BEST APPROXIMATION IN QUASI TENSOR PRODUCT SPACE AND DIRECT SUM OF LATTICE NORMED SPACES

M. IRANMANESH* AND F. SOLIMANI

Abstract. We study the theory of best approximation in tensor product space and the direct sum of some lattice normed spaces X_i. We introduce quasi tensor product space and discuss about the relation between tensor product space and this new space which we denote it by $X \boxtimes Y$. We investigate best approximation in direct sum of lattice normed spaces by elements which are not necessarily downward or upward and we call them I_m—quasi downward or I_m—quasi upward. We show that these sets can be interpreted as downward or upward sets. The relation of these sets with downward and upward subsets of the direct sum of lattice normed spaces X_i is discussed. This will be done by homomorphism functions. Finally, we introduce the best approximation of these sets.

1. Introduction

The theory of best approximation by elements of convex sets in the normed linear spaces, which has many important applications in mathematics and some other sciences, is well developed. However, convexity is sometimes a very restrictive assumption, so there is a clear need to study the best approximation by not necessarily convex sets. In this direction, Rubinov and Singer [7, 8] developed a theory of best approximation by elements of so-called normal sets in the non-negative orient \mathbb{R}_+^I, of a finite-dimensional coordinate space \mathbb{R}^J endowed with the

MSC(2010): Primary: 41A50; Secondary: 46B40, 26B25, 52A40

Keywords: Best approximation, Proximinal set, Downward set, Tensor product, Quasi tensor product.

Received: 18 May 2013, Revised: 20 May 2014.

*Corresponding author.
max-norm. Martinez-Legaz, Rubinov and Singer in [3] have developed a theory of best approximation of downward subsets of the space \mathbb{R}^I. Downward sets play an important role in some parts of mathematical economics (see e.g., [2]) and game theory. Also Mohebi and Rubinov [5] generalized these concepts and developed the theory of best approximation by closed normal and downward subsets of a Banach lattice X with a strong unit 1. Therefore study of these concepts in more detail and also examination of the effect of some special operators on normal and downward subsets of Banach lattice spaces, are useful for mathematicians. We use the concept of best approximation by downward subsets of Banach lattice X, to introduce a theory of best approximation in two new spaces which we call them, quasi tensor product space and direct sum of lattice normed spaces. The structure of the paper is as follows: In Section 3 we present some preliminary results. In Section 2 we investigate best approximation in quasi tensor product of lattice normed spaces by elements of downward sets. In particular, we show that the least element of the set of best approximations exists. In Section 4 we investigate best approximation in direct sum of lattice normed spaces by elements which are called "I_m—quasi downward sets". Then we discuss about the relation of I_m—quasi downward sets, downward sets and upward sets. In Section 5 we define positive I_m—quasi downward sets and discuss about its relations to I_m—quasi downward sets.

2. Preliminaries

Let X be a normed vector space. For a nonempty subset W of X and $x \in X$, define

$$d(x, W) = \inf_{w \in W} \|x - w\|. \quad (1)$$

Recall that a point $w_0 \in W$ is called a best approximation for $x \in X$ if

$$\|x - w_0\| = d(x, W). \quad (2)$$

If each $x \in X$ has at least one best approximation $w_0 \in W$, then W is called a proximinal subset of X. Let $W \subseteq X$ and $x \in X$, we denote by $P_W(x)$, the set of all best approximations of x in W. Therefore

$$P_W(x) := \{w \in W : \|x - w\| = d(x, W)\}. \quad (3)$$

It is well-known that if W is closed then $P_W(x)$ is a closed and bounded subset of X. If $x \in X$ then $P_W(x)$ is located in the boundary of W. Let X be a lattice vector space with the strong unit 1. Using 1, we define a norm on X by

$$\|x\| := \inf\{\lambda \geq 0 : x \leq \lambda 1\}, \quad (4)$$
and notice the ball

\[B(x, r) = \{ y \in X : x - r1 \leq y \leq x + r1 \} \]

(5)

It is clear that

\[|x| \leq \|x\|1 \quad \forall x \in X. \]

(6)

Example 2.1. Let \(X \) be a vector lattice with a strong unit \(1 \). The latter means that for each \(x \in X \) there exists \(\lambda \in \mathbb{R} \) such that \(|x| \leq \lambda 1 \) and define

\[\|x\| = \inf\{\lambda > 0 : |x| \leq \lambda 1\}. \]

It is well known (see, for example, [10]) that each vector lattice \(X \) with a strong unit is isomorphic as a vector ordered space to the space \(C(Q) \) of all continuous functions defined on a compact topological space \(Q \). For a given strong unit \(1 \) the corresponding isomorphism \(\psi \) can be chosen in such a way that \(\psi(1)(q) = 1 \) for all \(q \in Q \). The cone \(\psi(K) \) coincides with the cone of all nonnegative functions defined on \(Q \). If \(X = C(Q) \) and \(1(q) = 1 \) for all \(q \), then

\[p(x) = \max_{q \in Q} x(q) \text{ and } \|x\| = \max_{q \in Q} |x(q)|. \]

Example 2.2. Let \(X = \mathbb{R} \times Y \), where \(Y \) is a Banach space with a norm \(\| \cdot \| \), and let \(K \subset X \) be the epigraph of the norm: \(K = \{ (\lambda, x) : \lambda \geq \|x\| \} \). The cone \(K \) is closed solid convex and pointed. It is easy to check and well known that \(1 = (1, 0) \) is an interior point of \(K \). For each \((c, y) \in X \) we have

\[p(c, y) = \inf \{ \lambda \in \mathbb{R} : (c, y) \leq \lambda 1 \} \]

\[= \inf \{ \lambda \in \mathbb{R} : (\lambda, 0) - (c, y) \in K \} \]

\[= \inf \{ \lambda \in \mathbb{R} : (\lambda - c, -y) \in K \} \]

\[= \inf \{ \lambda \in \mathbb{R} : \lambda - c \geq \| -y \| \} = c + \|y\|. \]

Hence

\[\|(y, c)\| = \max \{ p(y, c), p(-y, c) \} = \max \{ c + \|y\|, -c + \|y\| \} = |c| + \|y\|. \]

Moreover, we consider the set of all bounded linear functionals from \(X \) to complex field \(\mathbb{C} \), dual space of \(X \), which is denoted by \(X^* \).

