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THE CONCEPT OF (I,J)-COHEN-MACAULAY
MODULES

M. AGHAPOURNAHR*, KH. AHMADI-AMOLI AND M. Y. SADEGHI

ABSTRACT. A generalization of the notion of depth of an ideal on a
module is introduced by applying the concept of local cohomology
modules with respect to a pair of ideals . The concept of (I, J)-
Cohen—Macaulay modules is also introduced as a generalization of
the concept of Cohen—Macaulay modules . This kind of modules
is different from the Cohen—Macaulay modules, as shown in an
example. Also an Artinian result is given for such modules.

1. INTRODUCTION

Let R be a commutative Noetherian ring, I,J be two ideals of R,

and M be an R-module. Many generalizations of the notion of depth
of an ideal on a module have been introduced for various purposes,
including the depth, f-depth, g-depth, and k-depth (kK > —1) of an
ideal, introduced in [10], [3], [¢], and [9], respectively.
In this paper, a new depth related to a pair of ideals on a module is
introduced, which concerns the local cohomology modules with respect
to the pair of ideals introduced by Takahashi, Yoshino, and Yoshizawa
1]

In Section 2, the concept of depth of a pair of ideals (1, J) is intro-
duced on an R-module M by depth(7, J, M). This invariant equals:

inf {i € No | H} ;(M) # 0}
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(see Proposition 2.3). We prove some formulas and inequalities for this
invariant and examine how it behaves under various ideal theoretic
operations and short exact sequences (see Corollary 2.5-Proposition
2.7). We also show that it is less than, or equal to, the ordinary depth
of an ideal (see Corollary 2.5). The non-equality is shown in Example
3.4. For a finite R-module M, and any a € W ([I,.J) with aM # M,
we present some conditions under which the depth(a, M) equals the
depth(Z, J, M) (see Theorem 2.8). It is well-known that

depth(I, M) = inf {i € Ng | Hj(M) # 0}.

We show that if t = depth([, J, M), and H:(M) # 0, then t = depth(I, M)
(see Theorem 2.10).

In Section 3, by applying the concept of ”depth of a pair of ideals”, we
introduce the concept of (1, J)-Cohen-Macaulay modules over Noether-
ian rings, as a generalization of Cohen—Macaulay modules over local
rings, for [ = m and J = 0. These two concepts are not the same,
as shown in Propositions 3.8 and 3.9, and Example 3.11. Indeed, for
a local integral domain R, and a faithful finite R-module M, which is
the (I, J)-Cohen-Macaulay module (with J # 0), if ¢t = depth(Z, J, M),
and Homp (R/m,Hj ;(M))) # 0, then M is not Cohen-Macaulay. In
Example 3.4, we show that the Grothendieck’s non-vanishing theo-
rem does not hold for local cohomology modules with respect to a
pair of ideals, and in Example 3.11, we show that if the condition
Homp (R/m,H ;(M))) # 0 does not hold in Proposition 3.8, the as-
sertions do not necessarily hold. Finally, an Artinian result for M /JM
is proved in Proposition 3.14 for a finite (I, J)-torsion R-module M,
which is a (7, J)-Cohen-Macaulay module.

2. DEPTH OF (I,.J) ON MODULES

In this section, we introduce the concept of depth of a pair of ideals
(I,J) on a module M. By [5, Theorem 6.2.7], for an ideal a of R and a
finite R-module M with aM # M, the depth(a, M) is the least integer
i such that H:(M) # 0. Having this in mind, we give the following

definition, where W (I, J) denotes the set of ideals a of R such that
I™ C a+ J for some integer n.

Definition 2.1. Assume that I,.J are two ideals of R, and let M be
an R-module. We define the depth of (I, J) on M by

depth(I, J, M) = inf {depth(a, M) | a € W(I,J)},

if this infimum exists, and oo otherwise.
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Remark 2.2. If M is a finite R-module such that aM = M for any
a € W(I,.J), then by [5, Exercise 6.2.6] and [I1, Theorem 3.2], we get
H; ;(M) =0 for all i € Ny. But if there exists a € W(I,J) such that
aM # M, then depth(I,J, M) < oco. Also it is clear, by definition,
that if J = 0, then depth(7, J, M) coincides with depth(Z, M).

