right Baer-ideal. Therefore the concept of Baer ideal is important. In this paper we investigate some properties of Baer ideals and give a characterization of Baer ideals in 2-by-2 generalized triangular matrix rings, full and upper triangular matrix rings, semiprime ring and ring of continuous functions. Finally, we find equivalent conditions for which the 2-by-2 generalized triangular matrix ring be right SA.

1. Introduction

Throughout this paper, R denotes an associative ring with identity. Let $\emptyset \neq X \subseteq R$. Then $X \subseteq R$ denotes that X is an ideal of R. For any subset S of R, $l(S)$ and $r(S)$ denote the left annihilator and the right annihilator of S in R. The ring of n-by-n (upper triangular) matrices over R is denoted by $M_n(R)$ ($T_n(R)$). An idempotent e of a ring R is called left (right) semicentral if $ae = eae$ ($ea = eae$) for all $a \in R$. It can be easily checked that an idempotent e of R is left (right) semicentral if and only if eR (Re) is an ideal. Also note that an idempotent e is left semicentral if and only if $1 - e$ is right semicentral. See [4] and [6], for a more detailed account of semicentral idempotents. Thus for a

MSC(2010): Primary: 16D25, Secondary: 54G05, 54C40

Keywords: Quasi-Baer ring, Generalized right quasi-Baer, Semicentral idempotent, Spec(R), Extremally disconnected space.

Received: 3 September 2013, Revised: 18 April 2014.
left (right) ideal I of a ring R, if $l(I) = Re$ ($r(I) = eR$) with an idempotent e, then e is right (left) semicentral, since Re (eR) is an ideal, and we use $S_r(R)$ ($S_e(R)$) to denote the set of left (right) semicentral idempotents of R.

In [11], Clark defines R to be a quasi-Baer ring if the left annihilator of every ideal of R is generated, as a left ideal, by an idempotent. He uses the quasi-Baer concept to characterize when a finite-dimensional algebra with identity over an algebraically closed field is isomorphic to a twisted matrix units semigroup algebra. The quasi-Baer condition are left-right symmetric. It is well known that R is a quasi-Baer if and only if $M_n(R)$ is quasi-Baer if and only if $T_n(R)$ is a quasi-Baer ring (see [3], [7], [8] and [18]).

In [17], Moussavi, Javadi and Hashemi define a ring R to be n-generalized right quasi-Baer if for each $I \trianglelefteq R$, the right annihilator of I^n is generated (as a right ideal) by an idempotent. They proved in [17, Theorem 4.7] that R is n-generalized quasi-Baer if and only if $M_n(R)$ is n-generalized. Moreover, they found equivalent conditions for which the 2-by-2 generalized triangular matrix ring be n-generalized quasi-Baer, see [17, Theorem 4.3].

In [9], Birkenmeier, Kim and Park introduced a principally quasi-Baer ring and used them to generalize many results on reduced (i.e., it has no nonzero nilpotent elements) p.p.-rings. A ring R is called right principally quasi-Baer (or simply right p.q.-Baer) if the right annihilator of a principal right ideal is generated by an idempotent.

The above results are motivation for us to introduce Baer-ideal. An ideal I of R is called right Baer-ideal if $r(I) = eR$ for some idempotent $e \in R$, and if $l(I) = Rd$ for some idempotent $d \in R$, then we say I is a left Baer-ideal. In section 2, we see an example of right Baer-ideals which are not left Baer-ideal. We also see that the set of Baer-ideals are closed under sum and direct product.

In section 3, we characterize Baer-ideals in 2-by-2 generalized triangular matrix rings, full and upper triangular matrix rings. By these results we obtain new proofs for the well-known results about quasi-Baer and n-generalized quasi-Baer rings. Also, we find equivalent conditions for which the 2-by-2 generalized triangular matrix ring be right SA (i.e., for any two $I, J \trianglelefteq R$ there is a $K \trianglelefteq R$ such that $r(I) + r(J) = r(K)$).

In section 4, we prove that the product of two Baer ideals in a semiprime ring R is a Baer-ideal. Also we show that an ideal I of a semiprime ring R is a Baer-ideal if and only if $intV(I)$ is a clopen subset of $Spec(R)$. Moreover, it is proved that an ideal I of $C(X)$ is a Baer-ideal if and only if $int\bigcap_{f \in I} Z(f)$ is a clopen subset of space X.
2. Preliminary results and examples

Definition 2.1. An ideal I of R is called **right Baer-ideal** if there exists an idempotent $e \in R$ such that $r(I) = eR$, similarly, we can define left Baer-ideal and we say I is a Baer-ideal if I is a right and left Baer-ideal.

Example 2.2. (i) The ideals 0 and R are Baer-ideals in any ring R.

(ii) For $e \in S_l(R)$ the ideal ReR is a right Baer-ideal. Since, we have $r(ReR) = r(eR) = r(Re) = (1 - e)R$.

(iii) For $f \in S_l(R)$, the ideal RfR is a left Baer-ideal. Since, $l(RfR) = l(Rf) = l(fR) = R(1 - f)$.

In the following, we provide an example of right Baer-ideals which are not left Baer-ideal. Also we see a non-quasi-Baer ring which has a Baer-ideal.