Let \(X, Y \) be two Lattice Banach algebras and denote their duals by \(X^* \) and \(Y^* \), respectively. We recall (see [1]) that the uncompleted tensor product of \(X \) and \(Y \) is the set of all formal expressions \(\sum_{i=1}^n x_i \otimes y_i \),
where \(x_i \in X \) and \(y_i \in Y \) and \(n \in \mathbb{N} \). We regard such an expression as defining an operator \(A : X^* \rightarrow Y \), given by

\[
A(\phi) = \sum_{i=1}^{n} \phi(x_i)y_i \quad \phi \in X^*. \tag{7}
\]

Amongst all these formal expressions, we introduce the relation

\[
\sum_{i=1}^{n} x_i \otimes y_i \sim \sum_{i=1}^{m} a_i \otimes b_i,
\]

if both expressions define the same operator from \(X^* \) to \(Y \). This relation is an equivalence relation on the set of all such formal expressions. We shall denote the set of all such equivalence classes by \(X \odot Y \). We shall abuse notation in the usual way by referring to the expression \(\sum_{i=1}^{n} x_i \otimes y_i \) as a member of \(X \odot Y \) when we intend to refer to the equivalence classes of expression containing \(\sum_{i=1}^{n} x_i \otimes y_i \). We define multiples of \(\sum_{i=1}^{n} x_i \otimes y_i \) with any \(\alpha \in \mathbb{R} \), by \(\sum_{i=1}^{n} \alpha x_i \otimes y_i \). Similarly, we define addition by

\[
\sum_{i=1}^{n} x_i \otimes y_i + \sum_{i=n+1}^{m} x_i \otimes y_i = \sum_{i=1}^{m} x_i \otimes y_i.
\]

We recall that a complex algebra is a vector space \(A \) over the complex field \(\mathbb{C} \) in which a multiplication is defined by \(A \times A \rightarrow A \) which satisfies

\[
x(yz) = (xy)z, \tag{8}
\]

\[
(x + y)z = xz + yz, \quad x(y + z) = xy + xz, \tag{9}
\]

and

\[
\alpha(xy) = (\alpha x)y = x(\alpha y), \tag{10}
\]

for all \(x, y \) and \(z \) in \(A \) and all scalars \(\alpha \). If in addition, \(A \) is a Banach space with respect to a norm which satisfies the multiplicative inequality

\[
\|xy\| \leq \|x\|\|y\| \quad (x, y \in A) \tag{11}
\]

and if \(A \) contains an element \(e \) such that \(\|e\| = 1 \) and

\[
x e = e x = x \quad (x \in A), \tag{12}
\]

then \(A \) is called a unital Banach algebra. Let \(Y \) be a lattice Banach algebra with the strong unit \(1_Y \). We using the order relation on \(Y \) to define a partially order relation on \(X \otimes Y \) as follows:

\[
\sum_{i=1}^{n} x_i \otimes y_i \ll \sum_{i=1}^{m} a_i \otimes b_i \iff \sum_{i=1}^{n} \phi(x_i)y_i \leq \sum_{i=1}^{m} \phi(a_i)b_i \quad (\forall \phi \in X^*). \tag{13}
\]
We recall (see [1]) that it is possible to construct various norms on $X \otimes Y$ using the norms in X and Y. The most obvious way to introduce a norm which is independent to its representation, is to assign to $\sum_{i=1}^{n} x_i \otimes y_i$ its norm when regarded as an operator from X^* to Y. We define the norm $\| \cdot \|$ by:

$$\| \sum_{i=1}^{n} x_i \otimes y_i \| = \sup\{ \| \sum_{i=1}^{n} \phi(x_i)y_i \| : \| \phi \| = 1, \phi \in X^* \}$$ (14)

3. Downward sets and their Best Approximations in Quasi Tensor Product spaces

Definition 3.1. Let X, Y be two Banach Algebras. A homomorphism from X to Y is a map $F : X \to Y$ which satisfies the following statements:

$$F(\alpha x + \beta y) = \alpha F(x) + \beta F(y) \quad (\forall \alpha, \beta \in \mathbb{R}),$$ (15)

$$F(xy) = F(x)F(y).$$ (16)

We use the notion X^X to denote the set of all non-zero homomorphisms from the Banach algebra X to the Banach algebra \mathbb{C}. By Theorem (1.3.3 [6]) if X is a unital abelian Banach algebra then $X^X \neq \emptyset$ and for all $f \in X^X$, we have $\|f\| = 1$. Therefore if X is a unital abelian Banach algebra then $X^X \subseteq X^*$ and in expression (7), we can replace X^* with X^X. We denote the representation of each new equivalence class by the form $\sum_{i=1}^{n} x_i \otimes y_i$. Also we call the new space, quasi tensor product space and denote it by $X \boxtimes Y$. We define a norm $\| \cdot \|_{\boxtimes}$ on $X \boxtimes Y$ by

$$\| \sum_{i=1}^{n} x_i \boxtimes y_i \|_{\boxtimes} = \sup_{\phi \in X^X} \| \sum_{i=1}^{n} \phi(x_i)y_i \|.$$ (17)

Lemma 3.2. Consider that X is a Banach algebra with unit element e_X. Then $f(e_X) = 1$, for each $0 \neq f \in X^X$.

