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MORE ON EDGE HYPER WIENER INDEX OF
GRAPHS

A. ALHEVAZ∗ AND M. BAGHIPUR

Abstract. Let G = (V (G), E(G)) be a simple connected graph
with vertex set V (G) and edge set E(G). The (first) edge-hyper
Wiener index of the graph G is defined as:

WWe(G) =
∑

{f,g}⊆E(G)

(de(f, g|G) + d2e(f, g|G))

=
1

2

∑
f∈E(G)

(de(f |G) + d2e(f |G)),

where de(f, g|G) denotes the distance between the edges f = xy
and g = uv in E(G) and de(f |G) =

∑
g∈E(G) de(f, g|G). In this pa-

per, we use a method, which applies group theory to graph theory,
to improving mathematically computation of the (first) edge-hyper
Wiener index in certain classes of graphs. We give also upper and
lower bounds for the (first) edge-hyper Wiener index of a graph
in terms of its size and Gutman index. Our aim in last section is
to investigate products of two or more graphs, and compute the
second edge-hyper Wiener index of the some classes of graphs.

1. Introduction and preliminaries

Unless stated otherwise, the graphs considered in this paper are undi-
rected, connected, simple and finite, i.e., connected graphs on a finite
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number of vertices without multiple edges or loops. A graph is (usu-
ally) denoted by G = (V (G), E(G)), where V (G) is its vertex set and
E(G) its edge set. The order of G is the number n = |V (G)| of its ver-
tices and its size is the number m = |E(G)| of its edges. Two vertices
of G, connected by an edge, are said to be adjacent. The number of
vertices of G, adjacent to a given vertex v, is the degree of this vertex,
and will be denoted by degG(v). The distance between two vertices
u and v in a connected graph G is the length of any shortest path
between these vertices, and it is denoted by d(u, v|G) or d(u, v). For
undefined terminology and notation for graphs, we refer to [2].

Graph invariants are properties of graphs that are invariant under
graph isomorphisms. The first, and most well-known parameter, the
Wiener index, was introduced in the late 1940’s by Harold Wiener in an
attempt to analyze the chemical properties of paraffins (alkanes) and
connection with the modeling of various physico-chemical, biological
and pharmacological properties of organic molecules in chemistry [13].
This is a distance-based index, whose mathematical properties and
chemical applications have been widely researched (see [11]). In our
notation, it can be described as follows:

W (G) =
∑

{u,v}⊆V (G)

d(u, v|G) =
1

2

∑
u∈V (G)

d(u|G),

where d(u|G) =
∑

v∈V (G) d(u, v|G). In mathematical research, the

Wiener index has been first studied in [6], and for along time math-
ematicians were not aware of the importance of the Wiener index in
mathematical chemistry. Milan Randić introduced a modification of
the Wiener index for trees (acyclic graphs), and it is known as the
hyper-Wiener index. Then Klein et al., generalized Randić’s defini-
tion for all connected (cyclic) graphs, as a generalization of the Wiener
index, denoted by WW (G) and defined as

WW (G) =
1

2

∑
u∈V (G)

[d(u|G) + d2(u|G)].

The Wiener index and the hyper-Wiener index are based on the
distances between pairs of vertices in a graph and therefore, similar
concepts have been introduced for distances between pairs of edges
under the names of the edge-Wiener index [9] and the edge-hyper-
Wiener index [10], respectively. Let f = xy and g = uv be two
edges of G. The distance between f and g is denoted by de(f, g|G),
and defined as the distance between the vertices f and g in the line
graph of G. This distance is equal to D(f, g) + 1, where D(f, g) =
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min{d(x, u), (x, v), (y, u), (y, v)}. For example, distance 1 means that
the edges share a vertex and distance 2 means that at least two of the
four end vertices of two edges are adjacent.

The (first) edge Wiener index of the graph G, is denoted by W0e(G),
and defined as the sum of distances between all pairs of edges of the
graph G. That is,

W0e(G) =
∑

{f,g}⊆E(G)

de(f, g|G) =
1

2

∑
f∈E(G)

de(f |G), (1.1)

where de(f |G) =
∑

g∈E(G) de(f, g|G).

It is purposeful to generalize Eq. (1.1) in the following manner [10]:

W λ
0e(G) =

∑
{f,g}⊆E(G)

dλe (f, g|G) =
1

2

∑
f∈E(G)

dλe (f |G),

where λ is some parameter and we name it the (first) edge-Wiener type
index. Also, by [10], the (first) edge hyper Wiener index of the graph
G is defined as:

WW0e(G) =
∑

{f,g}⊆E(G)

(de(f, g|G) + d2e(f, g|G))

=
1

2

∑
f∈E(G)

(de(f |G) + d2e(f |G)).