Proposition 2.3. For a finite R-module M, we have the following
equalities:
depth(Z, J, M) = inf {i € Ny | H} ;(M) # 0}
= inf {depth(p, M) | p € W(I,J)}
= inf {depth(M,) | p € W(I, J}

Proof. Assume,
s :=depth(I,J, M), and t:= inf {z €Ny | HZIJ(M) #+ O}.

Thus there exists b € W(I,.J) such that s = depth(b, M). Since
V(b) € W(I,J), so, by [0, Proposition 1.2.10] and [I1, Theorem 4.1],
we have

s = depth(b, M) = inf {depth(}M,) | p € V(b)}

> inf {depth(My) | p € W(I,J)} =

If t < s, then H,(M) = 0 for all a € W ([, J). Thus by [I1, Theorem
3.2], we get H} ;(M) = 0, which is a contradiction. Thus ¢ = s. For
the second equality, since depth(a, M) = inf {depth(p, M) | p € V(a)},
the equality follows from definition. Finally, the third equality follows
from [ 1, Theorem 4.1]. O

Comparing the concept of depth of a pair of ideals with the ordinary
depth of an ideal, we have Corollary 2.5. To achieve this, we need
the following result in [2]. Recall that an R-module M is said to be
ZD-module if for every submodule N of M, the set of zero-divisors of
M/N is a union of finitely many prime ideals in Assg(M/N) (See [7]).

Proposition 2.4. Let HZIJ(M) =0 for all 1 < t. Then the following
statements hold for any a € W(I,.J).

(i) Exty (R/a, M) = Hompg (R/a,H,(M))

>~ Hompg (R/a,H ;(M))

>~ Homg (R/a,H} ;(M)).
(i) T (HE(M)) = HL(M) & Ty (HE (M) & Ty (1, (M),
(iii) Hg(M) € H; ;(M) € Hf ;(M) for alli <t.
(iv) Hi (M) =H{(M) =0 foralli < t.
(v) Ass(HL(M)) = Ass(H} ,(M)) NV (a)
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= Ass(Hj ;(M)) nV(a) for all i < t.
(vi) If a # 0, and M is ZD-module, then there exists a reqular M -
sequence of length t contained in a.

Proof. See [2, Theorem 3.4]. O

Corollary 2.5. For a finite R-module M, and all a € W (I,.J), we
have

depth(Z, J, M) < depth(a, J, M) < depth(a, M).
In particular, depth(1, J, M) < depth(I, M).

Proof. Apply Proposition 2.3 and Proposition 2.4 (iii). O

There is an example, which shows that this new invariant is different
from the ordinary depth (see Example 3.4).
In the next two propositions, we prove some formulas and inequalities
for this invariant. Also we examine how it behaves under various ideal
theoretic operations and short exact sequences.

Proposition 2.6. Let I, J, b, ¢ be ideals of R, and M be a finite
R-module.

(i) If J* C 6™ for some n,m € N, then
depth(1, b, M) < depth(1, J, M).
(ii) If J* D ¢™for some n,m € N, then
depth(1, J, M) = depth({ + ¢, J, M).

(iit) If /I = /b, then depth(I, J, M) = depth(b, .J, M).
(iv) If v/J = /<, then depth(I, J, M) = depth(I, ¢, M).
(v) depth(I, J, M) = depth(v/1,.J, M )=

depth(I,+/J, M) = depth(v/I,v/J, M).
(vi) depth(I, Jb, M) = depth(I,J Nb, M).