Proof. Since $e_X = e_Xe_X$ and $f \in X^X$, we have

$$f(e_X) = f(e_Xe_X) = f(e_X)f(e_X)$$ (18)

then $f(e_X) = 1$ since $f \neq 0$. □

Corollary 3.3. Let X be a unital abelian Banach algebra and Y be a Banach space. Let $z = \sum_{i=1}^{n} x_i \otimes y_i$ and $z_0 = \sum_{i=1}^{n} x_i \boxtimes y_i$, then $\| z \| \geq \| z_0 \|_{\boxtimes}$.
Proof. Since $X^\times \subseteq X^\ast$. We have
\[
\|z_0\|_Z = \sup_{\phi \in X^\times} \left\| \sum_{i=1}^{n} \phi(x_i)y_i \right\|
\leq \sup \left\{ \left\| \sum_{i=1}^{n} \phi(x_i)y_i \right\|, \|\phi\| = 1, \phi \in X^\ast \right\} = \|z\|.
\]

\[\square\]

Corollary 3.4. Let X be a unital abelian Banach algebra with unit element e_X and Y be a lattice Banach algebra with the strong unit 1_Y, then $\|e_X \otimes 1_Y\| = \|e_X \boxtimes 1_Y\| = 1$.

Proof. Suppose $\phi \in X^\times$. By Lemma 3.2, $\phi(e_X) = 1$. Thus we get
\[
\|e_X \boxtimes 1_Y\| = \sup_{\phi \in X^\times} \|\phi(e_X)1_Y\| = \|1_Y\| = 1,
\]
and
\[
\|e_X \otimes 1_Y\| = \sup \left\{ \|\phi(e_X)1_Y\|, \|\phi\| = 1, \phi \in X^\ast \right\}
= \|1_Y\| \sup \left\{ \|\phi(e_X)\|, \|\phi\| = 1, \phi \in X^\ast \right\}
= \|1_Y\| \|e_X\| = 1.
\]
This completes the proof. \[\square\]

We define an order relation \ll on $X \boxtimes Y$ as follows:
\[
\sum_{i=1}^{n} x_i \boxtimes y_i \ll \sum_{i=1}^{n} a_i \boxtimes b_i \iff \sum_{i=1}^{n} \phi(x_i)y_i \leq \phi(a_i)b_i \quad \forall \phi \in X^\times.
\]

(19)

Definition 3.5. (see [7], [9]) A set $\mathcal{U} \subseteq X$ is said to be downward if $u \in \mathcal{U}$ and $x \leq u$ implies $x \in \mathcal{U}$.

Definition 3.6. (see [7], [9]) A set $\mathcal{U} \subseteq X$ is said to be upward if $u \in \mathcal{U}$ and $x \geq u$ implies that $x \in \mathcal{U}$.

By definition 3.5, we get the following results for $X \boxtimes Y$, where X is a unital abelian Banach algebra and Y is a lattice Banach algebra with the strong unit 1_Y.

Proposition 3.7. For each downward subset \mathcal{U} of $Z := X \boxtimes Y$, the following assertions are true:

\begin{enumerate}
\item If $\sum_{i=1}^{m} x_i \boxtimes y_i \in \mathcal{U}$ then $\sum_{i=1}^{m} x_i \boxtimes y_i - \varepsilon e_X \boxtimes 1_Y \in \text{int} \mathcal{U}$ for each $\varepsilon > 0$.
\end{enumerate}
\[(2) \text{int } U = \left\{ \sum_{i=1}^{m} a_i \boxtimes b_i \in \mathbb{Z} : \sum_{i=1}^{m} a_i \boxtimes b_i + \varepsilon e_{X} \boxtimes 1_{Y} \in U \text{ for some } \varepsilon > 0 \right\}. \]

Proof. (1). Let \(\varepsilon > 0 \) be given and \(\sum_{i=1}^{m} x_i \boxtimes y_i \in U \). Then it is clear that \(\sum_{i=1}^{m} x_i \boxtimes y_i - \varepsilon e_{X} \boxtimes 1_{Y} \) is an element of \(X \boxtimes Y \). Consider \(\mathcal{N} \) be an open neighborhood of \(\sum_{i=1}^{m} x_i \boxtimes y_i - \varepsilon e_{X} \boxtimes 1_{Y} \), thus:

\[\mathcal{N} = \left\{ \sum_{i=1}^{n} a_i \boxtimes b_i \in X \boxtimes Y : \| \sum_{i=1}^{n} a_i \boxtimes b_i - \left(\sum_{i=1}^{m} x_i \boxtimes y_i - \varepsilon e_{X} \boxtimes 1_{Y} \right) \|_{\mathbb{R}} < \varepsilon \right\}. \]

Now by (6) and (17), we have

\[\left| \sum_{i=1}^{n} \phi(a_i) b_i - \left(\sum_{i=1}^{m} \phi(x_i) y_i - \varepsilon 1_{Y} \right) \right| \leq \varepsilon 1_{Y} \quad (\forall \phi \in X^{*}), \]

and by (5), we get \(\mathcal{N} \) is the set of all \(\sum_{i=1}^{n} a_i \boxtimes b_i \in X \boxtimes Y \) where

\[\sum_{i=1}^{m} \phi(x_i) y_i - 2\varepsilon 1_{Y} \ll \sum_{i=1}^{n} \phi(a_i) b_i \ll \sum_{i=1}^{m} \phi(x_i) y_i. \]

By (19) we have \(\sum_{i=1}^{m} a_i \boxtimes b_i \ll \sum_{i=1}^{m} x_i \boxtimes y_i \). Since \(U \) is a downward set and \(\sum_{i=1}^{m} x_i \boxtimes y_i \in U \), it follows that \(\mathcal{N} \subseteq U \). This shows that \(\sum_{i=1}^{m} x_i \boxtimes y_i - \varepsilon e_{X} \boxtimes 1_{Y} \in \text{int } U \).