In this paper, we are concerned with some variants of the Wiener
index. The paper is organized as follows. In Section 2, our aim is to use
a method which applies group theory to graph theory. We improve only
mathematically computation of the (first) edge-hyper Wiener index in
certain graphs by this method. We encourage the interested readers
to consult also the paper by Darafsheh [5], and references therein, for
more information on this topic.

First, we need some concepts from the theory of groups and graph
theory, that we will give in the following. Let A = Aut(G) be the
automorphism group of a graph G. A acts transitive on V (G) (or
E(G)), if for any pair u, v of vertices (or f, g of edges) in G, there
exists an automorphism σ such that σ(u) = v (or σ(f) = g). In this
case, G is called vertex-transitive (or edge-transitive) (see [2]).

The triangular graph T (n) is the line graph of the complete graph
Kn. The vertices of T (n) may be identified with the 2-subsets of Ω =
{1, 2, . . . , n}, in fact V = {{a, b}| a, b ∈ Ω, a ̸= b}. Two distinct
vertices {a, b} and {c, d} are adjacent if the 2-subsets have a non-empty
intersection. We have |V | =

(
n
2

)
, the degree of each vertex is 2n − 4
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and hence |E| = (n − 2)
(
n
2

)
. We can see easily that T (n) is an edge-

transitive graph [4]. We will express explicit formula for the (first)
edge-hyper Wiener index of this graph, based on the properties of the
automorphism group of the graph.

In Section 3, we investigate some relations between Gutman index
and the (first) edge-hyper Wiener index. In Section 4, we study the
second edge-hyper Wiener index, and its behavior under the join of
graphs. Some results of this paper are analogous to the results obtained
in [12].

2. On the (first) edge-hyper Wiener index

In this section, we calculate the (first) edge-hyper Wiener index of
some classes of graphs such as triangular graphs. Also, we obtain an
explicit formula for the (first) edge-hyper Wiener index of the Carte-
sian product of two graphs using the group automorphisms of graphs.
Before proceeding further, let us first set some notations and termi-
nologies. Let E ′ and E ′′ be two subsets of E = E(G). Then, define
de(E

′, E ′′) and d2e(E
′, E ′′) as follows:

de(E
′, E ′′) =

∑
f∈E′

∑
g∈E′′

de(f, g),

d2e(E
′, E ′′) =

∑
f∈E′

∑
g∈E′′

d2e(f, g).

According to the above notations, we can rewrite:

WW0e(G) =
1

2
(de(E,E) + d2e(E,E)).

Define distance number δe(σ) and second distance number δ
(2)
e (σ) of

σ ∈ A = Aut(G), as follows:

δe(σ) =
1

|E|
∑
f∈E

de(f, σ(f)),

and

δ(2)e (σ) =
1

|E|
∑
f∈E

d2e(f, σ(f)).

If Γ is a subgroup of A, then we define δe(Γ) and δ
(2)
e (Γ) as follows:

δe(Γ) =
1

|Γ|
∑
σ∈Γ

δe(σ) =
1

|Γ||E|
de(f, σ(f)),
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and

δ(2)e (Γ) =
1

|Γ|
∑
σ∈Γ

δ(2)e (σ) =
1

|Γ||E|
d2e(f, σ(f)).

When Γ = A, the distance number and second distance number of a
graph G, are denoted by δe(A) and δ2e(A), respectively. Since Γ acts on
the set E, we denote the orbits of this action by Ei = O(fi) = {fσ

i |σ ∈
A, 1 ≤ i ≤ r}. Therefore, we have E = E1 ∪ . . . ∪ Er. We bring the
following lemma, which was proved in [7], and will be used frequently
in the sequel.

Lemma 2.1. (Orbit-stabilizer) Let G be a permutation group acting
on Ω and let ω be a point in Ω. Then, |G| = |Gω||ωG|, where ωG =
{ωG|g ∈ G} is an orbit of G and Gω = {g ∈ G|ωG = ω} is the stabilizer
of ω in G.

So, if Γi = {σ ∈ Γ|fσ
i = fi} denotes a stabilizer of an edge fi from

Ei, then by the Lemma 2.1, we get |Γ| = |Ei||Γi|.
In the following theorem, we show that the (first) edge-hyper Wiener

index of an edge-transitive graph G, can be expressed in terms of the
distance number and the second distance number of G.

Theorem 2.2. Let G be a connected graph with the edge set E = E(G).
If we assume that A = Aut(G), and for 1 ≤ i ≤ r, Ei, is an orbit of
the action of A on the set E, then

|E|(δe(A) + δ2e(A)) =
r∑

i=1

2WW0e(Ei)

|Ei|
.

