GENERALIZED JOINT HIGHER-RANK NUMERICAL RANGE

H.R. AFSHIN, S. BAGHERI AND M.A. MEHRJOOFARD*

ABSTRACT. The rank-k numerical range has a close connection to the construction of quantum error correction code for a noisy quantum channel. For a noisy quantum channel, a quantum error correcting code of dimension k exists, if and only if the associated joint rank-k numerical range is non-empty. In this paper, the notion of joint rank-k numerical range is generalized, and some statements of [2011, Generalized numerical ranges and quantum error correction, J. Operator Theory, 66: 2, 335-351.] are extended.

1. Introduction

Let M_n be the set of $n \times n$ complex matrices, and $A \in M_n$. Furthermore, assume that $k \in \{1, \ldots, n\}$, $\alpha \subset \{1, \ldots, n\}$. Throughout this paper, the following notations are fixed:

\[\omega_k = \exp \left(\frac{2\pi i}{k} \right) \]

\[\Omega_k = \{ \omega_k^0, \omega_k^1, \ldots, \omega_k^{k-1} \} \]

Besides, the symbol $\sigma(A)$ stands for the spectrum of the matrix A, and $A\alpha$ refers to the principal submatrix of A that lies in the rows and columns of A indexed by α.

Recently, the joint higher rank numerical range [5] has played a key role in finding quantum error correcting codes[4], and some researchers

Keywords: Generalized projector, Joint higher rank numerical range, Joint matrix numerical range, Joint matrix higher rank numerical range, Generalized joint higher rank numerical range.
Received: 16 January 2015, Revised: 14 July 2015.
*Corresponding author.
have taken this into consideration. The present article mainly con-
centrates on extending the notion of joint rank-k numerical range of
\(A = (A_1, ..., A_m) \in M^n_m \), i.e. the set of all \((a_1, ..., a_m) \in \mathbb{C}^m \), such that
there exists the orthogonal projector \(P \) of rank \(k \) that satisfies
\[PA_jP = a_jP \forall j. \]

Definition 1.1. Let \(A = (A_1, ..., A_m) \in M^n_m, B \in M_k \), and \(k \leq n \). Then the set
\[B_{\Lambda_k}(A) = \{(a_1, ..., a_m) \in \mathbb{C}^m : \exists U \in M_{n,k}, s.t., U^*U = I_k, U^*A_jU = a_jB \forall j \} \]
is called the joint matrix higher rank numerical range.

When \(B = \text{diag}(b_1, ..., b_k) \), we abbreviate \(B_{\Lambda_k}(A) \) as \(b_1, ..., b_k \Lambda_k(A) \), and in the case \(b_1 = k = 1 \), the joint numerical range of \(A \) is defined
as \(W(A) = b_1, ..., b_k \Lambda_k(A) \).

Definition 1.2. Let \(A = (A_1, ..., A_m) \in M_n^m, k \leq n \). The kth joint
matrix numerical range of \(A \) is the set
\[W_k(A) = \{(U^*A_1U, U^*A_2U, ..., U^*A_mU) : U \in M_{n,k}, U^*U = I_k \} \]

In [3], The authors have introduced ”k-generalized projector”. They
have said that \(A \in M_n \) is the k-generalized projector, if \(A^k = A^* \) and
\(k > 1 \).

Theorem 1.3. [3] Let \(A \in M_n \), and \(k \in \mathbb{N}, k > 1 \). Then the following
statements are equivalent:

(a) \(A \) is a k-generalized projector.
(b) \(A \) is a normal matrix, and \(\sigma(A) \subset \{0\} \cup \Omega_{k+1} \).

Now, it is natural to extend ”joint higher rank numerical range” as
follows:

Definition 1.4. Let \(A = (A_1, ..., A_m) \in M_n^m \), and \(k \) and \(k' \) are positive
integers. Then the set
\[\{(a_1, ..., a_m) \in \mathbb{C}^m : \exists k' - \text{generalized projector of rank } k (P), \ s.t., PA_jP = a_jP \forall j \} \]
is called the \(k' \)-generalized joint rank-k numerical range, and is abbrevi-
ated as \(G_{\Lambda_{k',k}}(A) \).