(2). Let \(\sum_{i=1}^{m} x_i \boxtimes y_i \in \text{int } U \). Then there exists \(\varepsilon_0 > 0 \) such that the closed ball \(B(\sum_{i=1}^{m} x_i \boxtimes y_i, \varepsilon_0) \) is a subset of \(U \). In view of (17) and (5), we get \(\sum_{i=1}^{m} x_i \boxtimes y_i + \varepsilon_0 e_{X} \boxtimes 1_{Y} \in U \).

Conversely, if there exists \(\varepsilon > 0 \) such that \(\sum_{i=1}^{m} x_i \boxtimes y_i + \varepsilon e_{X} \boxtimes 1_{Y} \in U \), by part (1), \(\sum_{i=1}^{m} x_i \boxtimes y_i = \left(\sum_{i=1}^{m} x_i \boxtimes y_i + \varepsilon e_{X} \boxtimes 1_{Y} - \varepsilon e_{X} \boxtimes 1_{Y} \right) \in \text{int } U \), which completes the proof. \(\square \)

Corollary 3.8. Let \(U \) be a downward subset of \(X \boxtimes Y \). Then \(U \) is proximinal in \(X \boxtimes Y \).

Proof. For an arbitrary element \(\sum_{i=1}^{m} x_i \boxtimes y_i \) of \(X \boxtimes Y \backslash U \), we get:

\[r = d(\sum_{i=1}^{m} x_i \boxtimes y_i, U) = \inf_{u_i \boxtimes v_i \in U} \| \sum_{i=1}^{m} x_i \boxtimes y_i - \sum_{i=1}^{n} u_i \boxtimes v_i \|_{\mathbb{R}}. \]

This implies for \(\varepsilon > 0 \), there exists an element \(\sum_{i=1}^{n} u^{\varepsilon}_i \boxtimes v^{\varepsilon}_i \) of \(U \) such that \(\| \sum_{i=1}^{m} x_i \boxtimes y_i - \sum_{i=1}^{n} u^{\varepsilon}_i \boxtimes v^{\varepsilon}_i \|_{\mathbb{R}} < r + \varepsilon \). Then by (17) we get

\[\left| \sum_{i=1}^{m} \phi(x_i) y_i - \sum_{i=1}^{n} \phi(u^{\varepsilon}_i) v^{\varepsilon}_i \right| \leq (\varepsilon + r) 1_{Y} \quad (\forall \phi \in X^{*}). \]
Therefore by (5) we get
\[- (r + \varepsilon)1_Y \leq \sum_{i=1}^{n} \phi(u_i^\varepsilon)v_i^\varepsilon - \sum_{i=1}^{m} \phi(x_i)y_i \leq (r + \varepsilon)1_Y. \tag{20}\]

Let \(\sum_{i=1}^{m+1} u_i^0 \otimes v_i^0 = \sum_{i=1}^{m} x_i \otimes y_i - r e_X \otimes 1_Y\), then, we have
\[\|\sum_{i=1}^{m} x_i \otimes y_i - \sum_{i=1}^{m+1} u_i^0 \otimes v_i^0\| = r = d(\sum_{i=1}^{m} x_i \otimes y_i, U) \tag{21}\]
and so by (19) and (20) we have
\[\sum_{i=1}^{m+1} u_i^0 \otimes v_i^0 - \varepsilon e_X \otimes 1_Y = \sum_{i=1}^{m} x_i \otimes y_i - (r + \varepsilon)e_X \otimes 1_Y \ll \sum_{i=1}^{n} u_i^\varepsilon \otimes v_i^\varepsilon. \tag{22}\]
As \(U\) is a downward set and \(\sum_{i=1}^{n} u_i^\varepsilon \otimes v_i^\varepsilon \in U\); for each \(\varepsilon > 0\), we get
\[\sum_{i=1}^{m+1} u_i^0 \otimes v_i^0 - \varepsilon e_X \otimes 1_Y \in U.\]
Since \(U\) is closed, we have \(\sum_{i=1}^{m+1} u_i^0 \otimes v_i^0 \in U\), and so by (21) and (3) we get
\[\sum_{i=1}^{m+1} u_i^0 \otimes v_i^0 \in P_U(\sum_{i=1}^{m} x_i \otimes y_i).\]
This shows that \(U\) is proximinal. \(\square\)

Proposition 3.9. Let \(U \subseteq Z := X \otimes Y\) be a closed downward set, then if \(\sum_{i=1}^{m} x_i \otimes y_i \in Z \setminus U\), there exists the least element \(z_0 = \min P_U(\sum_{i=1}^{m} x_i \otimes y_i)\) of the set \(P_U(\sum_{i=1}^{m} x_i \otimes y_i)\); namely, \(z_0 = \sum_{i=1}^{m} x_i \otimes y_i - r e_X \otimes 1_Y\), where \(r = d(\sum_{i=1}^{m} x_i \otimes y_i, U)\).

