ON FINITE GROUPS IN WHICH SS-SEMI-PERMUTABILITY IS A TRANSITIVE RELATION

S. E. MIRDAMADI AND G. R. REZAEZADEH*

Abstract. Let H be a subgroup of a finite group G. We say that H is SS-semipermutable in G if H has a supplement K in G such that H permutes with every Sylow subgroup X of K with $(|X|,|H|) = 1$. In this paper, the structure of SS-semi-permutable subgroups and the finite groups in which SS-semi-permutability is a transitive relation are described. It is shown that a finite solvable group G is a PST-group if and only if whenever $H \triangleleft K$ are two p-subgroups of G, H is SS-semipermutable in $N_G(K)$.

1. Introduction

Throughout this paper, all the groups are considered to be finite. Let H be a subgroup of G. Then $\pi(G)$ denotes the set of prime divisors of $|G|$; H^G is the normal closure of H in G, i.e. the intersection of all normal subgroups of G containing H; and $F^*(G)$ is the generalized fitting subgroup of G, i.e. the product of all normal quasinilpotent subgroup of G. H is said to be permutable in G if it permutes with all the subgroups of G. H is said to be S-permutable (or π-quasinormal) in G if it permutes with every Sylow subgroup of G. This concept has been introduced by Kegel [6], and has been widely studied by some authors; see, for example, [4] and [9].

MSC(2010): Primary: 20D10; Secondary: 20D20, 20D35
Keywords: SS-semipermutable subgroups, S-semipermutable subgroups, PST-groups.
Received: 21 October 2015, Revised: 18 June 2016.
*Corresponding author.
Permutability and S-permutability, like normality, are not, in general, transitive relations. This observation is the point of departure of the study of some relevant classes of groups such as T-groups, PT-groups, and PST-groups. Recall that a group G is called a T-group (resp. PT-group, PST-group) if normality (resp. permutability, S-permutability) is a transitive relation. By [6], PST-groups are exactly those groups in which every subnormal subgroup of G is S-permutable in G. Agrawal [1] have shown that a group G is a solvable PST-group if and only if the nilpotent residual L of G is a normal abelian Hall subgroup of G upon which G acts by conjugation as power automorphisms. Solvable PST, PT, and T-groups have been studied and characterized by Agrawal [1], Gaschütz [5] and Zacher [11].

A subgroup H of a group G is said to be semipermutable (resp. S-semipermutable) in G if H permutes with every subgroup (resp. Sylow subgroup) X of G such that $(|X|, |H|) = 1$. A group G is called a BT-group (resp. an SBT-group) [10] if semi-permutability (resp. S-semi-permutability) is a transitive relation. Wang et al. have shown that every subgroup of G is semipermutable in G if and only if every subgroup of G is S-semipermutable in G.

In 2008, Li et al. [7], have introduced the concept of SS-permutability (or SS-quasinormality), which is a generalization of S-permutability. A subgroup H of G is said to be SS-permutable in G if H has a supplement K in G such that H permutes with every Sylow subgroup of K. In this case, K is called an SS-permutable supplement of H in G. Also in 2014, Chen and Guo have introduced a new concept called NSS-permutable as follows: A subgroup H of a group G is said to be NSS-permutable [3] in G if H has a normal supplement K in G such that H permutes with every Sylow subgroup of K. In this case, K is called an NSS-permutable supplement of H in G. Moreover, a group G is called an SST-group (resp. an NSST-group) [3] if SS-permutability (resp. NSS-permutability) is a transitive relation. A subgroup H of G is said to be τ-quasinormal in G if $HG_p = G_pH$ for every $G_p \in Syl_p(G)$ such that $(|H|, p) = 1$ and $(|H|, |G_p^G|) \neq 1$.