Example 2.3. Let $R = \left(\begin{array}{cc} \mathbb{Z} & \mathbb{Z}_2 \\ 0 & \mathbb{Z}_2 \end{array} \right) = \left\{ \begin{pmatrix} n & a \\ 0 & b \end{pmatrix} : n \in \mathbb{Z}, a, b \in \mathbb{Z}_2 \right\}$, where \mathbb{Z} and \mathbb{Z}_n are rings of integers and integers modulo n, respectively.

(i) For ideal $I = \left(\begin{array}{cc} 0 & \mathbb{Z}_2 \\ 0 & \mathbb{Z}_2 \end{array} \right)$, we have $l(I) = \left(\begin{array}{cc} 2\mathbb{Z} & 0 \\ 0 & 0 \end{array} \right)$, and is not containing any idempotent. Therefore I is not a left Baer-ideal. On the other hand $r(I) = \left(\begin{array}{cc} \mathbb{Z} & \mathbb{Z}_2 \\ 0 & 0 \end{array} \right) = \left(\begin{array}{cc} 1 & 1 \\ 0 & 0 \end{array} \right) R$. Thus I is a right Baer-ideal.

(ii) For ideal $J = \left(\begin{array}{cc} 2\mathbb{Z} & 0 \\ 0 & 0 \end{array} \right)$, we have $l(J) = \left(\begin{array}{cc} 0 & \mathbb{Z}_2 \\ 0 & \mathbb{Z}_2 \end{array} \right) = \left(\begin{array}{cc} 0 & 1 \\ 0 & 1 \end{array} \right)$, and $r(J) = \left(\begin{array}{cc} 0 & \mathbb{Z}_2 \\ 0 & \mathbb{Z}_2 \end{array} \right) = \left(\begin{array}{cc} 0 & 1 \\ 0 & 1 \end{array} \right) R$. Hence J is a Baer-ideal.

Lemma 2.4. [20, Lemma 2.3]. Let e_1 and e_2 be two right semicentral idempotents.

(1) e_1e_2 is a right semicentral idempotent.

(2) $(e_1 + e_2 - e_1e_2)$ is a right semicentral idempotent.

(3) If $S \subseteq S_r(R)$ is finite, then there is a right semicentral idempotent e such that $RSR = ReR = < e >$.

Proposition 2.5. The sum of two Baer-ideals in any ring R is a Baer-ideal.

Proof. Let I and J be two Baer-ideals of R. Then there are idempotents $e, f \in S_l(R)$ such that $r(I) = eR = r(R(1 - e))$ and $r(J) = fR = r(R(1 - f))$. Therefore $r(I + J) = r(I) \cap r(J) = r(R(1 - e)) \cap r(R(1 - f)) = r(R(1 - e) + R(1 - f))$. Since $1 - e, 1 - f \in S_r(R)$, By Lemma 2.4, we have

$$h = ((1 - e) + (1 - f) - (1 - e)(1 - f)) \in S_r(R).$$
On the other hand, we can see that
\[r(I + J) = r(R(1 - e) + R(1 - f)) = r(Rh) = (1 - h)R. \]
Hence \(I + J \) is a right Baer-ideal. Similarly, we can see that \(I + J \) is a left Baer-ideal. \(\square \)

Proposition 2.6. An ideal \(J \) of \(R = \prod_{x \in X} R_x \) a direct product of rings is a right Baer-ideal if and only if each \(\pi_x(J) = J_x \) is a right Baer-ideal of \(R_x \), where \(\pi_x : R \mapsto R_x \) denote the canonical projection homomorphism.

Proof. If \(J \) is a right Baer-ideal of \(R \), then there exists an idempotent \(e \in R \) such that \(r(J) = eR \). This implies that \(r(J_x) = \pi_x(e)R_x = e_xR_x \). Therefore each \(J_x \) is a right Baer-ideal of \(R_x \). Conversely, each \(J_x \) is a right Baer-ideal, hence for each \(x \in X \) there exists an idempotent \(e_x \in R_x \) such that \(r(J_x) = e_xR_x \). Thus \(r(J) = (e_x)_{x \in X}R \). Therefore \(J \) is a right Baer-ideal of \(R \). \(\square \)

Corollary 2.7. Let \(R = \prod_{x \in X} R_x \), a direct product of rings.

1. \(R \) is quasi-Baer if and only if each \(R_x \) is quasi-Baer.
2. \(R \) is \(n \)-generalized quasi-Baer if and only if each \(R_x \) is \(n \)-generalized quasi-Baer.

Proof. This is a consequence of Proposition 2.6. \(\square \)

3. Baer-ideals in extension rings

Throughout this section, \(T \) will denote a 2-by-2 generalized (or formal) triangular matrix ring \(\begin{pmatrix} S & M \\ 0 & R \end{pmatrix} \), where \(R \) and \(S \) are rings and \(M \) is an \((S, R)\)-bimodule. If \(N \) is an \((S, R)\)-submodule of \(M \) (briefly, \(sN_R \leq S M_R \)), then \(\text{Ann}_R N = \{ r \in R : Nr = 0 \} \) and \(\text{Ann}_S N = \{ s : sN = 0 \} \), see [16]. In this section we use a similar method as in Birkenmeier, Kim and Park in [10] and characterize Baer-ideals of 2-by-2 generalized triangular matrix rings. Also we characterize Baer-ideals in full and upper triangular matrix rings. By using of these results, we can prove the well-known results about quasi-Baer rings and generalized right quasi-Baer rings.