Proof. If \(\sum_{i=1}^{m} x_i \otimes y_i \in U\), the result holds. Let \(\sum_{i=1}^{m} x_i \otimes y_i \in Z \setminus U\) and \(z_0 = \sum_{i=1}^{m} x_i \otimes y_i - r e_X \otimes 1_Y\). Then by the proof of Corollary 3.8, we have \(z_0 \in P_U(\sum_{i=1}^{m} x_i \otimes y_i)\). Thus by equality \(\|\sum_{i=1}^{m} x_i \otimes y_i - z_0\| = r\) and applying (17), (5), we get \(z \geq z_0\) for each \(z \in B(\sum_{i=1}^{m} x_i \otimes y_i, r)\). Thus \(z_0\) is the least element of the closed ball \(B(\sum_{i=1}^{m} x_i \otimes y_i, r)\). Now Let \(z' \in P_U(\sum_{i=1}^{m} x_i \otimes y_i)\). Then we have \(\|\sum_{i=1}^{m} x_i \otimes y_i - z\| = r\), and so \(z' \in B(\sum_{i=1}^{m} x_i \otimes y_i, r)\). Therefore \(z' \geq z_0\). Hence \(z_0\) is the least element of the set \(P_U(\sum_{i=1}^{m} x_i \otimes y_i)\). \(\square\)

Corollary 3.10. Let \(U\) be a closed downward subset of \(X \otimes Y\) and \(\sum_{i=1}^{m} x_i \otimes y_i\) be an element of \(Z \setminus U\). Then
\[d(\sum_{i=1}^{m} x_i \otimes y_i, U) = \min\{\lambda \geq 0 | \sum_{i=1}^{m} x_i \otimes y_i - \lambda e_X \otimes 1_Y \in U\}.\]
Proof. Assume that $A = \{ \lambda | \lambda \geq 0, \sum_{i=1}^{m} x_i \otimes y_i - \lambda e_X \otimes 1_Y \in U \}$. If $x := \sum_{i=1}^{m} x_i \otimes y_i \in U$ then we get $(\sum_{i=1}^{m} x_i \otimes y_i - 0e_X \otimes 1_Y) \in U$ and so $\min A = 0 = d(\sum_{i=1}^{m} x_i \otimes y_i; U)$.

Now let $x \notin U$ then $r = d(\sum_{i=1}^{m} x_i \otimes y_i; U) > 0$. Let $\lambda > 0$ be such that $\sum_{i=1}^{m} x_i \otimes y_i - \lambda e_X \otimes 1_Y \in U$. Thus we have

$$\lambda = \| x - (x - \lambda e_X \otimes 1_Y) \|_2 \geq d(x; U) = r.$$

By Proposition 3.9, we have $\sum_{i=1}^{m} x_i \otimes y_i - r e_X \otimes 1_Y \in U$, and therefore $r \in A$. Hence $\min A = r$, which completes the proof. \hfill \Box

4. IM-QUASI DOWNWARD SETS IN DIRECT SUM OF LATTICE NORMED SPACES WITH APPLICATIONS

Now let I be a finite set of indices, and $(X_i)_{i \in I}$ be a collection of lattice normed spaces with the strong unit 1_i, we use the notation $\sum_{i \in I} X_i$ for direct sum of lattice normed spaces X_i. Also for each $x, y \in \sum_{i \in I} X_i$, we define

$$x + y := (x_i + y_i)_{i \in I},$$

where $x = (x_i)_{i \in I}$, $y = (y_i)_{i \in I}$. If $(X_i, \| \cdot \|_i)_{i \in I}$ be a collection of lattice normed spaces, we define a norm $\| \cdot \|$, on the space $\sum_{i \in I} X_i$ as follows:

$$\| x \| := \max_{i \in I} \| x_i \|_i \text{ for each } x \in \sum_{i \in I} X_i. \quad (23)$$

We use the notation 1_{\otimes} for vector $y = (1_i)_{i \in I} \in \sum_{i \in I} X_i$, and define a partial ordered relation on the direct sum of lattice normed spaces X_i, as follows: For each x, y in $\sum_{i \in I} X_i$,

$$x \leq y \iff x_i \leq y_i \; (\forall i \in I). \quad (24)$$

Let $I_m = \{ i_1, i_2, \ldots, i_m \}$ be an arbitrarily subset of I and $x = (x_i)_{i \in I}$ be an arbitrary element of $\sum_{i \in I} X_i$. We define the following useful sets:

$$(\sum_{i \in I} X_i)_{x}^{I_m} := \{ y = (y_i)_{i \in I} \in \sum_{i \in I} X_i \}$$

where

$$\begin{cases} x_i \geq y_i & \text{if } i \in I_m \\ x_i \leq y_i & \text{if } i \notin I_m \end{cases}$$

and

$$(co \sum_{i \in I} X_i)_{x}^{I_m} := \{ y = (y_i)_{i \in I} \in \sum_{i \in I} X_i \}$$
where
\[
\begin{align*}
\{ x_i \leq y_i & \quad \text{if } i \in I_m \\
 x_i \geq y_i & \quad \text{if } i \notin I_m \}
\end{align*}
\]
and define
\[
((\sum_{i \in I} X_i)_{x}^{I_m})_+ := (\sum_{i \in I} X_i)_+ \cap (\sum_{i \in I} X_i)_{x}^{I_m},
\]
where \((\sum_{i \in I} X_i)_+ = \{ y | y = (y_i)_{i \in I} \in \sum_{i \in I} X_i : y_i \geq 0 \ (\forall i \in I) \}\). We use the notation \(1_x^{I_m} \) for the vector \(y = (y_i)_{i \in I} \) where
\[
y_i = \begin{cases}
1 & \text{if } i \in I_m \\
-1 & \text{if } i \notin I \setminus I_m.
\end{cases}
\]
(25)
Also we define \(coPr^{I_m}(x) \) as follows:
\[
(coPr^{I_m}(x))_{i} = \begin{cases}
x_i & \text{if } i \in I_m \\
0 & \text{if } i \notin I \setminus I_m.
\end{cases}
\]
(26)

Definition 4.1. A set \(U \subseteq \sum_{i \in I} X_i \) is called \(I_m\)-quasi downward if \((\sum_{i \in I} X_i)_u^{I_m} \subseteq U \) for each \(u \in U \).

