ON THE VANISHING OF DERIVED LOCAL HOMOLOGY MODULES

M. HATAMKHANI

Abstract. Let R be a commutative Noetherian ring, a be an ideal of R, and $\mathcal{D}(R)$ denote the derived category of R-modules. For any homologically-bounded complex X, we conjecture that $\sup L\Lambda^a(X) \leq \text{mag}_R X$. We prove this in several cases.

1. Introduction

Throughout this paper, R is a commutative Noetherian ring with non-zero identity, and $\mathcal{D}(R)$ denotes the derived category of R-modules. The full subcategory of homologically-bounded complexes is denoted by $\mathcal{D}^b(R)$, and that for complexes homologically-bounded to the right (resp. left) is denoted by $\mathcal{D}^b_+(R)$ (resp. $\mathcal{D}^b_-(R)$). Also $\mathcal{D}^b_{\text{f}}(R)$ (resp. $\mathcal{D}^b_{\text{Art}}(R)$) consists of homologically-bounded complexes with finitely-generated (resp. Artinian) homologies. The symbol \simeq denotes an isomorphism in the category $\mathcal{D}(R)$. For any complex X in $\mathcal{D}^b_+(R)$ (resp. $\mathcal{D}^b_-(R)$), there is a bounded to the right (resp. left) complex U of projective (resp. injective) R-modules such that $U \simeq X$. A such
complex U is called a projective (resp. injective) resolution of X. The left-derived tensor product functor $- \otimes_R^L \sim$ is computed by taking a projective resolution of the first argument or of the second one. Also, the right-derived homomorphism functor $R \text{Hom}_R(-, \sim)$ is computed by taking a projective resolution of the first argument or by taking an injective resolution of the second one.

Let a be an ideal of R, and $C_0(R)$ denote the full sub-category of R-modules. It is known that the a-adic completion functor

$$\Lambda^a(-) = \lim_{\rightarrow n} (R/a^n \otimes_R -) : C_0(R) \to C_0(R)$$

is not right exact, in general. The left-derived functor of $\Lambda^a(-)$ exists in $D(R)$, and so, for any complex $X \in D_{\triangle}(R)$, the complex $L\Lambda^a(X) \in D_{\triangle}(R)$ is defined by $L\Lambda^a(X) := \Lambda^a(P)$, where P is a (every) projective resolution of X. Let $X \in D_{\triangle}(R)$. For any integer i, the i-th local homology module of X with respect to a is defined by

$$H^a_i(X) := H_i(L\Lambda^a(X)).$$

First E. Matlis [12], in 1974, studied the theory of the local homology. Next Simon in [18] and [19] continued the study of this theory. Later, J.P.C. Greenlees and J.P. May [9] defined local homology groups of a module M using a new approach. Then came the works of Alonso Tarrío, Jeremías López and Lipman [1]. After the works of [17], [4], [5], [8], and [14], started a new era in the study of local homology.

The most essential vanishing result for the local cohomology modules $H^a_i(M)$ is Grothendieck’s Vanishing Theorem, which asserts that $H^a_i(M) = 0$ for all $i > \dim_R M$. Letting $X \in D_{\square}(R)$, Foxby generalized this result for derived local cohomology modules $H^a_i(X)$. He proved that $H^a_i(X) = 0$ for all $i > \dim_R X$ [7, Theorem 7.8, Corollary 8.29]. We intend to establish the dual of this result for the derived local homology modules. Let $\check{C}(\mathfrak{a})$ denote the Čech complex of R on a set \mathfrak{a} of generators of \mathfrak{a}. By [1, (0.3), aff,p.4] (see also [17, Section 4] for corrections),

$$L\Lambda^a(X) \simeq R \text{Hom}_R(\check{C}(\mathfrak{a}), X).$$
Using this isomorphism Frankild [8, Theorem 2.11] proved that
\[\inf L(a; X) = \text{width}_R(R/a \otimes R X). \]

The aim of this work was to find an upper bound for \(\sup L(a; X) \). Finding a good upper bound for \(\sup L(a; X) \) was considered in [17] and [8]. In fact, we conjecture that \(H_i^a(X) = 0 \) for all \(i > \text{mag}_R X \). Our investigation on this conjecture is the core of this paper. We show the correctness of this conjecture in several cases. Namely, we prove that if for all \(i \in \mathbb{Z} \), either:

1. \(\text{Coass}_R H_i(X) = \text{Att}_R H_i(X) \),
2. \(H_i(X) \) is finitely-generated, Artinian or Matlis reflexive,
3. \(H_i(X) \) is linearly-compact,
4. \(R \) is complete local, and \(H_i(X) \) has finitely many minimal coassociated prime ideals; or:
 - \(R \) is complete local with the maximal ideal \(\mathfrak{m} \), and \(\mathfrak{m}^n H_i(X) \) is minimax for some integer \(n \geq 0 \),
 - then \(H_i^a(X) = 0 \) for all \(i > \text{mag}_R X \).