In this paper, we introduce a new subgroup embedding property, namely, SS-semipermutable which may be viewed as a generalization of both SS-permutable and semipermutable concepts, as follows:

Definition 1.1. We say that a subgroup H of a group G is SS-semipermutable in G if H has a supplement K in G such that H permutes with all Sylow subgroups X of K such that $(|X|, |H|) = 1$. In this case, K is called an SS-semipermutable supplement of H in G.
We say that a group G is an SSBT-group if SS-semi-permutability is a transitive relation.

2. Preliminaries

In this section, we give some results that are useful in the sequel. The following Lemma is easy to prove.

Lemma 2.1. Let N_1 and N_2 be the subgroups of a group G and assume that $N_1N_2 \leq G$. If P_1 and P_2 are the Sylow p-subgroups of N_1 and N_2 respectively, where $p \in \pi(G)$, and $P_1P_2 \leq N_1N_2$, then P_1P_2 is a Sylow p-subgroup of N_1N_2.

Lemma 2.2. Suppose that a subgroup H of a group G is SS-semipermutable in G with a SS-semipermutable supplement K and $L \leq G$. Then

1. If $H \leq L$, then H is SS-semipermutable in L.
2. Every conjugate of K in G is a SS-semipermutable supplement of H in G.
3. If H is a p-subgroup, where $p \in \pi(G)$ and $H \leq F(G)$, then H is S-permutable in G.

Proof. (1) Since $HK = KH$, $L = (HK) \cap L = H(K \cap L)$, which means that $(K \cap L)$ is a supplement of H in L. Now, suppose that $X \in Syl(K \cap L)$ with $(|X|, |H|) = 1$. Then there exists $Y \in Syl(K)$ such that $X \leq Y$. By hypothesis, $HY = YH$. Hence, $HY \cap L = H(Y \cap L) = HX$ and $L \cap (YH) = (L \cap Y)H = XH$. Therefore, $HX = XH$, and this shows that H is SS-semipermutable in L.

(2) Let $g \in G$. Then it is easy to see that $K^gH = G$. Now, suppose that X is a Sylow subgroup of K^g such that $(|X|, |H|) = 1$, where $p \in \pi(G)$. Then $X^{g^{-1}}$ is a Sylow p-subgroup of K with $(|X^{g^{-1}}|, |H|) = 1$. Hence, $X^{g^{-1}}H = HX^{g^{-1}}$. This shows that $XH = HX$.

(3) Let Q be a Sylow q-subgroup of K, where $q \in \pi(G)$ and $q \neq p$. Then $HQ = QH$, and HQ contains a Sylow q-subgroup Q^* of G. As $H \leq O_p(G)$, it follows that $H = O_p(G) \cap HQ \leq HQ$, and thus Q^* normalizes H. Since this holds for all primes $q \neq p$, we deduce that $O^p(G) \leq N_G(H)$. Now applying [9, Lemma A], we have that H is S-permutable in G.

Lemma 2.3. Let G be a group. Then every SS-semipermutable subgroup of G is τ-quasinormal in G.

Proof. Let H be a SS-semipermutable subgroup of G, and X be a Sylow subgroup of G such that $(|X|, |H|) = 1$ and $(|H|, |G^p_H|) \neq 1$. Then there exists an element $h \in H$ such that $X^h \leq K$. It follows that
Suppose that a subgroup $H \trianglelefteq G$, and so $HX = XH$. Therefore, H is τ-quasinormal in G. \hfill \Box

Lemma 2.4. [8, Theorem 1.2] Let G be a group. Then every subgroup of $F^*(G)$ is τ-quasinormal in G if and only if G is a solvable PST-group.

Lemma 2.5. Let T and S be SS-semipermutable in a solvable group G with $(|T|, |S|) = 1$. Then (T, S) is SS-semipermutable in G.