Theorem 3.1. An ideal \(J \) of \(M_n(R) \) is a right Baer-ideal if and only if \(J = M_n(I) \), for some right Baer-ideal \(I \) of \(R \).

Proof. Let \(J \) be a right Baer-ideal of \(M_n(R) \). By [15, Theorem 3.1], \(J = M_n(I) \), for some ideal \(I \) of \(R \). We claim that \(I \) is a right Baer-ideal. By hypothesis, there exists \(E \in S_l(M_n(R)) \) such that \(r(J) = EM_n(R) \). Hence \(e_{11}R \subseteq r(I) \), where \(e_{11} \) is the \((1, 1)\)-th entries in \(E \).
We show that \(r(I) \subseteq e_{11}R \). Suppose that \(x \in r(I) \). By [5, Lemma 3.1], \(r(J) = M_n(r(I)) \). Hence \(A \in r(J) \), where \(a_{11} = x \) and zero elsewhere. Therefore \(A \in EM_n(R) \). By [20, Theorem 3.3], in matrix \(E \), \(e_{ij} = e_{11}e_{ij} \). This implies that \(x \in e_{11}R \). Now let \(J = M_n(I) \) and \(I \) be a right Baer-ideal in \(R \). Then there exists an idempotent \(e \in R \) such that \(r(I) = eR \). By [5, Lemma 3.1], \(r(M_n(I)) = M_n(r(I)) = M_n(eR) = E M_n(R) \), where in matrix \(E \) for each \(1 \leq i \leq n \), \(e_{ii} = e \) and \(e_{ij} = 0 \) for all \(i \neq j \). Thus \(J \) is a right Baer-ideal of \(M_n(R) \). □

Theorem 3.2. The following statements hold.

1. For every \(I \trianglelefteq T_n(R) \), there are ideals \(J_{ik} \) of \(R \), \(1 \leq i, k \leq n \) such that

\[
I = \begin{pmatrix}
J_{11} & J_{12} & J_{13} & \ldots & J_{1n} \\
0 & J_{22} & J_{23} & \ldots & J_{2n} \\
& \ddots & \ddots & \ddots & \ddots \\
0 & 0 & \ldots & \ldots & 0 & J_{nn}
\end{pmatrix},
\]

and \(J_{i+1k} \subseteq J_{ik} \).

2. \(I \) is a right Baer-ideal of \(T_n(R) \) if and only if each \(J_{1k} \) is a right Baer-ideal of \(R \).

3. If \(K \) is a right Baer-ideal of \(R \), then \(T_n(K) \) is a right Baer-ideal of \(T_n(R) \).

Proof. (1) Let \(I \trianglelefteq T_n(R) \) and for each \(1 \leq i \leq n \), \(K_i \) is the set consisting of all entries in the \(i \)th column of elements of \(I \). Then for each \(1 \leq i \leq n \), \(K_i \subseteq R \). Put \(J_{ij} = K_i + \ldots + K_j \). Then \(J_{ik} \subseteq J_{ik+1} \) and \(J_{i+1k} \subseteq J_{ik} \). Always we have

\[
I \subseteq \begin{pmatrix}
K_1 & K_1 + K_2 & K_1 + K_2 + K_3 & \ldots & K_1 + \ldots + K_n \\
0 & K_2 & K_2 + K_3 & \ldots & K_2 + \ldots + K_n \\
& \ddots & \ddots & \ddots & \ddots \\
0 & 0 & \ldots & \ldots & 0 & K_n
\end{pmatrix}.
\]

On the other hand

\[
\begin{pmatrix}
K_1 & K_2 & K_3 & \ldots & K_n \\
0 & K_2 & K_3 & \ldots & K_n \\
& \ddots & \ddots & \ddots & \ddots \\
0 & 0 & \ldots & \ldots & 0 & K_n
\end{pmatrix} \subseteq I,
\]
and $I \trianglelefteq T_n(R)$, hence
\[
\begin{pmatrix}
K_1 & K_1 + K_2 & K_1 + K_2 + K_3 & \ldots & K_1 + \ldots + K_n \\
0 & K_2 & K_2 + K_3 & \ldots & K_2 + \ldots + K_n \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0 & K_n \\
\end{pmatrix}
\]
\[= \begin{pmatrix}
K_1 & K_2 & K_3 & \ldots & K_n \\
0 & K_2 & K_3 & \ldots & K_n \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0 & K_n \\
\end{pmatrix}
\]
\[+ \begin{pmatrix}
0 & 1 & 1 & \ldots & 1 \\
0 & 0 & 1 & \ldots & 1 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0 & 1 \\
\end{pmatrix}
\subseteq I.
\]

Therefore $I = \begin{pmatrix}
J_{11} & J_{12} & J_{13} & \ldots & J_{1n} \\
0 & J_{22} & J_{23} & \ldots & J_{2n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0 & J_{nn} \\
\end{pmatrix}$.