Proof. Take Γ = A and for two edges f and g of G, let
∑

= {σ ∈
Γ|fσ = g} and n(f, g) = |

∑
|. We denote by Γf the stabilizer group

for f. If f and g belong to the same orbit Ei, we can construct a
bijection between Γf and Γg, and hence n(f, g) = |Γf | = |Γg|(= |Γi|).
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Now, we have

σe(A) + σ(2)
e (A) =

1

|Γ|
∑
σ∈Γ

(δe(σ) + δ(2)e (σ))

=
1

|Γ||E|
∑
f∈E

∑
σ∈Γ

(de(f, σ(f)) + d2e(f, σ(f)))

=
1

|Γ||E|
∑
f∈E

∑
g∈E

n(f, g)(de(f, g) + d2e(f, g))

=
1

|Γ||E|

r∑
i=1

∑
f∈Ei

∑
g∈Ei

(de(f, g) + d2e(f, g))|Γi|

=
1

|E|

r∑
i=1

|Γi|
|Γ|

(d(Ei, Ei) + d2(Ei, Ei)).

Therefore,

|E|(δe(A)+δ2e(A)) =
r∑

i=1

1

|Ei|
(d(Ei, Ei)+d2(Ei, Ei) =

r∑
i=1

2WW0e(Ei)

|Ei|
,

and hence we get the desired result. □

Corollary 2.3. If G is an edge-transitive graph, then

WW0e(G) =
|E|2(δe(A) + δ2e(A))

2
.

For a subset U of E = E(G), define

ω0e(U) =
1

|U |2
∑
f∈U

∑
g∈U

de(f, g) =
1

|U |2
de(U,U),

and

ω
(2)
0e (U) =

1

|U |2
∑
f∈U

∑
g∈U

d2e(f, g)) =
1

|U |2
d2e(U,U).

Clearly, we have

ω0e(U) + ω2
0e(U) =

2WW0e(U)

|U |2
.

Theorem 2.4. If for 1 ≤ i ≤ r, Ei, is an orbit, then for each edge
f ∈ Ei, we have

ω0e(Ei) + ω
(2)
0e (Ei) =

1

|Ei|
(de(f |Ei) + d2e(f |Ei)).
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Proof. We have

ω0e(Ei) =
1

|Ei|2
de(Ei, Ei),

and

ω
(2)
0e (Ei) =

1

|Ei|2
d2e(Ei, Ei).

However, if f and g are two elements from Ei, then for some σ ∈
Aut(G), we have fσ = g and also de(f |Ei) = de(g|Ei) and d2e(f |Ei) =
d2e(g|Ei). therefore,

ω0e(Ei) + ω
(2)
0e (Ei) =

1

|Ei|2
|Ei|(de(f |Ei) + d2e(f |Ei)).

□
Corollary 2.5. If G is an edge-transitive graph, then for each f ∈
E = E(G), we have

δe(A) + δ(2)e (A) = ω0e(E) + ω
(2)
0e (E) =

1

|E|
(de(f |G) + d2e(f |G)).

Corollary 2.6. If G is an edge-transitive graph, then for each f ∈
E = E(G), we have

WW0e(G) =
1

2
|E|(de(f |G) + d2e(f |G)).

Example 2.7. The automorphism group of Kn is the symmetric group
Sn. So, the complete graph Kn is an edge-transitive graph.Thus, we
have

WW0e(Kn) =
1

2
|E(Kn)|((de(f |G) + d2e(f |G))

=
1

2

(
n

2

)
((n2 − 3n+ 2) + (n2 − 3n+ 2)2)

=
1

2

(
n

2

)
(n4 − 6n3 + 14n2 − 15n+ 6).

Example 2.8. The Petersen graph P is edge-transitive. We have
WW0e(P ) = 1

2
|E|(de(f |P ) + d2e(f |P )), where f is an arbitrary edge

of P . One can see that de(f |P ) = 26, and then we conclude that
WW0e(P ) = 5265.

The next theorem shows that, an edge-transitive graph which is not
vertex-transitive is necessarily bipartite.

Theorem 2.9. [2] If a connected graph G is edge-transitive but not
vertex-transitive, then it is bipartite.
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Example 2.10. Since the complete bipartite graph Km,n with m ̸= n,
is edge-transitive, we have

WW0e(Kn) =
1

2
|E(Km,n)|((de(f |Km,n) + d2e(f |Km,n)).

Then, we get de(f |Km,n) =
∑

g∈E de(f, g) = 2mn− n−m, and hence

WW0e(Km,n) = 2(nm)2(nm−n−m+1)+
1

2
nm(n(n−1)+m(m−1)).

Now, in the following, we give the formula of the (first) edge-hyper
Wiener index of the triangular graph T (n), according to concepts in
transitive graphs.

Theorem 2.11. The (first) edge-hyper Wiener index of the triangular
graph G = T (n) is

WW0e(G) =
1

2
(n− 2)

(
n

2

)
(6n3 − 45n2 + 131n− 146).