First, Sazeedeh [16] studied connections between the Gorenstein injective modules and the local cohomology modules. The Gorenstein flat dimension of \(X \) is defined by

\[\text{Gfd}_R X := \inf \{ \sup \{ l \in \mathbb{Z} | Q_l \neq 0 | Q \text{ is a bounded to the right complex of Gorenstein flat } R\text{-modules and } Q \simeq X \} \}. \]

For more details on the theory of Gorenstein homological dimensions for complexes, we refer the reader to [2].

2. Results

In what follows, we denote the faithful exact functor,

\[\text{Hom}_R(-, \bigoplus_{m \in \text{Max}_R} E(R/m)) \]

by \((-)^\vee\). Let \(M \) be an \(R \)-module. A prime ideal \(\mathfrak{p} \) of \(R \) is said to be a coassociated prime ideal of \(M \) if there is an Artinian quotient \(L \) of \(M \) such that \(\mathfrak{p} = (0 : R L) \). The set of all coassociated prime ideals of \(M \)
is denoted by Coass_RM. Also, Att_RM is defined by

$$\text{Att}_RM := \{p \in \text{Spec } R \mid p = (0 :_R L) \text{ for some quotient } L \text{ of } M\}.$$

Clearly, $\text{Coass}_RM \subseteq \text{Att}_RM$ and the equality holds if either R or M is Artinian. More generally, if M is representable, then it is easy to check that $\text{Coass}_RM = \text{Att}_RM$. If $0 \to M \to N \to L \to 0$ is an exact sequence of R-modules and R-homomorphisms, then it is easy to check that:

$$\text{Coass}_RL \subseteq \text{Coass}_RN \subseteq \text{Coass}_RL \cup \text{Coass}_RM,$$

and:

$$\text{Att}_RL \subseteq \text{Att}_RN \subseteq \text{Att}_RL \cup \text{Att}_RM.$$

Also if R is local, then one can see that $\text{Coass}_RM = \text{Ass}_RM$.

For an R-module M, set $\text{cd}_aM := \sup \{i | H_i^a(M) \neq 0\}$.

By [9, Corollary 3.2], $H_i^a(M) = 0$ for all $i > \text{cd}_aR$.

Next, we recall the definition of the notion mag_RM.

Def 2.1. Let M be an R-module.

i) (See [20]) The magnitude of M is defined by

$$\text{mag}_RM := \sup \{\dim R/p | p \in \text{Coass}_RM\}.$$

If $M = 0$, then we put $\text{mag}_RM = -\infty$.

ii) (See [15]) The Noetherian dimension of M is defined inductively as follows: when $M = 0$, put $\text{Ndim}_RM = -1$. Then, by induction, for an integer $d \geq 0$, we put $\text{Ndim}_RM = d$ if $\text{Ndim}_RM < d$ is false, and for every ascending sequence $M_0 \subseteq M_1 \subseteq \ldots$ of submodules of M, there exists n_0 such that $\text{Ndim}_RM_{n+1}/M_n < d$ for all $n > n_0$.

iii) (See [14]) The co-localization of M at a prime ideal p of R is defined by

$$^pM := \text{Hom}_{R_p}((M^\vee)_p, E_{R_p}(R_p/pR_p)).$$

Then Cosupp_RM is defined by

$$\text{Cosupp}_RM := \{p \in \text{Spec } R | ^pM \neq 0\}.$$
iv) (See [3]) M is said to be N-critical if $\text{Ndim}_N N < \text{Ndim}_N M$ for all proper submodules N of M.

If $0 \to X \to Y \to Z \to 0$ is an exact sequence of R-modules and R-homomorphisms, then it is easy to verify that:

$$\text{mag}_R Y = \max\{\text{mag}_R X, \text{mag}_R Z\}.$$

Recall that an R-module M is said to be Matlis reflexive if the natural homomorphism $M \to M^{\vee\vee}$ is an isomorphism.

Now we recall some definitions, which are required in the following statements.