(2) Assume that I is a right Baer-ideal of $T_n(R)$. Then there exists an idempotent $E \in T_n(R)$ such that $r(I) = ET_n(R)$. On the other hand by (i), we can see that
\[
\begin{pmatrix}
J_{11} & J_{12} & J_{13} & \ldots & J_{1n} \\
0 & J_{22} & J_{23} & \ldots & J_{2n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0 & J_{nn} \\
\end{pmatrix}
\]
\[
= \begin{pmatrix}
r_R(J_{11}) & r_R(J_{11}) & \ldots & r_R(J_{1n}) \\
0 & r_R(J_{12}) & \ldots & r_R(J_{12}) \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & r_R(J_{1n}) \\
\end{pmatrix}.
\]

Thus for each $1 \leq k \leq n$, $r(J_{1k}) = e_{kk}R$, where e_{kk} is the (k,k)-th entries in E. Conversely, let for each $1 \leq k \leq n$, J_{1k} be a right Baer-ideal of R. Then there is an $e_{1k} \in S_i(R)$ such that $r(J_{1k}) = e_{1k}R$. Consider matrix F, where for each $1 \leq k \leq n$, $f_{kk} = e_{1k}$ and elsewhere is zero. Then we have $IF = 0$. If $A \in r(I)$, then for each $1 \leq j \leq n$, $a_{kj} \in r(J_{1k})$. Hence there exists $c_{kj} \in R$ such that $a_{kj} = e_{1k}c_{kj} =$
A CHARACTERIZATION OF BAER-IDEALS

$f_{kk}c_{kj}$, for all $1 \leq j \leq n$. Thus $A = FC \in FT_n(R)$, where $C = [c_{kj}]$. Therefore $r(I) = FT_n(R)$. Hence I is a right Baer-ideal of $T_n(R)$.

(3) By (2), this is evident.

Corollary 3.3. The following statements hold.

1. [18, Proposition 2]. R is quasi-Baer if and only if $M_n(R)$ is quasi-Baer.
2. [17, Theorem 4.7]. R is n-generalized right quasi-Baer if and only if $M_n(R)$ is n-generalized right quasi-Baer.

Proof. (1) Let R be quasi-Baer and $J \subseteq M_n(R)$. Then $J = M_n(I)$ for some $I \subseteq R$ and I is a Baer-ideal. By Theorem 3.1, J is a right Baer-ideal, hence $M_n(R)$ is a quasi-Baer ring. Now let $I \subseteq R$ and $M_n(R)$ be quasi-Baer. Then $M_n(I)$ is a right Baer-ideal of $M_n(R)$. Again by Theorem 3.1, I is a right Baer-ideal in R, thus R is a quasi-Baer-ring.

(2) Assume that $J \subseteq M_n(R)$ and R is n-generalized right quasi-Baer. Then $J = M_n(I)$, where I^n is a right Baer-ideal. By Theorem 3.1, $J^n = M_n(I^n)$ is a right Baer-ideal. This shows that $M_n(R)$ is n-generalized right quasi-Baer. The converse is evident.

Corollary 3.4. [18, Proposition 9]. R is quasi-Baer if and only if $T_n(R)$ is quasi-Baer.

Proof. Let $J \subseteq T_n(R)$. By Theorem 3.2,

$$J = \begin{pmatrix}
J_{11} & J_{12} & J_{13} & \cdots & J_{1n} \\
0 & J_{22} & J_{23} & \cdots & J_{2n} \\
& & \ddots & \ddots & \ddots \\
& & & \ddots & \ddots \\
& & & & \ddots & \ddots \\
0 & 0 & \cdots & 0 & J_{nn}
\end{pmatrix}.$$

By hypothesis, each J_{ik} is a right Baer-ideal. Theorem 3.2, implies that J is a right Baer-ideal. Thus $T_n(R)$ is quasi-Baer. The converse is evident.

Lemma 3.5. [10, Lemma 2.3]. Let $e = \begin{pmatrix} e_1 & k \\ 0 & e_2 \end{pmatrix}$ be an idempotent element of $T = \begin{pmatrix} S & M \\ 0 & R \end{pmatrix}$.

1. $e \in S_l(T)$ if and only if
 a. $e_1 \in S_l(S)$;
 b. $e_2 \in S_l(R)$;
 c. $e_1k = k$; and
(d) $e_1me_2 = me_2$, for all $m \in M$.

(2) $e_1k = k$ if and only if $eT \subseteq \begin{pmatrix} e_1 & 0 \\ 0 & e_2 \end{pmatrix} T$.

(3) If $e_1me_2 = me_2$, for all $m \in M$, then $\begin{pmatrix} e_1 & 0 \\ 0 & e_2 \end{pmatrix} T \subseteq eT$.

(4) If $e \in S_l(T)$, then $\begin{pmatrix} e_1 & 0 \\ 0 & e_2 \end{pmatrix} T = eT$.

Lemma 3.6. [10, Lemma 3.1]. Let $J = \begin{pmatrix} I & N \\ 0 & L \end{pmatrix}$ be an ideal of $T = \begin{pmatrix} S & M \\ 0 & R \end{pmatrix}$. Then $r(J) = \begin{pmatrix} r_S(I) & r_M(I) \\ 0 & r_R(L) \cap \text{Ann}_R(N) \end{pmatrix}$ and $l(J) = \begin{pmatrix} l_S(I) \cap \text{Ann}_S(N) & l_M(L) \\ 0 & l_R(L) \end{pmatrix}$.

Theorem 3.7. Let $J = \begin{pmatrix} I & N \\ 0 & L \end{pmatrix}$ be an ideal of $T = \begin{pmatrix} S & M \\ 0 & R \end{pmatrix}$.