Proof. All of these statements follow easily from Proposition 2.3, and

[11, Propositions 1.4, 1.6]. As an illustration, we just prove statement

(i). Since J™ C b™, we have W(I,J) € W(I,b), by [ 1, Proposition
.6]. Now, by Proposition 2.3, we get

depth(Z, b, M) = inf {depth(p, M) | p € W(I,b)}

< inf {depth(q, M) | g € W(I, J)} = depth(I, J, M).

OJ

Proposition 2.7. Let 0 - U — M — N — 0 be an exact sequence

of finite R-modules. Let r := depth(I, J,U), t := depth(I, J, M), and
s :=depth(I,J, N). Then
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i) t > min{r, s}.
i) > min{t, s + 1}.
(iii) s > min{r —1,¢}.
(iv) One of the following equalities holds :
t=r,t=s,t=r=s, s=r—1.

Proof. For (i),(ii) and (iii), apply Corollary 2.5, and [0, Proposition
1.2.9).

To prove (iv), suppose that none of the equalities holds. Then only one
of the following cases happens:

(a) r <s <t (b) s <1 < t; ()t <r<s;

(d) t <s<r; (e) s <t <r; )y r<t<s.
Let 7 < s <t. Then s+ 1 <t and by (ii), s+ 1 < r < s, which is a
contradiction.

If s<r<t, then s <r—1<t Thus by (iii), r — 1 < s. Therefore,
s =r — 1, which is a contradiction.
The same method can be applied to the other cases. 0

Next, we give some conditions, for which the depth of a pair of ideals
equals the ordinary depth.

Theorem 2.8. Let M be a finite R-module. Let t:= depth(,J, M).
Then for any a € W(I,J) with aM # M, the following statements are
equivalent:

(i) Hompg (R/a,H.(M)) # 0;

(ii) Hompg (R/a,H ;(M)) # 0;

(iii) Exty (R/a, M) # 0;

(iv) Homp (R/a,H} ;(M)) #0;

(v) depth(a, M) =t.

Proof. All the equivalence parts (i)—(iv) are the consequences of Propo-
sision 2.4 (i).

To prove (iii)<(v), apply Proposition 2.3, Proposition 2.4, and [0,
Proposition 1.2.10 (e)]. O
Theorem 2.9. Let M be a finite R-module, and t := depth(I, J, M).
Then for any ideal b € W(I,0) such that bBM # M, the following
statements are equivalent:

(i) Hompg (R/b, Hy(M)) # 0;
(i) Bty (R/b, M) £0;
(iii) depth(b, M) = ¢;

Proof. Apply [2, Corollary 3.8 (iii)], and Theorem 2.8. O
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Theorem 2.10. Let M be a finite R-module such that IM # M. Let
t :=depth(/, J, M). Then the following statements are fulfilled:
(i) HY(M) # 0, if and only if t = depth(I, M);
(ii) If HY (M) # 0, then depth(I, M) < depth(a, M) for all a €
W(I,J);
(iii) depth(p, M) =t, for all p € Ass (Hfj(M)),
(iv) depth(p, M) < depth(a, M), for all p € Ass (H ;(M)) and all
aeW(l,.J);
(v) Hompg (R/1,Hj ;(M)) = Exty (R/I,M);
=~ Homp (R/I,H}(M));
=~ Homp (R/I, M/(x1, 22, -+ , ) M),
where x1, o, -+ , Ty 1S a poor reqular M -sequence in I.

Proof. (i) The assertion follows from Proposition 2.4 (iv), and [5, The-
orem 6.2.7).
(il) This is an immediate consequence of part (i), and Corollary 2.5.
(iii) Apply Proposition 2.3, and [12, Theorem 3.6].
(iv) Apply part (iii), and Corollary 2.5.
(v) Apply Proposition 2.4 (i), and [0, Lemma 1.2.4]. O

It should be remembered that Bijan-Zadeh, in [1] has introduced
the concept of local cohomology with respect to a system of ideals.
He showed that these local cohomology modules are a direct limit of
certain Koszul cohomology. Moreover, using the Koszul complex, there
is a natural generalization of the concept of grade of system of ideals
(see [1, Definition 5.3]). On the other hand, by [!1, Definition 3.1],
and the proof of [I1, Theorem 3.2], it is easy to see that the local
cohomology modules with respect to a pair of ideals is a special case
of local cohomology with respect to a system of ideals. To see this, we
can consider W (I, J) as a system of ideals. In the following theorem,
we compare the concept of depth(/, J; M), and the concept of grade of
system of ideals in Definition 5.3 of [1], for the system of ideals W (I, J).