We begin by recalling the definition of linearly-compact modules from [11]. Let M be a topological R-module. Then M is said to be linearly-topologized if M has a base \mathcal{M} consisting of sub-modules for the neighborhoods of its zero element. A Hausdorff linearly-topologized R-module M is said to be linearly-compact if for any family \mathcal{F} of cosets of closed submodules of M which has the finite intersection property, the intersection of all cosets in \mathcal{F} is non-empty. A Hausdorff linearly topologized R-module M is called semi-discrete if every submodule of M is closed. The class of semi-discrete linearly-compact modules is very large it contains many important classes of modules such as the class of Artinian modules or the class of finitely-generated modules over a complete local ring.

An R-module M is called minimax if it has a finitely-generated submodule N such that M/N is Artinian. By [21, Lemma 1.1], over a complete local ring R, an R-module M is minimax if and only if M is semi-discrete linearly-compact and if and only if M is Matlis reflexive. These definitions can be extended to complexes in obvious ways.

In the case (R, m) is a local ring, by [20, Lemma 2.2], we have $\text{mag}_M = \dim M^{\vee}$ for any R-module M, where $(\cdot)^\vee := \text{Hom}_R(\cdot, E(R/m))$. Following this idea, one could expect $\text{mag}_RX = \dim_R X^{\vee}$.

Let $X \in D(R)$. We know that $\dim_R X^{\vee} = \sup\{\dim_R H_i(X^{\vee}) - i \mid i \in \mathbb{Z}\} = \sup\{\dim_R H_{-i}(X)^\vee - i \mid i \in \mathbb{Z}\} = \sup\{\dim_R H_j(X)^\vee + j \mid j \in \mathbb{Z}\}$.

Therefore, we define $\text{mag}_R X$ as follows:
Definition 2.2. Let R be a commutative Noetherian ring, and $X \in \mathcal{D}(R)$. We define $\text{mag}_R X := \sup \{ \text{mag}_R H_i(X) + i \mid i \in \mathbb{Z} \}$.

Lemma 2.3. Let (R, \mathfrak{m}) be a local ring, and $X \in \mathcal{D}(R)$. Then:

$$\text{mag}_R X = \sup \{ \dim \frac{R}{p} + \sup \mathfrak{p} X \mid \mathfrak{p} \in \text{Cosupp}_R X \}.$$

Proof. By definition, we have $\text{mag}_R X = \dim_R X^\vee$. Now we know that $\dim_R X^\vee = \sup \{ \dim \frac{R}{p} - \inf(X^\vee)_p \mid p \in \text{Supp}_R X^\vee \}$. Let $p \in \text{Spec} R$. By definition, we have $\mathfrak{p} X = \text{Hom}_R((X^\vee)_p, E(\frac{R}{p}))$, and so:

$$\sup \mathfrak{p} X = - \inf(X^\vee)_p.$$

Also, by [14, Theorem 2.7], $\text{Cosupp}_R X = \text{Supp}_R X^\vee$. Hence,

$$\text{mag}_R X = \sup \{ \dim \frac{R}{p} + \sup \mathfrak{p} X \mid \mathfrak{p} \in \text{Cosupp}_R X \}.$$

Remark 2.4. Let X and Y be complexes in $\mathcal{D}(R)$. Observe that the isomorphism $\text{LA}^a(X) \simeq R \text{Hom}_R(C(\mathfrak{a}), X)$ immediately gives:

$$\text{LA}^a(R \text{Hom}_R(X, Y)) \simeq R \text{Hom}_R(X, \text{LA}^a(Y)) \simeq R \text{Hom}_R(R \Gamma_{\mathfrak{a}}(X), Y).$$

Definition 2.5. (See [6]) Let $X \in \mathcal{D}(R)$.

i) If m is an integer, $\Sigma^m X$ denotes the complex X shifted (or translated) m degrees (to the left); it is given by

$$\Sigma^m X = X_{l-m}, \quad d_l^\Sigma^m X = (-1)^m d_l^{X_{l-m}},$$

for $l \in \mathbb{Z}$.

ii) If $m, n \in \mathbb{Z}$, the truncated complexes $\tau_{m \subset} X$ and $\tau_{n \supset} X$ are given by

$$\tau_{m \subset} X = 0 \longrightarrow C_m^X \xrightarrow{d_m^X} X_{m-1} \xrightarrow{d_{m-1}^X} X_{m-2} \xrightarrow{d_{m-2}^X} \cdots,$$

and

$$\tau_{n \supset} X = \cdots \xrightarrow{d_{n+3}^X} X_{n+2} \xrightarrow{d_{n+2}^X} X_{n+1} \xrightarrow{d_{n+1}^X} \xrightarrow{d_n^X} Z_n^X \longrightarrow 0,$$

where d_m^X and d_{n+1}^X are the induced maps.