Then J is a right Baer-ideal of T if and only if

1. I is a right Baer-ideal of S;
2. $r_M(I) = (r_S(I))M$; and
3. $r_R(L) \cap \text{Ann}_R(N) = aR$, for some $a^2 = a \in R$.

Proof. Let J be a right Baer-ideal of T. Then there exists $e \in S_l(T)$ such that $r(J) = eT$. By Lemma 3.5, $e = \begin{pmatrix} e_1 & k \\ 0 & e_2 \end{pmatrix}$, for some $e_1 \in S_l(S), e_2 \in S_l(R), k \in M$ and $kR = e_1kR$. Thus $e_1M = e_1M + kR$. By Lemma 3.5, $e_1S = r_S(I), r_M(I) = e_1M = e_1SM = (r_S(I))M$ and $r_R(L) \cap \text{Ann}_R(N) = e_2R$.

Conversely, by hypothesis, there are $e_1 \in S_l(S)$ and $a^2 = a \in R$ such that $r_S(I) = e_1S$ and $r_R(L) \cap \text{Ann}_R(N) = aR$. Since $\text{Ann}_R(N) \subseteq R$, then $a \in S_l(R)$. By (ii), $r_M(I) = (r_S(I))M = e_1M$. Now let $e = \begin{pmatrix} e_1 & 0 \\ 0 & a \end{pmatrix}$. Then $eT = \begin{pmatrix} e_1S & e_1M \\ 0 & aR \end{pmatrix} = \begin{pmatrix} r_S(I) & r_M(I) \\ 0 & r_R(L) \cap \text{Ann}_R(N) \end{pmatrix}$. From Lemma 3.6, $eT = r(J)$. Therefore J is a right Baer-ideal of T. \qed

Corollary 3.8. [10, Theorem 3.2]. Let $T = \begin{pmatrix} S & M \\ 0 & R \end{pmatrix}$. Then the following are equivalent.

1. T is quasi-Baer.
2. (i) R and S are quasi-Baer;
 (ii) $r_M(I) = (r_S(I))M$ for all $I \subseteq S$; and
A CHARACTERIZATION OF BAER-IDEALS

(iii) If \(sN_R \leq_S M_R \), then we have \(\text{Ann}_R(N) = aR \) for some \(a^2 = a \in R \).

Proof. \(1 \Rightarrow 2 \). Let \(I \leq S \), \(N \) be a \((S, R)\) submodule of \(M \) and \(J \leq R \). Then \(\begin{pmatrix} I & M \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & N \\ 0 & 0 \end{pmatrix} \) and \(\begin{pmatrix} 0 & 0 \\ 0 & J \end{pmatrix} \) are Baer-ideals of \(T \). By Theorem 3.7, \(I \) and \(J \) are Baer-ideals, hence \(R, S \) are quasi-Baer and \(r_R(0) \cap \text{Ann}_R(N) = \text{Ann}_R(N) = aR \), for some \(a^2 = a \in R \).

\(2 \Rightarrow 1 \). Let \(J = \begin{pmatrix} I & N \\ 0 & L \end{pmatrix} \leq T \). By hypothesis, there are \(a, e \in S_l(R) \) such that \(\text{Ann}_R(N) = aR \), \(r_R(L) = eR \) and \(I \) is a Baer-ideal. Hence \(r_R(L) \cap \text{Ann}_R(N) = r(R(1 - e)) \cap r(R(1 - a)) = eaR \). By Theorem 3.7, \(J = \begin{pmatrix} I & N \\ 0 & L \end{pmatrix} \) is a Baer-ideal, thus \(T \) is a quasi-Baer ring. \(\square \)

Corollary 3.9. \([17, \text{Theorem 4.3}]\). Let \(T = \begin{pmatrix} S & M \\ 0 & R \end{pmatrix} \). Then the following are equivalent.

1. \(T \) is \(n \)-generalized right (principally) quasi-Baer.
2. (i) \(S \) is \(n \)-generalized right quasi-Baer;
 (ii) \(r_M(I^n) = (r_S(I^n))M \) for all \(I \leq S \); and
 (iii) If \(\begin{pmatrix} 0 & N \\ 0 & J \end{pmatrix} \leq T \), then there is some \(e^2 = e \in R \) such that

\[r_R(J^n) \cap \text{Ann}_R(I^{n-1}N) \cap \text{Ann}_R(I^{n-2}NJ) \cap \ldots \cap \text{Ann}_R(NJ^{n-1}) = eR. \]

Proof. \(1 \Rightarrow 2 \). (i), (ii) Let \(I \leq S \). Then \(\begin{pmatrix} I^n & I^{n-1}M \\ 0 & M \end{pmatrix} \) is a Baer-ideal of \(T \). By Theorem 3.7, \(I^n \) is a Baer-ideal in \(S \), hence \(S \) is \(n \)-generalized right (principally) quasi-Baer and \(r_M(I^n) = (r_S(I^n))M \).