Proof. Let K_1 and K_2 be SS-semipermutable supplements of T and S, respectively. Note that G is a solvable group. By Lemma 2.2(2), without less of generality, we may assume that $S \leq K_1$ and $T \leq K_2$. Then $TS(K_1 \cap K_2) = TK_1 = G$. This means that $K_1 \cap K_2$ is a supplement of (T, S) in G. For any Sylow p-subgroup X of $K_1 \cap K_2$ such that $p \in \pi(K_1 \cap K_2)$ and $(|X|, |(T, S)|) = 1$, there exist a Sylow p-subgroup K_1p of K_1 and a Sylow p-subgroup K_2p of K_2 such that $X = K_1p \cap K_2 = K_1 \cap K_2p$. Note that $p \nmid |T|$ and $p \nmid |S|$. Hence, $TK_1p = K_1p \cdot T$ and $SK_2p = K_2p \cdot S$. This shows that $T(K_1p \cap K_2) = (K_1p \cap K_2) \cdot T$ and $S(K_1 \cap K_2p) = (K_1 \cap K_2p) \cdot S$. Thus $(T, S)X = X(T, S)$, which implies that $K_1 \cap K_2$ is a SS-semipermutable supplement of (T, S) in G. Therefore, (T, S) is SS-semipermutable in G. \hfill \Box

Proposition 2.6. Suppose that a subgroup H of a group G is SS-semipermutable in G with a SS-semipermutable supplement K, $L \leq G$ and $N \trianglelefteq G$. Then

1. If H is a p-group, where $p \in \pi(G)$, then $(HN)/N$ is SS-semipermutable in G/N.
2. If $N \leq L$ and L/N is SS-semipermutable in G/N, then L is SS-semipermutable in G.
3. If N is nilpotent, then NK is a SS-semipermutable supplement of H in G.

Proof. (1) It is clear that KN/N is a supplement of HN/N. Let A/N be a Sylow q-subgroup of KN/N such that $(|A|, |HN/N|) = 1$, where $q \in \pi(G)$. Then there exists a Sylow q-subgroup X of KN such that $A = XN$. Further, there exist Sylow q-subgroups K_q of K and N_q of N such that $Y = K_qN_q$ is a Sylow q-subgroup of KN. Hence, $XN/N = (YN/N)^{kN} = (K_qN/N)^{kN} = K_q^kN/N$ for some $k \in K$.

Since $(|K_q^kN|/|N|, |HN/N|) = 1$, we have $(|K_q^kN|/|K_q^k \cap N|, |H|/|H \cap N|) = 1$. If $p \neq q$, it is clear that $(|K_q^k|, |H|) = 1$, and so $K_q^kH = HK_q^k$, which implies that $(A/N)(HN/N) = (HN/N)(A/N)$. If $p = q$ and $(|K_q^k|, |H|) = 1$, we have $(A/N)(HN/N) = (HN/N)(A/N)$. If $p = q$ and $(|K_q^k|, |H|) \neq 1$, we have the following two cases:
i. \(K^k_q = K^k_q \cap N \), which implies that \(K^k_q N/N = 1 \).

ii. \(H = H \cap N \), which implies that \(HN/N = 1 \).

Therefore, \((A/N)(HN/N) = (HN/N)(A/N) \), and so \(HN/N \) is SS-semipermutable in \(G \).

(2) Let \(K/N \) be a SS-semipermutable supplement of \(L/N \) in \(G/N \). Then \((K/N)(L/N) = G/N \), which means that \(KL = G \). If \(X \) is a Sylow \(p \)-subgroup of \(K \) such that \((|X|, |L|) = 1 \), then \(XN/N \) is a Sylow \(p \)-subgroup of \(KN/N \) and \((|XN/N|, |L/N|) = 1 \). Hence, \((XN/N)(L/N) = (L/N)(XN/N) \). Therefore, \(XNL = LNX \) yields \(XL = LX \).