Lemma 2.6. Let R be a commutative Noetherian ring, and $X \in \mathcal{D}(R)$.

M. HATAMKHANI
i) If $X \in D_{\square}(R)$, then $\sup L^a(X) \leq \sup \{ \sup L^a(H_i(X)) + i \mid i \in \mathbb{Z} \}$.

ii) If (R, \mathfrak{m}) is a complete local ring and $X \in D^\text{Art}_{\square}(R)$, then

$$\sup L^a(X) = \sup \{ \sup L^a(H_i(X)) + i \mid i \in \mathbb{Z} \}.$$

Proof. i) Let $s := \sup L^a(X)$, and assume that $s > \sup(\sup L^a(H_i(X))) + l$ for all l. By descending induction on l, we show that, $\sup(\sup L^a(\tau_{\subseteq}X)) = s$ for all $l \in \mathbb{Z}$. This gives the desired contradiction, since $\tau_{\subseteq}X \simeq 0$ for l small enough. Since $\tau_{\subseteq}X \simeq X$ for l large enough, the equality $\sup(\sup L^a(\tau_{\subseteq}X)) = s$ certainly holds for large l.

In the inductive step, note that the exact triple,

$$(\Sigma^l H_l(X), \tau_{\subseteq}X, \tau_{\subseteq-l}X)$$

(see [6, Corollary 1.43]) induces an exact sequence:

$$\ldots \rightarrow H^a_{m-l}(H_l(X)) \rightarrow H^a_m(\tau_{\subseteq}X) \rightarrow H^a_m(\tau_{\subseteq-l}X) \rightarrow H^a_{m-l-1}(H_l(X)) \rightarrow \ldots$$

from which the desired assertion, $\sup(\sup L^a(\tau_{\subseteq-l}X)) = s$, follows from the inductive assumption,

$\sup(\sup L^a(\tau_{\subseteq}X)) = s$, and the assumption $\sup(\sup L^a(H_l(X))) < s - l$ made earlier.

ii) As $X \in D^\text{Art}_{\square}(R)$, it follows that $X^\vee \simeq X$ in $D(R)$. Hence, we have:

$$\sup L^a(X) = \sup L^a(X^\vee)$$

$$= \sup L^a(\mathbf{R} \text{Hom}_R(X^\vee, E(\frac{R}{\mathfrak{m}})))$$

$$\overset{(a)}{=} \sup(\mathbf{R} \text{Hom}_R(X^\vee, L^a(E(\frac{R}{\mathfrak{m}}))))$$

$$\overset{(b)}{=} \sup \{ \sup \mathbf{R} \text{Hom}_R(H_i(X^\vee), L^a(E(\frac{R}{\mathfrak{m}}))) - i \mid i \in \mathbb{Z} \}$$

$$\overset{(c)}{=} \sup \{ \sup L^a(\mathbf{R} \text{Hom}_R(H_i(X^\vee), E(\frac{R}{\mathfrak{m}}))) - i \mid i \in \mathbb{Z} \}$$

$$= \sup \{ \sup L^a(H_i(X^\vee)^\vee) - i \mid i \in \mathbb{Z} \}$$

$$= \sup \{ \sup L^a((H_{-i}(X))^\vee) - i \mid i \in \mathbb{Z} \}$$

$$\overset{(d)}{=} \sup \{ \sup L^a(H_j(X)) + j \mid j \in \mathbb{Z} \}$$
The equalities (a) and (c) follow by Remark 2.4, and since $X \in \mathcal{D}_A^f(R)$, (b) follows from [6, Lemma 16.26]. Since $X \in \mathcal{D}^{\text{Art}}_A(R)$, the equality (d) holds.

Now we recall the following definition of Zoschinger:

Definition 2.7. Let M be an R-module. Then $\text{Coass}(M)$ has a finite final subset, when the set of minimal elements of $\text{Coass}(M)$ is finite, or equivalently, there exists a finite subset, $\{p_1, \ldots, p_n\}$ of $\text{Coass}(M)$ such that $\bigcap \text{Coass}(M) = \bigcap_{i=1}^n p_i$.

Theorem 2.8. Let \mathfrak{a} be an ideal of R, and $X \in \mathcal{D}_A(R)$. Assume that for all $i \in \mathbb{Z}$, either:

i) $\text{Coass}_R H_i(X) = \mathcal{A}tt_R H_i(X)$,

ii) $H_i(X)$ is N-critical,

iii) $H_i(X)$ is finitely-generated or Matlis reflexive,

iv) $H_i(X)$ is linearly-compact,

v) R is complete local and $H_i(X)$ has finitely many minimal coassociated prime ideals; or:

vi) R is complete local with the maximal ideal \mathfrak{m}, and $\mathfrak{m}^n H_i(X)$ is minimax for some integer $n \geq 0$.