(iii) If \(\begin{pmatrix} 0 & N \\ 0 & J \end{pmatrix} \leq T \). Then \(\begin{pmatrix} I^n & I^{n-1}N + I^{n-2}NJ + \ldots + NJ^{n-1} \\ 0 & J^n \end{pmatrix} \) is a Baer-ideal in \(T \). By Theorem 3.7, there is some \(e^2 = e \in R \) such that

\[r_R(J^n) \cap \text{Ann}_R(I^{n-1}N) \cap \text{Ann}_R(I^{n-2}NJ) \cap \ldots \cap \text{Ann}_R(NJ^{n-1}) = eR. \]

\(2 \Rightarrow 1 \). Let \(K = \begin{pmatrix} I & N \\ 0 & J \end{pmatrix} \leq T \). By hypothesis and Theorem 3.7, \(K^n = \begin{pmatrix} I^n & I^{n-1}N + I^{n-2}NJ + \ldots + NJ^{n-1} \\ 0 & J^n \end{pmatrix} \) is a Baer-ideal in \(T \). Hence \(T \) is \(n \)-generalized right (principally) quasi-Baer. \(\square \)

Recall that a ring \(R \) is a right \(SA \) if for each \(I, J \leq R \) there exists \(K \leq R \) such that \(r(I) + r(J) = r(K) \) (see \([5]\)).
Theorem 3.10. Let \(T = \begin{pmatrix} S & M \\ 0 & R \end{pmatrix} \). Then the following are equivalent.

(1) \(T \) is a right \(SA \)-ring.

(2) (i) For \(I_1, I_2 \subseteq S \), there exists \(I_3 \subseteq S \), such that \(r_M(I_1) + r_M(I_2) = r_M(I_3) \), \(r_S(I_1) + r_S(I_2) = r_S(I_3) \) (i.e., \(S \) is right \(SA \)); and

(ii) For each \(I, J \subseteq R \) and \((S, R) \) submodules \(N_1, N_2 \), of \(M \), there are \(K \subseteq R \) and \(SN_R \leq_s M_R \), such that

\[
r_R(I) \cap Ann_R(N_1) + r_R(J) \cap Ann_R(N_2) = r_R(K) \cap Ann_R(N).
\]

Proof. \(1 \Rightarrow 2 \).

(i) Let \(I_1, I_2 \subseteq S \). Then \(\begin{pmatrix} I_1 & M \\ 0 & 0 \end{pmatrix} \) and \(\begin{pmatrix} I_2 & M \\ 0 & 0 \end{pmatrix} \) are ideals of \(T \). By hypothesis, there is \(\begin{pmatrix} I & N \\ 0 & J \end{pmatrix} \subseteq T \) such that

\[
r\left(\begin{pmatrix} I_1 & M \\ 0 & 0 \end{pmatrix}\right) + r\left(\begin{pmatrix} I_2 & M \\ 0 & 0 \end{pmatrix}\right) = r\left(\begin{pmatrix} I & N \\ 0 & J \end{pmatrix}\right).
\]

By Lemma 3.6, we have \(r_S(I_1) + r_S(I_2) = r_S(I) \) and \(r_M(I_1) + r_M(I_2) = r_M(I) \).

(ii) Let \(I, J \subseteq R \) and \(N_1, N_2 \) are \((S, R) \) submodules of \(M \). Then

\[
\begin{pmatrix} 0 & N_1 \\ 0 & I \end{pmatrix}\) and \(\begin{pmatrix} 0 & N_2 \\ 0 & J \end{pmatrix}\) are ideals of \(T \). By hypothesis, there are \(K \subseteq R \), \(I \subseteq S \) and \(SN_R \leq_s M_R \), such that

\[
r\left(\begin{pmatrix} 0 & N_1 \\ 0 & I \end{pmatrix}\right) + r\left(\begin{pmatrix} 0 & N_2 \\ 0 & J \end{pmatrix}\right) = r\left(\begin{pmatrix} I & N \\ 0 & K \end{pmatrix}\right).
\]

Now, Lemma 3.6, implies that

\[
r_R(I) \cap Ann_R(N_1) + r_R(J) \cap Ann_R(N_2) = r_R(K) \cap Ann_R(N).
\]

\(2 \Rightarrow 1 \). Suppose that \(K_1 = \begin{pmatrix} I_1 & N_1 \\ 0 & J_1 \end{pmatrix} \) and \(K_2 = \begin{pmatrix} I_2 & N_2 \\ 0 & J_2 \end{pmatrix} \) are two ideals of \(T \). By Lemma 3.6, we have

\[
r(K_1) + r(K_2) = \begin{pmatrix} r_S(I_1) + r_S(I_2) & r_M(I_1) + r_M(I_2) \\ 0 & r_R(J_1) \cap Ann_R(N_1) + r_R(J_2) \cap Ann_R(N_2) \end{pmatrix}.
\]

By hypothesis, there are \(I_3 \subseteq S \), \(K \subseteq R \) and \(SN_R \leq_s M_R \), such that

\[
r_S(I_1) + r_S(I_2) = r_S(I_3), r_M(I_1) + r_M(I_2) = r_M(I_3),
\]

and

\[
r_R(J_1) \cap Ann_R(N_1) + r_R(J_2) \cap Ann_R(N_2) = r_R(K) \cap Ann_R(N).
\]

Therefore, by Lemma 3.6, \(r(K_1) + r(K_2) = r\left(\begin{pmatrix} I_3 & N \\ 0 & K \end{pmatrix}\right) \). \(\square \)
The following statements hold.

