• Home
  • Browse
    • Current Issue
    • By Issue
    • By Author
    • By Subject
    • Author Index
    • Keyword Index
  • Journal Info
    • About Journal
    • Aims and Scope
    • Editorial Board
    • Editorial Staff
    • Publication Ethics
    • Indexing and Abstracting
    • Related Links
    • FAQ
    • Peer Review Process
    • News
  • Guide for Authors
  • Submit Manuscript
  • Reviewers
  • Contact Us
 
  • Login
  • Register
Home Articles List Article Information
  • Save Records
  • |
  • Printable Version
  • |
  • Recommend
  • |
  • How to cite Export to
    RIS EndNote BibTeX APA MLA Harvard Vancouver
  • |
  • Share Share
    CiteULike Mendeley Facebook Google LinkedIn Twitter Telegram
Journal of Algebraic Systems
Articles in Press
Current Issue
Journal Archive
Volume Volume 6 (2018-2019)
Volume Volume 5 (2017-2018)
Volume Volume 4 (2016-2017)
Volume Volume 3 (2015-2016)
Volume Volume 2 (2014-2015)
Issue Issue 2
Issue Issue 1
Volume Volume 1 (2013-2014)
Esmaeelnezhad, A. (2015). COHEN-MACAULAY HOMOLOGICAL DIMENSIONS WITH RESPECT TO AMALGAMATED DUPLICATION. Journal of Algebraic Systems, 2(2), 125-135. doi: 10.22044/jas.2015.361
Afsaneh Esmaeelnezhad. "COHEN-MACAULAY HOMOLOGICAL DIMENSIONS WITH RESPECT TO AMALGAMATED DUPLICATION". Journal of Algebraic Systems, 2, 2, 2015, 125-135. doi: 10.22044/jas.2015.361
Esmaeelnezhad, A. (2015). 'COHEN-MACAULAY HOMOLOGICAL DIMENSIONS WITH RESPECT TO AMALGAMATED DUPLICATION', Journal of Algebraic Systems, 2(2), pp. 125-135. doi: 10.22044/jas.2015.361
Esmaeelnezhad, A. COHEN-MACAULAY HOMOLOGICAL DIMENSIONS WITH RESPECT TO AMALGAMATED DUPLICATION. Journal of Algebraic Systems, 2015; 2(2): 125-135. doi: 10.22044/jas.2015.361

COHEN-MACAULAY HOMOLOGICAL DIMENSIONS WITH RESPECT TO AMALGAMATED DUPLICATION

Article 4, Volume 2, Issue 2, Winter and Spring 2015, Page 125-135  XML PDF (286 K)
Document Type: Original Manuscript
DOI: 10.22044/jas.2015.361
Author
Afsaneh Esmaeelnezhad
Department of Mathematics, University of Kharazmi, Karaj, Iran
Abstract
In this paper we use "ring changed'' Gorenstein homological
dimensions to define Cohen-Macaulay injective, projective and flat
dimensions. For doing this we use the amalgamated duplication of the
base ring with semi-dualizing ideals. Among other results, we prove that finiteness of these new dimensions characterizes Cohen-Macaulay rings with dualizing ideals.
Keywords
Semi-dualizing ideal; Amalgamated duplication; Gorenstein homological dimension; Cohen-Macaulay homological dimension
Statistics
Article View: 1,638
PDF Download: 1,314
Home | Glossary | News | Aims and Scope | Sitemap
Top Top

web site stat


Creative Commons License
JAS is licensed under a Creative Commons Attribution 4.0 International License.

Journal Management System. Designed by sinaweb.