In particular, an \(I_m\)-quasi downward set \(U \) is downward, if \(I_m = I \) and is upward, if \(I_m = \emptyset \).

Proposition 4.2. Consider \(U \) as an \(I_m\)-quasi downward subset of \(\sum_{i \in I} X_i \), and let \(x \in \sum_{i \in I} X_i \). Then the following assertions are true:

1. If \(x \in U \), then \(x - \varepsilon 1_x^{I_m} \in \text{int} U \) for all \(\varepsilon > 0 \).
2. \(\text{int} U = \{ x \in \sum_{i \in I} X_i : x + \varepsilon 1_x^{I_m} \in U \ \text{for some} \ \varepsilon > 0 \} \).

Proof. (1). Let \(\varepsilon > 0 \) and \(x \in U \) be given. Consider \(N \) as an open neighborhood of \(x - \varepsilon 1_x^{I_m} \) i.e
\[
N := \{ y \in \sum_{i \in I} X_i : \| y - (x - \varepsilon 1_x^{I_m}) \| \leq \varepsilon \}.
\]
Let
\[
N_1 = \{ y \in \sum_{i \in I} X_i : x_i - 2\varepsilon \leq y_i \leq x_i \ (\forall i \in I_m) \}
\]
and
\[
N_2 = \{ y \in \sum_{i \in I} X_i : x_i \leq y_i \leq x_i + 2\varepsilon \ (\forall i \in I \setminus I_m) \}.
\]
By (5) we have,
\[
N = N_1 \cap N_2.
\]
By definition of \((\sum_{i \in I} X_i)_u^{I_m} \) and that \(U \) is an \(I_m\)-quasi downward set, it follows that \(N \subseteq U \), and so \(x - \varepsilon 1_x^{I_m} \in \text{int} U \).
Let $x \in \text{int}\mathbb{U}$. Then there exists $\varepsilon_0 > 0$ such that $B(x, \varepsilon_0) \subset \mathbb{U}$.

Conversely, suppose that there exists $\varepsilon > 0$ such that $x + \varepsilon 1_{\bigoplus}^{I_m} \in \mathbb{U}$. By part (1) we have $x = (x + \varepsilon 1_{\bigoplus}^{I_m}) - \varepsilon 1_{\bigoplus}^{I_m} \in \text{int}\mathbb{U}$, which completes the proof. □

Proposition 4.3. Each downward subset \mathbb{U} of $\sum_{i \in I} X_i$ is proximinal in $\sum_{i \in I} X_i$.

Proof. Let $x_0 \in \sum_{i \in I} X_i \setminus \mathbb{U}$ and, $r = d(x_0, \mathbb{U}) = \inf_{u \in \mathbb{U}} \|x_0 - u\|$, this implies, for $\varepsilon > 0$ there exists $u_\varepsilon \in \mathbb{U}$ such that $\|x_0 - u_\varepsilon\| < r + \varepsilon$. Then by (23) we have

$$\|(x_0)_i - (u_\varepsilon)_i\|_i \leq r + \varepsilon \quad (\forall i \in I),$$

and by (5) we get

$$-(r + \varepsilon)1_i < (u_\varepsilon)_i - (x_0)_i < (r + \varepsilon)1_i, \quad (\forall i \in I). \quad (27)$$

Clearly when $u_0 := x_0 - r 1_{\bigoplus}$, we have $\|x_0 - u_0\| = r = d(x_0, \mathbb{U})$ and so by (27) and (24), $u_0 = x_0 - r 1_{\bigoplus} - \varepsilon 1_{\bigoplus} \leq u_\varepsilon$. As \mathbb{U} is downward and $u_\varepsilon \in \mathbb{U}$, it follows that $u_0 = x_0 - r 1_{\bigoplus} - \varepsilon 1_{\bigoplus} \in \mathbb{U}$ and thus $u_0 \in P_U(x_0)$, i.e $P_U(x_0) \neq \emptyset$. □

Corollary 4.4. Let \mathbb{U} be a closed downward subset of $\sum_{i \in I} X_i$ and $x_0 \in \sum_{i \in I} X_i \setminus \mathbb{U}$. The least element $u_0 = \min P_U(x_0)$ of the set $P_U(x_0)$ exists. Where $u_0 = x_0 - r 1_{\bigoplus}$ and $r := d(x_0, \mathbb{U})$.

Proof. If $x_0 \in \mathbb{U}$, the result holds. Assume $x_0 \in \sum_{i \in I} X_i \setminus \mathbb{U}$ and $u_0 = x_0 - r 1_{\bigoplus}$. By proposition 4.3, we have $u_0 \in P_U(x_0)$. By applying (23), (5) and the equality $\|x_0 - u_0\| = r$, we get $y \geq x_0 - r 1_{\bigoplus}$ for each $y \in B(x_0, r)$. This implies u_0 is the least element of the closed ball $B(x_0, r)$. Now, $\|x_0 - u\| = r$ for an arbitrary element $u \in P_U(x_0)$ and so $u \in B(x_0, r)$. This shows that $u \geq u_0$. Hence u_0 is the least element of the set $P_U(x_0)$. □

In the following we define two useful maps:

$$T_m : \sum_{i \in I} X_i \rightarrow \sum_{i \in I} X_i$$

by

$$T_m(x) = y = (y_i)_{i \in I}$$

where:

$$y_i = (1_{\bigoplus}^{I_m})_i x_i \quad (28)$$
and

\[(coT)_m := \sum_{i \in I} X_i \rightarrow \sum_{i \in I} X_i\]

by

\[(coT)_m(x) = z = (z_i)_{i \in I}\]

where

\[z_i = -(1^m_{i \oplus})_i \cdot x_i\] (29)

Lemma 4.5. The maps \(T_m\) and \((coT)_m\) defined by (28) and (29) are diffeomorphism.