Theorem 2.11. Let I,J be two ideals of R, and let M be a finitely gen-

erated R-module. Then in the sense of Definition 5.3 of [1], W(I,J)-
grade,; R coincides with depth(I,J, M) in our sense.

Proof. According to Definition 5.3 of [1], we have
W (I, J)-gradey, R = inf { gradey, R/a|a € W(I,J)}
= inf { grade(a, M) | a € W(I,J)}
= inf { depth(a, M) | a € W(I,J)}
= depth(/, J, M).
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Note that by a remark before Definition 5.3 of [1],
grade,, R/a = inf{i € No| Extiz(R/a, M) # 0} = grade(a, M).

3. ({,J)-COHEN-MACAULAY MODULES

As a generalization of the concept of Cohen—Macaulay modules, we
introduce the concept of (I,.J)-Cohen—Macaulay modules using the
concept of depth of a pair of ideals. The following lemma and propo-
sition have a main role in some results on this section.

Lemma 3.1. Let R be an integral domain, and a be an ideal of R.
Let M be a faithful finite R-module of finite Krull dimension d. Then
dim M /aM = d, if and only if a = 0.

Proof. The assertion is obvious, since (0) € Supp(M), and if a # 0,
then (0) ¢ Supp(M/aM). O

Proposition 3.2. Let (R, m) be a local integral domain, I+ J be an m-
primary ideal, and M be a faithful finite R-module of Krull dimension
d. Then the following statements are equivalent:
(i) dim M/JM = d;
(i) J =0y
(ii) HY, (M) # 0.

Proof. Apply Lemma 3.1, and [11, Theorem 4.5]. O

Corollary 3.3. Let (R,m) be a local integral domain of dimension n,
and J be a non-zero proper ideal of R. Then Hj ;(N) = 0, for any
R-module N.

Proof. Since J # 0, then dim R/J < n, by Lemma 3.1. Now, the
assertion follows from [11, Corollary 4.4]. O

Example 3.4. By [5, Corollary 6.2.9], if (R, m) is a regular local ring
of dimension n, then n is the unique integer ¢, for which an(R) #*
0. This result may not be true for local cohomology modules with
respect to a pair of ideals. To see this, let k be a field, and R :=
k[[z,y]]. Let m := (z,y)R, and J := (x)R. Then R is a regular
local ring, with dimR = 2 > dim R/J = 1. Thus HELJ(R) = 0, by
Corollary 3.3. Moreover, I'y, ;(R) = 0. Therefore, by Proposition 2.4
(vi), and Grothendieck's non-vanishing Theorem, we get Hy ;(R) #
0. Therefore, by Proposition 2.3, depth(m,J,R) = 1 = dimR/J <
dim R = depth R. This motivates us to give the following definition:
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Definition 3.5. Let R be a Noetherian ring, and I, .J be two ideals
of R. A finite R-module M is called an (/,.J)-Cohen-Macaulay R-
module, if M # 0, and depth(/, J, M) = dim M/JM or if M = 0.
If R itself is an (1, J)-Cohen-Macaulay module, we say that R is an
(I, J)-Cohen-Macaulay ring.

By definition, it is obvious that if M is an (I, J)-Cohen—Macaulay
module, then J is a proper ideal. Also if (R, m) is local, I = m, and
J = 0, then the concept of (I, J)-Cohen—-Macaulay R-modules coincide
with Cohen—Macaulay R-modules (see [0, Definition 2.1.1]).