Then $\sup L \Lambda^a(X) \leq \text{mag}_R X$ and equality holds if R is complete local with the maximal ideal \mathfrak{a} and $X \in \mathcal{D}^{\text{Art}}_A(R)$.

Proof. From Lemma 2.6 i), we have:

$$\sup L \Lambda^a(X) \leq \sup \{\sup L \Lambda^a(H_i(X)) + i \mid i \in \mathbb{Z}\}.$$

On the other hand, by [10, Theorem 2.8], in each of these cases, $\sup L \Lambda^a(H_i(X)) \leq \text{mag}_R H_i(X)$ for all $i \in \mathbb{Z}$. Now the result follows by the definition of $\text{mag}_R X$.

Now let (R, \mathfrak{m}) be a complete local ring. From [5, Theorem 4.8, 4.10], for each Artinian module M, $\text{Ndim}_R M = \max \{i \mid H_i^\mathfrak{m}(M) \neq 0\}$. Hence, the last part follows from Lemma 2.6 ii) and [20, Theorem 2.10].
Corollary 2.9. Let \((R, \mathfrak{m})\) be a complete local ring, and \(X \in \mathcal{D}^{\text{ht}}(R)\). Then \(\text{mag}_R X \leq \text{Gfd}_R X\).

Proof. From [13, Theorem 2.5], \(\sup(\mathcal{L}a(X)) \leq \text{Gfd}_R X\) for any ideal \(a\) of \(R\). Now, the result follows by Theorem 2.8. \(\square\)

Definition 2.10. (See [6])

i) Let \(X \in \mathcal{D}(R)\), and \(Y \in \mathcal{D}(R)\). The module:

\[H_{-i}(R \text{Hom}_R(X, Y)) \]

is often denoted by \(\text{Ext}^i_R(X, Y)\), and called the \(i\)-th hyper \(\text{Ext}\) module of the complexes \(X\) and \(Y\).

ii) Let \(X, Y \in \mathcal{D}(R)\). The module: \(H_i(X \otimes^L_R Y)\) is sometimes denoted by \(\text{Tor}^R_i(X, Y)\), and called the \(i\)-th hyper \(\text{Tor}\) module of the complexes \(X\) and \(Y\).

Assume that \(M\) and \(N\) are two \(R\)-modules, and \(X\) and \(Y\) are two complexes. The following result is deduced from Theorem 2.8.

Corollary 2.11. Assume that \(M\) is a linearly-compact \(R\)-module, \(N\) an \(R\)-module, and \(X, Y \in \mathcal{D}(R)\).

i) If \(R \text{Hom}_R(N, M) \in \mathcal{D}(R)\), then \(H^a_i(R \text{Hom}_R(N, M)) = 0\) for all \(i > \text{mag}(R \text{Hom}_R(N, M))\).

ii) If \(N\) is finitely-generated, and \(N \otimes^L_R M \in \mathcal{D}(R)\), then:

\[H^a_i(N \otimes^L_R M) = 0 \]

for all \(i > \text{mag}(N \otimes^L_R M)\).

Proof. By [4, Lemma 2.5 and 2.6], the \(R\)-modules \(\text{Ext}^i_R(N, M)\) and \(\text{Tor}^R_i(N, M)\) are linearly-compact for all non-negative integers \(i\). Hence, the result follows by Theorem 2.8. \(\square\)

Acknowledgments

The author would like to thank the referee for his/her careful reading and many helpful suggestions on this paper.
References

M. Hatamkhani

Department of Mathematics,
Faculty of Science,
Arak University,
Arak, 38156-8-8349, Iran.
Email: m-hatamkhani@araku.ac.ir
صفر شدن مدول‌های همولوژی موضعی مشتق شده

مراضی حاتم خانی

اراک-خیابان شهید بهشتی-دانشگاه اراک-دانشکده علوم-گروه ریاضی-کد پستی 9473865183

شناخته شده کارگری مشتق شده $D(R)$ و R ایدهآلی از R به جای آن باشد. همچنین مدول ار ار alleged، به عنوان یک مولفه برای هموگواری کردن X، یک گره هموگواری کردن X را به ایدهآل a را باشد و در هر حال مختلف آن را ثابت می‌کنیم.

کلمات کلیدی: کوهمولوژی موضعی، مدول‌های همولوژی موضعی، یک گره مدول، بعد نوتری.