Notice that the recent definition is an obvious extension of ”gen-
eralized higher rank numerical range,” which has been defined in [1].
2. Main results

The proof of the following results is elementary and hence, we leave it to the interested reader.

Proposition 2.1. Let $A = (A_1, \cdots, A_m) \in M_n^m$, $k \leq n$, and $1 < k'$. The following statements are equivalent:

(i) $a = (a_1, a_2, \cdots, a_m) \in GA_{k', k} (A_1, A_2, \cdots, A_m)$.

(ii) There exist $b_1, \cdots, b_k \in \Omega_{k'+1}$ and unitary matrix $U \in M_n$, such that for any $j \in \{1, \cdots, m\}$,

\[(U^*A_jU) \{1, 2, \cdots, k\} = a_j \text{diag} \left(\{b_i\}_{i=1}^k \right). \]

(iii) There exist $b_1, \cdots, b_k \in \Omega_{k'+1}$, and $X = \begin{bmatrix} x_1 & \cdots & x_k \end{bmatrix} \in M_{n,k}$, such that $X^*X = I_k$, and

\[\forall j \in \{1, \cdots, m\}, X^*A_jX = a_j \text{diag} \left(\{b_i\}_{i=1}^k \right). \]

(iv) There exists $b_1, \cdots, b_k \in \Omega_{k'+1}$, and orthonormal vectors $u_1, \cdots, u_k \in \mathbb{C}^n$, such that

\[\forall r \in \{1, \cdots, m\} \forall i, j \in \{1, \cdots, k\}, \langle A_r u_i, u_j \rangle = a_r b_i \delta_{ij}. \]

Proof. One can deduce, from Theorem 1.3, the equivalency of (i) and (ii). Notice that P is a k'–generalized projector of rank k, if and only if there exists a unitary matrix U, and numbers $b_1, \cdots, b_k \in \Omega_{k'+1}$ such that

\[P = U^* \text{diag} \left(b_1, \cdots, b_k, 0, \cdots, 0 \right)_{n-k, 0^n} U. \]

Equivalence of parts (ii), (iii), and (iv) is obvious. \(\square\)

Corollary 2.2. Let $A = (A_1, \cdots, A_m) \in M_n^m$. Then:

(i) $\Lambda_k (A) \subset GA_{k', k} (A)$;

(ii) $GA_{k', k} (A) \subset GA_{k', k} ((A_1, \cdots, A_{m-1})) \times \mathbb{C}$;

(iii) $GA_{k', k+1} (A) \subset GA_{k', k} (A)$;

Proof. (i) is trivial, since every orthogonal projector of rank k is a k'–generalized projector of rank k.

(ii) is obvious.

(iii) Assume that $(\lambda_1, \cdots, \lambda_m) \in GA_{k', k+1} (A)$. Then there exist orthonormal vectors $u_1, \cdots, u_{k+1} \in \mathbb{C}^n$, and $b_1, \cdots, b_{k+1} \in \Omega_{k'+1}$, such that $\langle A_r u_i, u_j \rangle = \lambda_r b_i \delta_{ij}$, for $r \in \{1, \cdots, m\}$, $1 \leq i, j \leq k + 1$. Therefore, by considering the orthonormal vectors $u_1, \cdots, u_k \in \mathbb{C}^n$ and $b_1, \cdots, b_k \in \Omega_{k'+1}$, we see that $\langle A_r u_i, u_j \rangle = \lambda_r b_i \delta_{ij}$ for $r \in \{1, \cdots, m\}$, $1 \leq i, j \leq k$, and therefore, $(\lambda_1, \cdots, \lambda_m) \in GA_{k', k} (A)$. \(\square\)
Corollary 2.3. Let \(A = (A_1, \ldots, A_m) \in M^m_n \), and \(k', k > 1 \). If \(n \geq (k - 1)(m + 1)^2 \), then \(G_{A;k'}(A) \neq \emptyset \).

Proof. It suffices to consider [5, Proposition 2.4], and Corollary 2.2(i). \(\square \)

Proposition 2.4. Let \(k' > 1 \), and \(A \in M^m_n \). Then:

(i) \(G_{k', k}(A) = \bigcup_{b_1, \ldots, b_k \in \Omega_{k'+1}} A_k(A) \);

(ii) \(G_{k', 1}(A) = \bigcup_{b \in \Omega_{k'+1}} bW(A) \).