Proof. The proof is trivial. \(\square\)

Theorem 4.6. Let \(\mathbb{U} \subset \sum_{i \in I} X_i\) be an \(I_m\)-quasi downward set, then \(T_m(\mathbb{U})\) is downward, and \((coT)_m(\mathbb{U})\) is upward, where \(T_m\) and \((coT)_m\) be the maps defined by (28) and (29).

Proof. By definition, \(T_m(\mathbb{U})\) is downward if and only if the hypothesis \(h \in T_m(\mathbb{U}), x \in \sum_{i \in I} X_i\) and \(x \leq h\), implies that \(x \in T_m(\mathbb{U})\). Let \(h \in T_m(\mathbb{U})\), By Lemma 4.5 there exists \(u \in \mathbb{U}\) such that \(T_m(u) = h\). As \(x \leq h\) then for each \(i \in I\), \(x_i \leq h_i\). Then by (28) we have \(x_i \leq u_i\) if \(i \in I_m\) and \(-x_i \geq u_i\) if \(i \in I \setminus I_m\). As \(u \in \mathbb{U}\) and \(\mathbb{U}\) is \(I_m\)-quasi downward, we conclude \(w = (w_i)_{i \in I} \in \mathbb{U}\), where \((w_i)_{i \in I}\) is defined by \(w_i = (1^m_{i \oplus})_i \cdot x_i\). Then \(T_m(\mathbb{U})\) is downward since \(x = T_m(w) \in T_m(\mathbb{U})\). Similarly \((coT)_m(\mathbb{U})\) is downward. This completes the proof. \(\square\)

Definition 4.7. A set \(U \subset \sum_{i \in I} X_i\) is called \(I_m\)-quasi upward if its compliment be an \(I_m\)-quasi downward.

(i.e : \((co \sum_{i \in I} X_i)_u^m \subseteq U; \text{ for all } u \in \mathbb{U}\))

Now by (28) and (29) we conclude the following proposition:

Proposition 4.8. Consider \(\mathbb{U}\) as a subset of \(\sum_{i \in I} X_i\) which is closed \(I_m\)-quasi downward or \(I_m\)-quasi upward set and \(x \in \sum_{i \in I} X_i\). Set \(r := d(x, \mathbb{U}), r' := d(T_m(x), T_m(\mathbb{U})), r'' := d((coT)_m(x), (coT)_m(\mathbb{U})), \text{ then } r = r' = r''\).

Proof.

\[
\|T_m(x) - T_m(\mathbb{U})\| = \max_{i \in I} \|(T_m(x))_i - (T_m(u))_i\|
\]

\[
= \max_{i \in I_m} \max \{\|x_i - u_i\|, \max_{i \in I \setminus I_m} \|u_i - x_i\|\}
\]

\[
= \max_{i \in I} \|x_i - u_i\| = \|x - u\|.
\]

By taking infimum we get \(r = r'\). Similarly \(r = r''\). This completes the proof. \(\square\)
Proposition 4.9. Consider $U \subset \sum_{i \in I} X_i$ as a closed I_m-quasi downward set, $x \in \sum_{i \in I} X_i$ and $r := d(x, U)$. Then $u_m = x - r1^m_I \in P_U(x)$.

Proof. Let $x \in \sum_{i \in I} X_i$. By Theorem 4.6, $T_m(U)$ is a downward set. Hence by Corollary 4.4 $w_0 = \min P_{T_m(U)}(T_m(x))$ exists and thus we get $w_0 = T_m(x) - r1^m_I$. Thus we get $u_m = T_m^{-1}(w_0) \in P_U(x)$. \(\square\)

Proposition 4.10. Consider U as a closed I_m-quasi downward subset of $\sum_{i \in I} X_i$. Let $x \in \sum_{i \in I} X_i$ and T_m as in (28). Then the following assertions are true:

i) $P_U(x) = \{u \in U : T_m(u) \in P_{T_m(U)}(T_m(x))\}$.

ii) $d(x, U) = \min\{\lambda \geq 0 : T_m(x) - \lambda 1^m_I \in T_m(U)\}$.

Proof. (i) It follows from Lemma 4.5 and Proposition 4.8. (ii) It follows from Propositions 4.8 and 4.9. \(\square\)

5. The relation of Positive I_m-quasi Downward sets and I_m-quasi Downward sets

Definition 5.1. A set $V \subseteq (\sum_{i \in I} X_i)_+$ is called a positive I_m-quasi downward if $(\sum_{i \in I} X_i)_+^{I_m} \subseteq V$ for each $v \in V$.

Downward hull of a positive I_m-quasi downward set $V \subset (\sum_{i \in I} X_i)_+$ is defined as follows:

Definition 5.2. Let $V \subset (\sum_{i \in I} X_i)_+$ be a positive I_m-quasi downward set. The intersection of all I_m-quasi downward sets which contains V is an I_m-quasi downward set, which is called I_m-quasi downward hull of V and denoted by V_*.

In the following we see some properties of I_m-quasi downward hull of a positive I_m-quasi downward set:

Proposition 5.3. Let V_* be I_m-quasi downward hull of $V \subset (\sum_{i \in I} X_i)_+$, then

1) $V_* = \{x \in \sum_{i \in I} X_i : coP^{I_m}(x) \in V$ and $x^+ \in V\}$,

2) $V = V_* \cap (\sum_{i \in I} X_i)_+$.