Remark 3.6. By Corollary 2.5, and [1 1, Theorem 4.3], if (R, m) is
a local ring, then any (I, J)-Cohen-Macaulay R-module M is (m,J)-
Cohen—Macaulay R-module. Moreover, by [11, Proposition 1.4 (6),(7)],
if I + J is m-primary, then M is (I, J)-Cohen—Macaulay, if and only if
M is (m, J)-Cohen-Macaulay.

Proposition 3.7. Let M be a finite R-module. If M is (I, .J)-Cohen—
Macaulay, then M is (a,J)-Cohen-Macaulay for any a € W (I, J).

Proof. The assertion follows easily from Corollary 2.5. 0J

In the next two propositions, we show that the two concepts (1, J)-
Cohen—Macaulay and Cohen-Macaulay modules are not the same.

Proposition 3.8. Let (R,m) be a local integral domain, and J # 0.
Let M be a faithful finite R-module, and let t = depth(I,J, M) be such
that Homp (R/m,Hj ;(M)) # 0. If M is (1, J)-Cohen-Macaulay, then
M s not Cohen—Macaulay.

Proof. By Remark 3.6, M is (m, J)-Cohen—-Macaulay. Now, the asser-

tion follows from the definition, Theorem 2.8 for a = m, and Lemma
3.1. O

Proposition 3.9. Let (R,m) be a local integral domain, and J # 0.
Let M be a faithful finite R-module, and let t = depth(m,J, M) be
such that HL (M) # 0. If M is (m,J)-Cohen—Macaulay, then M is
not Cohen—Macaulay.

Proof. Apply Theorem 2.10, and Lemma 3.1. OJ

Proposition 3.10. Let (R,m) be a local ring, and I,J be the proper
ideals of R. Let M # 0 be an (I,J)-Cohen-Macaulay R-module. If
t = grade(I, J, M) > 1, then Hj ;(M) is not finite.

Proof. Since M is (I, J)-Cohen-Macaulay, so dim M/JM = t. Now,
the assertion follows from [I, Corollary 4.12 (ii)]. O
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Remark 3.11. It is considerable that, if Homp (R/m,H} ;(M)) = 0in
Proposition 3.8, and H! (M) = 0 in Proposition 3.9, then the assertions
do not necessarily hold. For example, let k be a field, R := kl[[x,y]],
m:= (z,y)R, and J := (2)R.
(i) R is a Cohen—Macaulay ring, and, as we saw in Example 3.4,
depth(m, J, R) = 1. thus R is an (m, J)-Cohen-Macaulay ring.
(ii) By Proposition 3.10, and Example 3.4, Hy, ;(R) is not finite.
(iii) If I := (2*)R, then T'; ;(R) = R, and so R is not an (I,.J)-
Cohen-Macaulay.

The next result can be a generalization of [5, Corollary 6.2.8], which
gives a bound for non-vanishing of local cohomology modules in the
local case.

Proposition 3.12. Let M be a non-zero finite module over the local
ring (R,m), and J # R. Then any integer i, for which Hy ;(M) # 0,
must satisfy

depth(m, J, M) <i < dim M/JM,
while, for i at either extremity of this range, we do have anJ(M) # 0.

Proof. Apply Proposition 2.3, and [1 1, Theorem 4.5]. O
An immediate consequence of Proposition 3.12 is the following result.

Corollary 3.13. Let (R,m) be a local ring, and M # 0 be a finite R-
module. Suppose that [+ J is an m-primary ideal. Then there is exactly
one integer i, for which, H’IJ(M) # 0 if and only if depth(I, J, M) =
dim M/JM, i.e. if and only if M is an (I,J)-Cohen-Macaulay R-
module.

Proposition 3.14. Let M be a finite (I, J)-torsion R-module. If M
is (I, J)-Cohen-Macaulay, then M/JM is Artinian.

Proof. It is enough to show that depth(I, J, M) = 0. Since I'; ;(M) =
M, Hj ;(M) =0, foralli > 1, by[l1, Corollary 1.13]. Thus depth(I, J, M) =
0, as required. O
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