1. Let $R = S$ and for every $I \subseteq S$, $r_M(I) = (r_S(I))M$. Then T is right SA if and only if R is right SA.
2. Let $R = S$ and $M \subseteq R$, then T is right SA if and only if R is right SA.
3. Let $S = M$. Then T is right SA if and only if S is a right SA and for each $I, J \subseteq R$ and $N_1, N_2 \subseteq S$, there are $K \subseteq R$ and $N \subseteq S$, such that $r_R(I) \cap Ann_R(N_1) + r_R(J) \cap Ann_R(N_2) = r_R(K) \cap Ann_R(N)$.

Proof. This is a consequence of Theorem 3.10. □

4. BAER-IDEALS IN SEMIPRIME RING AND RING OF CONTINUOUS FUNCTIONS

In this section, first, we show that an ideal I of $C(X)$ is a Baer-ideal if and only if $\text{int}\bigcap_{f \in I} Z(f)$ is a clopen subset of X. Then we show that an ideal I of semiprime ring R is a Baer-ideal if and only if $\text{int}V(I)$ is a clopen subset of $\text{Spec}(R)$. Also we prove that the product of two Baer-ideals in a semiprime ring R is a Baer-ideal.

A non-zero ideal I of R is an essential ideal if for any ideal J of R, $I \cap J = 0$ implies that $J = 0$. Also an ideal P of a commutative ring R is called pseudoprime ideal if $ab = 0$, implies that $a \in P$ or $b \in P$ (see [13]).

We denote by $C(X)$, the ring of all real-valued continuous functions on a completely regular Hausdorff space X. For any $f \in C(X)$, $Z(f) = \{x \in X : f(x) = 0\}$ is called a zero-set. We can see that a subset A of X is clopen if and only if $A = Z(f)$ for some idempotent $f \in C(X)$. For any subset A of X we denote by $\text{int}A$ the interior of A (i.e., the largest open subset of X contained in A). For terminology and notations, the reader is referred to [12] and [14].

Lemma 4.1. For $I, J \subseteq C(X)$, $r(I) = r(J)$ if and only if $\text{int}\bigcap_{f \in I} Z(f) = \text{int}\bigcap_{g \in J} Z(g)$.

Proof. (\Rightarrow) Let $x \in \text{int}\bigcap_{f \in I} Z(f)$. Then $x \notin X \setminus \text{int}\bigcap_{f \in I} Z(f)$. By completely regularity of X, there exists $h \in C(X)$ such that $x \in X \setminus Z(h) \subseteq \text{int}\bigcap_{f \in I} Z(f)$. Therefore $fh = 0$ for all $f \in I$. This implies that $h \in r(I) = r(J)$. Hence $gh = 0$ for each $g \in J$. Thus $x \in X \setminus \text{int}Z(h) \subseteq \text{int}\bigcap_{g \in J} Z(g)$. Similarly, we can prove that $\text{int}\bigcap_{g \in J} Z(g) \subseteq \text{int}\bigcap_{f \in I} Z(f)$.

(\Leftarrow) Suppose that $h \in r(I)$. Then $X \setminus Z(h) \subseteq \text{int}\bigcap_{f \in I} Z(f)$, so $X \setminus Z(h) \subseteq Z(f)$ for all $f \in I$. Hence for each $f \in I$, $fh = 0$. This implies that $r(I) \subseteq r(J)$. Similarly, we can prove that $r(J) \subseteq r(I)$. □
Proposition 4.2. The following statements hold.

(1) An ideal \(I \) of \(C(X) \) is a Baer-ideal if and only if \(\text{int}\bigcap_{f\in I} Z(f) \) is a clopen subset of \(X \).

(2) Every pseudoprime ideal of \(C(X) \) is a Baer-ideal.

Proof. (1) Let \(I \) be a Baer-ideal of \(C(X) \). Then there exists an idempotent \(e \in C(X) \) such that \(r(I) = eC(X) = r(C(X))(1 - e) \). By Lemma 4.1, \(\text{int}\bigcap_{f\in I} Z(f) = \text{int}Z(1 - e) = Z(1 - e) \). This shows that \(\text{int}\bigcap_{f\in I} Z(f) \) is a clopen subset of \(X \). Now let \(\text{int}\bigcap_{f\in I} Z(f) \) be a clopen subset of \(X \). Then there exists an idempotent \(e \in C(X) \) such that \(\text{int}\bigcap_{f\in I} Z(f) = Z(e) = \text{int}Z(e) \). By Lemma 4.1, \(r(I) = r(e) = (1 - e)C(X) \). Hence \(I \) is a Baer-ideal.

(2) By [1, Corollary 3.3], every pseudoprime ideal in \(C(X) \) is either an essential ideal or a maximal ideal which is at the same time a minimal prime ideal. Now let \(P \) be a pseudoprime ideal in \(C(X) \). If \(P \) is essential, then by [1, Theorem 3.1], \(\text{int}\bigcap_{f\in P} Z(f) = \emptyset \), so (i), implies that \(P \) is a Baer-ideal. Otherwise \(P \) is a maximal ideal which is also a minimal prime ideal. Then there exists an isolated point \(x \in X \) such that \(P = M_x = \{ f \in C(X) : x \in Z(f) \} \). This shows that \(\text{int}\bigcap_{f\in P} Z(f) = \{ x \} \) is a clopen subset of \(X \), so \(P \) is a Baer-ideal. □

Recall that a topological space \(X \) is extremally disconnected if the interior of any closed subset is closed, see [14, 1.H]. The next result is proved in [2, Theorem 3.5] and [21, Theorem 2.12]. Now we give a new proof.