Proof. Let $A = \{x \in \sum_{i \in I} X_i : coPr^{I_m}(x) \in V$, and $x^+ \in V\}$. We first prove that A is I_m-quasi downward. Let $a \in A$, there exists $x \in \sum_{i \in I} X_i$ such that $x_i \leq a_i$, if $i \in I_m$ and $x_i \geq a_i$, if $i \in I \setminus I_m$. We are going to show that $x \in A$. We have $coPr^{I_m}(a) = a^+ \in V$ since $a \in A$. Thus Let $y = coPr^{I_m}(x)$. By (26) we get

$$y_i = \begin{cases} 0 & \text{if } i \in I_m \\ x_i & \text{if } i \in I \setminus I_m. \end{cases} \quad (30)$$
On the other hand we have
\[y_i = \begin{cases}
 x_i^+ & \text{if } i \in I_m \\
 x_i^- & \text{if } i \in I \setminus I_m.
\end{cases} \]

Now we get \(x^+, y \in V \) since \(V \) is positive \(I_m \)-quasi downward. Thus \(x \in A \). This shows \(A \) is \(I_m \)-quasi downward. As \(V \subset A \), hence \(V_* \subset A \).

Let \(x \in A \), thus \(x^+ \in V \) and \(\text{coPr}^I_m(x) = \text{coPr}^{I_m}(x^+) \) and \(x_i^+ \geq x_i \) for each \(i \in I \). As \(V_* \) is \(I_m \)-quasi downward, we get \(x \in V_* \). Thus \(A \subset V_* \), which completes the proof.

(2). It is immediately a consequence of the first part. \qed

Proposition 5.4. Let \(V_* \) be the closed \(I_m \)-quasi downward hull of \(V \subset (\sum_{i \in I} X_i)_+ \), and \(x \in (\sum_{i \in I} X_i)_+ \), then \(d(x, V) = d(x, V_*) \).

Proof. It is clear that \(V \subset V_* \). For each \(v \in V_* \), we have
\[
\|x - v\| = \max_{i \in I} \|x_i - v_i\| = \max \{ \max_{i \in I_m} \|x_i - v_i\|, \max_{i \in I \setminus I_m} \|x_i - v_i\| \} \\
\geq \max \{ \max_{i \in I_m} \|x_i - v_i^+\|, \max_{i \in I \setminus I_m} \|x_i - v_i\| \} = \|x - v^+\| \\
\geq d(x, V).
\]
Therefore \(\inf_{v \in V_*} \|x - v\| = d(x, V_*) \geq d(x, V) \), which completes the proof. \qed

Theorem 5.5. Let \(U \) be an \(I_m \)-quasi upward subset of \(\sum_{i \in I} X_i \), then \(T_m(U) \) is upward and \(\text{co}T_m(U) \) is downward.

Proof. By definition, \(T_m(U) \) is upward if and only if \(h \in T_m(U) \) and \(x \in \sum_{i \in I} X_i \) and \(x \geq h \) implies that \(x \in T_m(U) \). Let \(h \in T_m(U) \), By Lemma 4.5 there exists \(u \in U \) such that \(T_m(u) = h \). As \(x \geq h \) then for each \(i \in I \), \(x_i \geq h_i \). By (28) we have \(x_i \geq u_i \) if \(i \in I_m \) and \(-x_i \leq u_i \) if \(i \in I \setminus I_m \). As \(u \in U \) and \(U \) is \(I_m \)-quasi upward, we conclude \(w = (w_i)_{i \in I} \in U \), where \((w_i)_{i \in I} \) is defined by \(w_i = (1^I_m)_1 \cdot x_i \). Then \(x = T_m(w) \in T_m(U) \) and hence \(T_m(U) \) is upward. Similarly it can be shown that \((\text{co}T)_m(U) \) is also downward. This completes the proof. \qed

Corollary 5.6. Let \(U \subset \sum_{i \in I} X_i \) be closed \(I_m \)-quasi upward and \(x \in \sum_{i \in I} X_i \), then
\[
P_U(x) = \{ u \in U : T_m(u) \in P_{T_m(U)}(T_m(x)) \}.
\]

Proof. This follows by Lemma 4.5 and proposition 4.8. \qed

Proposition 5.7. Let \(U \subset \sum_{i \in I} X_i \) be a closed \(I_m \)-quasi upward set, \(x \in \sum_{i \in I} X_i \) and \(r := d(x, U) \) then \(u_m = x + r 1^I_m \in P_U(x) \).
Proof. Suppose $\mathbb{U} \subset \sum_{i \in I} X_i$ be a closed I_m–quasi upward set and $x \in \sum_{i \in I} X_i$. By Theorem 5.5, $T_m(\mathbb{U})$ is an upward set. Since $-T_m(\mathbb{U})$ is downward, by Corollary 4.4, $w_0 = \max \mathbb{P}_{T_m(\mathbb{U})}(T_m(x))$ exists and $w_0 = T_m(x) + r1_\mathbb{G}$. Then by Corollary 5.6, $u_m = T_m^{-1}(w_0) \in \mathbb{P}_\mathbb{U}(x)$. □

Acknowledgments

The authors wish to thank the referees for reading the article so carefully and for the comments made on this article.

References

M. Iranmanesh
Department of mathematical sciences, Shahrood university of technology, P.O.Box 3619995161-316, Shahrood, Iran.
Email: m.iranmanesh2012@gmail.com

F. Soleimany(Phd student)
Department of mathematical sciences, Shahrood university of technology, P.O.Box 3619995161-316, Shahrood, Iran.
Email: enfazh.bmaam@gmail.com