Proof. By definition, (i), and (ii) can readily be verified. \(\square \)

Corollary 2.5. Consider the Pauli matrices:

\[
I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \quad X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad Y = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}, \quad Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix},
\]

and let \(A_1, \ldots, A_m \in \{I, X, Y, Z\} \), and \(k' > 1 \). Then:

\[
G_{k', 1}(I_{2^n}, A_1 \otimes \cdots \otimes A_n) =
\begin{cases}
\bigcup_{b \in \Omega_{k'+1}} \{(b, b)\} : \{A_1, \ldots, A_m\} = \{I\} \\
\bigcup_{b \in \Omega_{k'+1}} b \{(1, a) : a \in [-1, 1]\} : \text{elsewhere}
\end{cases}
\]

Proof. It suffices to note that Pauli matrices are normal, and:

\[
\sigma(X) = \sigma(Y) = \sigma(Z) = \{-1, 1\}.
\]

\(\square \)

The proofs of the next two results are straightforward, and thus are omitted.

Corollary 2.6.

\[
G_{k', 1}(\{\text{diag}(a_{i1}, \ldots, a_{in})\}_{i=1}^m) = \bigcup_{b \in \Omega_{k'+1}} b \text{conv} \left(\{(a_{1j}, \ldots, a_{mj})\}_{j=1}^n \right)
\]

Lemma 2.7. Let \(A_j = \text{diag}(a_{1j}, \ldots, a_{nj}) \), \(j = 1, \ldots, m \). Then:

\[
G_{k', n}(A_1, \ldots, A_m) \subset \left(\bigcup_{b_1, \ldots, b_n \in \Omega_{k'+1}} \left\{ c_1 : c_1 = \frac{a_{11}}{b_1} = \cdots = \frac{a_{1n}}{b_n} \right\} \right) \times \left(\bigcup_{b_1, \ldots, b_n \in \Omega_{k'+1}} \left\{ c_2 : c_2 = \frac{a_{12}}{b_1} = \cdots = \frac{a_{2n}}{b_n} \right\} \right) \times \cdots \times \left(\bigcup_{b_1, \ldots, b_n \in \Omega_{k'+1}} \left\{ c_m : c_m = \frac{a_{1m}}{b_1} = \cdots = \frac{a_{nm}}{b_n} \right\} \right)
\]
Definition 2.8. [2] Let S be a convex set, and $R := S^k = \{ z \in \mathbb{C} : z^k \in S \}$. Then R is called the convex kth root set.

Corollary 2.9. Let $A_j = \text{diag}(a_{1j}, \ldots, a_{nj})$, $j \in \{1, \ldots, m\}$, $k' > 1$, and there exists $i_1, i_2 \in 1, \ldots, n$, such that $\frac{a_{i_1j}}{a_{i_2j}} \in \mathbb{C} \setminus \left(\mathbb{R} \cup \mathbb{R}^{\frac{k'}{k}} \right)$. Then:
$$G\Lambda_{k^r,n}(A_1, \ldots, A_m) = \emptyset.$$

Now, we extend [5, Proposition 2.5]:

Proposition 2.10. Let $A = (A_1, \ldots, A_m) \in M_{n}^m, B \in M_k$, and $1 \leq r < k \leq n$. Then:
$$B\Lambda_k(A) \subset \bigcap_{X \in M_{n,n-r}} \left\{ (a_1, \ldots, a_m) \in \mathbb{C}^m : \left(W_{k-r}(a_1B, \ldots, a_mB) \cap W_{k-r}(X^*A_1X, \ldots, X^*A_mX) \right) \neq \emptyset \right\}$$

Proof. Let $a = (a_1, \ldots, a_m) \in B\Lambda_k(A)$, and $X \in M_{n,n-r}$ be such that $X^*X = I_{n-r}$. Then there exists $U \in M_{n,k}$, such that:
$$U^*U = I_k, U^*A_jU = a_jB \ \forall j.$$ We can choose the orthonormal vectors $x_1, \ldots, x_{k-r} \in (\mathbb{C}^{n-r}) \cap (U\mathbb{C}^k)$, and therefore, there exist $Y = [y_1, \ldots, y_{k-r}] \in M_{k,k-r}, Z = [z_1, \ldots, z_{k-r}] \in M_{n-r,k-r}$, such that $XZ = [x_1, \ldots, x_{k-r}] = UY$, and $Y^*Y = I_{k-r} = Z^*Z$. Therefore,
$$Z^*X^*A_jXZ = a_jY^*BY \ \forall j,$$
and the proof is completed. \hfill \Box

The following lemma can directly follow from the definition.