Corollary 4.3. \(C(X) \) is a Baer-ring if and only if \(X \) is an extremally disconnected space.

Proof. Let \(F \) be a closed subset of \(X \) and \(C(X) \) is a Baer-ring. By completely regularity of \(X \), there exists an ideal \(I \) of \(C(X) \) such that \(F = \bigcap_{f\in I} Z(f) \). By Proposition 4.2, \(\text{int}F \) is closed, hence \(X \) is extremally disconnected. Conversely, suppose that \(I \subseteq C(X) \). Then \(\text{int}\bigcap_{f\in I} Z(f) \) is closed. By Proposition 4.2, \(I \) is a Baer-ideal, thus \(C(X) \) is a Baer-ring. □

For any \(a \in R \), let \(\text{supp}(a) = \{ P \in \text{Spec}(R) : a \notin P \} \). Shin [19, Lemma 3.1] proved that for any \(R \), \(\{ \text{supp}(a) : a \in R \} \) forms a basis of open sets on \(\text{Spec}(R) \). This topology is called hull-kernel topology. We mean of \(V(I) \) is the set of \(P \in \text{Spec}(R) \), where \(I \subseteq P \). Note that \(V(I) = \bigcap_{a \in I} V(a) \).

Lemma 4.4. [5, Lemma 4.2]. The following statements hold.
(1) If I and J are two ideals of a semiprime ring R, then $r(I) = r(J)$ if and only if $intV(I) = intV(J)$.
(2) $A \subseteq Spec(R)$ is a clopen subset if and only if there exists an idempotent $e \in R$ such that $A = V(e)$.

Proposition 4.5. Let R be a semiprime ring.

(1) An ideal I of R is a Baer-ideal if and only if $intV(I)$ is a clopen subset of $Spec(R)$.
(2) The product of two Baer-ideals is a Baer-ideal.
(3) If R is a commutative ring, then any essential ideal of R is a Baer-ideal.

Proof. (1) Let I be a Baer ideal of R. Then there exists an idempotent $e \in R$ such that $r(I) = eR = r(R(1 - e))$. By Lemma 4.4, $intV(I) = intV(1 - e) = V(1 - e)$. Thus $intV(I)$ is closed. Conversely, let $I \subseteq R$. By hypothesis and Lemma 4.4, there exists an idempotent $e \in R$ such that $intV(I) = V(e)$. So, Lemma 4.4, implies that $r(I) = r(Re) = (1 - e)R$. Therefore, I is a right Baer-ideal. By semiprime hypothesis, I is a left Baer-ideal.

(2) Let I, J be two Baer-ideals of R. Then there are idempotents $e, f \in R$ such that $r(I) = eR$ and $r(J) = fR$. We will prove $r(IJ) = fR + eR + feR$. By Lemma 2.4, there exists $h \in S_I(R)$ such that $r(IJ) = fR + eR + feR = hR$. Therefore IJ is a right Baer-ideal.

By semiprime hypothesis, IJ is a left Baer-ideal. Now let $x \in r(IJ)$. Then $Jx \subseteq r(I) = r(R(1 - e))$. So $R(1 - e)Jx = 0$. This implies that $(JxR(1 - e))^2 = 0$. Since R is semiprime, we have $JxR(1 - e) = 0$. Thus $x(1 - e) \in r(J) = r(R(1 - f))$. Hence $(1 - f)x(1 - e) = 0$. This shows that $x = -fexe + fexe + fexe + exe + fxe \in feR + eR + fR$. On the other hand we have $(IJ)(feR + eR + fR) = 0$, so $feR + eR + fR \subseteq r(IJ)$.

(3) It is easily seen that an ideal I of a commutative semiprime ring R is essential if and only if $r(I) = 0 = r(R)$. Now, Lemma 4.4, implies that I is a Baer-ideal. \hfill \Box

Now we apply the theory of Baer ideals to give the following well-known result.

Corollary 4.6. Let R be a semiprime ring. Then R is quasi-Baer if and only if $Spec(R)$ is extremally disconnected.

Proof. Let A be a closed subset of $Spec(R)$ and R is quasi-Baer. Since $\{V(a) : a \in R\}$ is a base for closed subsets in $Spec(R)$, there exists $S \subseteq R$ such that $A = \bigcap_{a \in S} V(a)$. Take $I = RSR$. Then $A = V(I)$. By Lemma 4.5, $intA$ is closed. Thus $Spec(R)$ is extremally disconnected.
Conversely, let $I \subseteq R$. We know that $V(I)$ is a closed subset of $\text{Spec}(R)$. By hypothesis and Lemma 4.5, $\text{int}V(I)$ is a clopen subset of $\text{Spec}(R)$, and hence I is Baer-ideal. Thus R is a quasi Baer-ring. □

Acknowledgments
The author would like to thank the referee for a careful reading of this article.

References

A. Taherifar

Department of Mathematics, Yasouj University, Yasouj, Iran.

Email: ataherifar@mail.yu.ac.ir, ataherifar54@mail.com