(3) Since \(N \) is nilpotent, for every \(p \in \pi(G) \) and every \(N_p \leq G \). By Lemma 2.1, for every \(K_p \in \text{syl}_p(K) \), \(N_pK_p \leq \text{syl}_p(NK) \). Now, suppose that \(X \) is a Sylow \(p \)-subgroup of \(NK \) such that \((|X|, |H|) = 1 \), where \(p \in \pi(G) \). Then there exists an element \(g \in G \) such that \(X = (N_pK_p)^g \) for some \(N_p \leq \text{syl}_p(N) \) and \(K_p \leq \text{syl}_p(K) \). Hence, \(K_pH = HK_p \), which means that \(XH =HX \). Therefore, \(NK \) is a SS-semipermutable supplement of \(H \) in \(G \).

\[\square \]

3. Main results

Theorem 3.1. Let \(G \) be a group. Then the following statements are equivalent:

(1) \(G \) is solvable, and every subnormal subgroup of \(G \) is SS-semipermutable in \(G \).

(2) Every subgroup of \(F^*(G) \) is SS-semipermutable in \(G \).

(3) \(G \) is a solvable PST-group.

Proof. Assume that \(G \) is a solvable PST-group. Then every subnormal subgroup of \(G \) is S-permutable in \(G \), and so SS-semipermutable in \(G \). Therefore, (3) implies (1).

Now, we show that (2) implies (3). Suppose that every subgroup of \(F^*(G) \) is SS-semipermutable in \(G \). Then by Lemma 2.3, every subgroup of \(F^*(G) \) is \(\tau \)-quasinormal in \(G \). Now, applying Lemma 2.4, we have that \(G \) is a solvable PST-group and thus (3) holds.

Finally, we prove that (1) implies (2). Assume that \(G \) is a solvable group and every subnormal subgroup of \(G \) is SS-semipermutable in \(G \). Then \(F^*(G) = F(G) \), and so every subgroup of \(F^*(G) \) is SS-semipermutable in \(G \).

\[\square \]

Theorem 3.2. Let \(G \) be a group. Then the following statements are equivalent:

(1) Whenever \(H \leq K \) are two \(p \)-subgroups of \(G \) with \(p \in \pi(G) \), \(H \) is SS-semipermutable in \(N_G(K) \).

(2) \(G \) is a solvable PST-group.
Proof. Assume that (1) holds. By Lemma 2.2(3), whenever $H \leq K$ are two p-subgroups of G with $p \in \pi(G)$, H is S-permutable in $N_G(K)$. It follows from [2, Theorem 4] that G is a solvable PST-group, and so (2) follows.

By [2, Theorem 4], again, we also see that (2) implies (1). □

Theorem 3.3. Let G be a solvable group. Then the following statements are equivalent:

1. G is a SSBT-group.
2. Every subgroup of G is SS-semipermutable in G.
3. Every subgroup of G of prime power order is SS-semipermutable in G.

Proof. Suppose that G is a SSBT-group. Then every subnormal subgroup of G is SS-semipermutable in G. By Theorem 3.1, G is a PST-group. Let L be the nilpotent residual of G. Since all subgroups of L are normal in G, every subgroup H of G is SS-semipermutable in HL. As HL is subnormal subgroup of G, it follows that HL is SS-semipermutable in G. Hence, H is SS-semipermutable in G. Since (2) implies (1), (1) and (2) are equivalent.

Now, assume that every subgroup of G of prime power order is SS-semipermutable in G. By Lemma 2.5, it is easy to see that every subgroup of G is SS-semipermutable in G, and it follows that (3) implies (2). This completes the proof. □

Corollary 3.4. Let G be a solvable group. Then the following statements are equivalent:

1. G is a SSBT group.
2. Every subgroup of G is either SS-semipermutable or abnormal in G.

Proof. By Theorem 3.3, (1) implies (2). Suppose that every subgroup of G is either SS-semipermutable or abnormal in G. According to proof of Lemma 2.3 and using [12, Lemma 1], G is supersolvable. Let H be a p-subgroup of G with $p \in \pi(G)$. If p is not the smallest prime divisor of $|G|$, then H is not abnormal in G. Hence, H is SS-semipermutable in G. Now assume that p is the smallest prime divisor of $|G|$. If H is not a Sylow p-subgroup of G, then H is not abnormal in G, and by hypothesis, H is SS-semipermutable in G. If $H \in Syl_p(G)$, $HG_q = G_qH$ for every $G_q \in Syl_q(G)$ with $q \in \pi(G)$ and $p \neq q$. Then every Hall p'-subgroup of G is an SS-semipermutable supplement of H in G, and so H is SS-semipermutable in G. Hence, every subgroup of G of prime power order is SS-semipermutable in G. Now, applying
Theorem 3.3, we have that G is a SSBT-group, and this completes the proof. □