Lemma 2.11. Let $A = (A_1, \ldots, A_m) \in M_{n_1}^m, C = (C_1, \ldots, C_m) \in M_{n_2}^m, B \in M_{k, k \leq \min\{n_2, n_1\}}$, and there exists the matrix $V \in M_{n_1,n_2}$, such that $V^*V = I_{n_2}$, and for any $1 \leq j \leq m$, $C_j = V^*A_jV$. Then:
$$B\Lambda_k(C) \subset B\Lambda_k(A)$$

Lemma 2.12. Let $A = (A_1, \ldots, A_m) \in M_{n_1}^m, C = (C_1, \ldots, C_m) \in M_{n_2}^m, B \in M_{k, k \leq n_1 \leq n_2}$, and for any j, $A_j = C_j \{1, \ldots, n_1\}$. Then:
$$B\Lambda_k(A) \subset B\Lambda_k(C).$$

Proof. Let $(a_1, \ldots, a_m) \in B\Lambda_k(A)$. Therefore, there exist $X \in M_{n_1,k}$, such that $X^*X = I_k$, and $X^*A_jX = a_jB$, for all $j \in \{1, \ldots, m\}$. Now, define $Y = \left[\begin{array}{c} X \\ 0 \end{array} \right]_{n_2 \times k}$. Then, one can see that $Y^*Y = I_k$, and $Y^*C_jY = a_jB$, for all $j \in \{1, \ldots, m\}$. \hfill \Box
Corollary 2.13. Let \(A = (A_1, \ldots, A_m) \in M_{n_1}^m, C = (C_1, \ldots, C_m) \in M_{n_2}^m, k \leq n_1 \leq n_2, \) and for any \(j, A_j = C_j \{1, \ldots, n_1\}, 1 < k' \); and there exists the matrix \(V \in M_{n_1,n_2}, \) such that \(V^*V = I_{n_2}, \) and for any \(1 \leq j \leq m, D_j = V^*A_jV. \) Then:

\[
\Gamma A_{k',k}(D) \subset \Gamma A_{k',k}(A) \subset \Gamma A_{k',k}(C).
\]

The following theorem is an extension of [5, Theorem 3.1].

Theorem 2.14. Let \(A = (A_1, \ldots, A_m) \in M_{n_1}^m, \hat{k} \geq (m + 2)k, B \in M_{k}, (0, \ldots, 0) \in B\Lambda_k(A), \) and \((a_1, \ldots, a_m) \in B\Lambda_k(A). \) Then for any \(t \in [0,1], \)

\[
t(a_1, \ldots, a_k) \in B\Lambda_k(A).
\]

Proof. Assume that there exist \(X \in M_{n,k}, \) and \(V \in M_{n,(m+2)k}, \) such that:

\[
X^*X = I_k, \forall j, X^*A_jX = a_jB, \\
V^*V = I_{(m+2)k}, \forall j, V^*A_jV = 0_{(m+2)k}.
\]

By the Lemma 2.11 and Lemma 2.12, it suffices to show that there is the non-singular matrix \(Z \in M_{n,(m+2)k}, \) such that:

\[
\begin{cases}
Z^*Z = I_{(m+2)k}, \\
\forall j, Z^*A_jZ = \left[\begin{array}{ccc} a_jB & 0_k & * \\ 0_k & 0_k & * \\ * & * & (m+2)k \times (m+2)k \end{array} \right].
\end{cases}
\]

Because, in this case, we have:

\[
\begin{aligned}
& B\Lambda_k \left(\begin{bmatrix} a_1B & 0_k \\ 0_k & 0_k \\ \vdots & \vdots \\ a_mB & 0_k \\ 0_k & 0_k \end{bmatrix} \right) \\
\subset & B\Lambda_k \left(Z^*A_1Z, \ldots, Z^*A_mZ \right) \\
\subset & B\Lambda_k \left(A_1, \ldots, A_m \right)
\end{aligned}
\]

and

\[
\forall t \in [0,1], t(a_1, \ldots, a_k) \in B\Lambda_k \left(\begin{bmatrix} a_1B & 0_k \\ 0_k & 0_k \\ \vdots & \vdots \\ a_mB & 0_k \\ 0_k & 0_k \end{bmatrix} \right)
\]

(\text{Note that for any } t \in [0,1] \text{ there exists } U = \begin{bmatrix} \sqrt{t}I_k \\ \sqrt{1-t}I_k \end{bmatrix} \text{ such that for all } j, U^* \begin{bmatrix} a_jB & 0_k \\ 0_k & 0_k \end{bmatrix} U = ta_jB.)

Now, we want to select \(Y \in M_{n,k}, \) and \(W \in M_{n,mk}, \) such that their columns selected from columns of \(V \) and \(Z = \begin{bmatrix} X & Y & W \end{bmatrix} \) satisfy in 2.1. But, 2.1 is equivalent to:

\[
\begin{cases}
Y^*Y = I_k, W^*W = I_{mk}, X^*Y = 0_k, X^*W = 0_{k, mk}, Y^*W = 0_{mk}, \\
\forall j, X^*A_jY = Y^*A_jX = Y^*A_jY = 0_k.
\end{cases}
\]
Thus, in order to find the Y, it is sufficient to find the k columns of columns of V, such that they lie in the space H^\perp, such that:

$$H = \text{span} \left(\{ \text{columns of } X \} \cup \{ \text{columns of } A_1X \} \cup \cdots \cup \{ \text{columns of } A_mX \} \right).$$

But $\dim(H) \leq (m+1)k$, while V has $(m+2)k$ columns. Therefore, we can construct Y. Now, $\text{span}(\{ \text{columns of } X \} \cup \{ \text{columns of } Y \})$ is a space with dimension $2k$ and so we can find the mk columns of V, such that they lie not in this space, and assume W, such that their columns are constructed by those columns.

Also, we can extend [5, proposition 2.1], as follows:

Proposition 2.15. Suppose $A = (A_1, \cdots, A_m) \in M_n^m, k \leq n, 1 < k'$ and $S = (s_{ij})$ is an $m \times n$ matrix. If $B_j = \sum_{i=1}^{m} s_{ij}A_i$, for $j = 1, \cdots, n$, then:

$$\{aT : a \in GA_{k',k} (A) \} \subset GA_{k',k} (B).$$

Equality holds, if $\{A_1, \cdots, A_m \}$ is linearly independent and:

$$\text{span} \{ A_1, \cdots, A_m \} = \text{span} \{ B_1, \cdots, B_n \}.$$
Email: aahaay@gmail.com
GENERALIZED JOINT HIGHER-RANK NUMERICAL RANGE

H. R. AFSHIN, S. BAGHERI AND M. A. MEHRJOOFARD

برد عددی رتیه-بالاتر توأم تعمیم یافته

حسین رضا افشین، صدیقه باقری و محمدعلی مهرجوفرد
دانشگاه دولتی علوم ریاضی، دانشگاه علوم پزشکی

برد عددی k رتیه رابطه ی نزدیکی با ساختن کد تصحیح خطای کوانتونومی برای کنال کوانتونومی
بر پارازیت دارد. در کنال کوانتونومی بر پارازیتی، کد تصحیح خطای کوانتونومی از بعد k وجود دارد
اگر و تنها اگر عددی k رتیه ی توأم مربوط با آن، A ناحیه باشد. در این مقاله مفهوم عددی
رتبه ی توأم تعمیم داده شده و برخی گزاره های مقاله
[2011, Generalized numerical ranges and quantum error correction, J. Operator Theory, 66: 2, 335-351.]

توسعه داده شده است.

کلمات کلیدی: تصویرگر تعمیم یافته، برد عددی رتیه بالاتر توأم، برد عددی ماتریسی توأم، برد
عددی رتیه بالاتر ماتریسی توأم، برد عددی رتیه بالاتر توأم تعمیم یافته.