Corollary 3.5. The class of all solvable SSBT-groups is closed under taking subgroups and direct product.

Proof. Let G be a solvable SSBT-group. If H is a subgroup of G, then by Lemma 2.2(1) and Theorem 3.3, H is an SSBT-group. Therefore, the class of all solvable SSBT-groups is closed under taking subgroups. Now, we prove that the class of all solvable SSBT-groups is closed under taking direct product. Let G_1 and G_2 be solvable SSBT-groups and $H_1 \times H_2$ be a subgroup of $G_1 \times G_2$. Then by Theorem 3.3, H_1 and H_2 are SS-semipermutable in G_1 and G_2, respectively. Let K_1 and K_2 be SS-semipermutable supplements of H_1 and H_2 in G_1 and G_2, respectively. Suppose further that $X_1 \times X_2$ is a Sylow subgroup of $K_1 \times K_2$ such that $(|X_1 \times X_2|, |H_1 \times H_2|) = 1$. Hence, $X_1 H_1 = H_1 X_1$ and $X_2 H_2 = H_2 X_2$, and so $(X_1 \times X_2)(H_1 \times H_2) = (H_1 \times H_2)(X_1 \times X_2)$. Therefore, $H_1 \times H_2$ is SS-semipermutable in $G_1 \times G_2$, and so by Theorem 3.3, $G_1 \times G_2$ is an SSBT-group. This shows that the class of all solvable SSBT-groups is closed under taking direct product. □

References

10. L. Wang, Y. Li and Y. Wang, Finite groups in which (S)-semi-permutability is a transitive relation, Int. J. Algebra. 2 (2008), 143–152.

Sayed Ebrahim Mirdamadi
Department of Mathematics, University of Shahrekord, P.O.Box 115, Shahrekord, Iran.
ebrahimmirdamadi@stu.sku.ac.ir

Gholamreza Rezaeezadeh
Department of Mathematics, University of Shahrekord, P.O.Box 115, Shahrekord, Iran.
Email: rezaeezadeh@sci.sku.ac.ir
ON FINITE GROUPS IN WHICH SS-SEMI-PERMUTABILITY IS A TRANSITIVE RELATION

S. E. MIRDAMADI AND G. R. REZAEZADEH

بررسی گروه‌های متناهی که SS-نیمه‌جابجایی‌پذیری یک خاصیت متعددی باشند

سید ابراهیم میردامادی و غلامرضا رضایی‌زاده
دانشگاه شهرکرد-دانشکده علوم ریاضی

فرض کنید H یک زیرگروه از گروه متناهی G باشد. زیرگروه G را SS-نیمه‌جابجایی‌پذیر در نامیم هرگاه H باشد به نحوی که H با آن در ک منظم به ارتباط و از K یک زیرگروه سیلوی X باشد. زیرگروه H نیمه‌جابجایی‌پذیر و گروه‌های متناهی SS-نیمه‌جابجایی‌پذیر، در این مقاله ساختار گروهرئی SS-نیمه‌جابجایی‌پذیری در آن یک خاصیت متعددی باشد بررسی شده است. به عنوان نمونه ثابت PST-گروه G است. است SS-نیمه‌جابجایی‌پذیر در $N_G(H)$.

کلمات کلیدی: زیرگروه‌های SS-نیمه‌جابجایی‌پذیر، زیرگروه‌های PST-جوابجایی‌پذیر، گروه‌های SS.