Proof. The distance between any two distinct vertices of V is either 1
or 2. The vertices z whose distance from u = {a, b} ∈ V is 1 should
meet u in one element, hence the number of them is 2n − 4. If v is
another vertex of V with u∪ v = ∅, then v = {c, d}, where c and d are
distinct elements of Ω disjoint from a and b. Now, if we take w = {a, c},
then u → w → v is a path of length 2 from u to v.

Now, according to definition of the distance between f, g ∈ E, we
have de(f, g|G) = 1, 2 or 3. Fixing f = uv ∈ E, where u = {a, b} and
v = {c, d}. The edges whose distance from f is 1 should share with f
in one vertex. So, the number of these edges is 4n− 10. Suppose that
g = xy is a different edge from f . We let x = {r, s} and y = {r, t},
where r, s, t are distinct elements of Ω disjoint from a, b, c. Therefore, by
the above arguments, d(x, u) = d(x, v) = d(y, u) = d(y, v) = 2, and so
we have de(f, g|G) = min{d(x, u), d(x, v), d(y, u), d(y, v)}+1 = 3. The
number of these edges is equal to the number of selections of g = xy,

which is equal to (n−3)(n−4)(n−5)
2

. In this manner the number of edges

at distance 2 of f is 1
2
(9n2 − 53n+ 78), and then we get:

WW0e(G) =
1

2
|E|(de(f |G) + d2e(f |G))

=
1

2
(n− 2)

(
n

2

)
[
1

2
(3n3 − 18n2 + 43n− 44)

+
1

2
(9n3 − 72n2 + 219n− 248)]

=
1

2
(n− 2)

(
n

2

)
(6n3 − 45n2 + 131n− 146),
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Hence we conclude the desired result. □

Many interesting classes of graphs arise from simpler graphs via
binary operations known as graph products. The Cartesian prod-
uct of G and H is a graph, denoted by G × H, with vertex set is
V (G × H) = {(u, v)| u ∈ V (G), v ∈ V (H)}. Two vertices (u, x) and
(v, y) are adjacent precisely if u = v and xy ∈ E(H), or uv ∈ E(G) and
x = y. The graphs G and H are called factors of the product G×H. In
the case that G1 = G2 = · · · = Gn = G, we denote G1 ×G2 × · · · ×Gn

by Gn. In this part, we study the Cartesian product of vertex-transitive
graphs and then give another formula for this product. This formula is
better in vertex-transitive graphs. In [8], we have the following results
in relation to this product.

Lemma 2.12. [8] Let G and H be two graphs. Then we have

1. |V (G×H)| = |V (G)||V (H)|,
2. |E(G×H)| = |V (G)||E(H)|+ |E(G)||V (H)|,
3. If (u, x) and (v, y) are vertices of G×H,

then

d((u, x), (v, y)|G×H) = d(u, v|G) + d(x, y|H).

Lemma 2.13. [8] A cartesian product has transitive automorphism
group if and only if every factor has transitive automorphism group.

Lemma 2.14. [8] Let G and H be two vertex-transitive graphs. Then,
G×H is a vertex-transitive graph.

Lemma 2.15. [8] For any transitive graph G, the graph Gn is a vertex-
transitive graph.

Theorem 2.16. Let G and H be two vertex-transitive graphs. Then,
for each two vertices w ∈ G and x ∈ H, we have:

WW (G×H) =
1

2
|V (G×H)|2(d(w|G) + d2(w|G)

|V (G)|

+
d(x|G) + d2(x|G)

|V (H)|
+ 2

d(w|G)

|V (G)|
.
d(x|H)

|V (H)|
).

Proof. For each vertex (w, z) in G×H, first we have

d((w, x)|G×H) = |V (G×H)|(d(w|G)

|V (G)|
+

d(x|H)

|V (H)|
),
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and

d2((w, x)|G×H) = |V (G×H)|(d
2(w|G)

|V (G)|
+

d2(x|H)

|V (H)|

+ 2
d(w|G)

|V (G)|
.
d(x|H)

|V (H)|
).

Now, according to Lemma 2.14, G × H is a vertex-transitive graph,
and we get

WW (G×H) =
1

2
|V (G×H)|.(d((w, x)|G×H) + d2((w, x)|G×H))

=
1

2
|V (G×H)|2.(d(w|G) + d2(w|G)

|V (G)|

+
d(x|H) + d2(x|H)

|V (H)|
+ 2

d(w|G)

|V (G)|
.
d(x|H)

|V (H)|
).

Now, the theorem is proved.
□

Corollary 2.17. Let G1, G2, . . . , Gn be vertex-transitive graphs with
Vi = V (Gi), for 1 ≤ i ≤ n, and V = V (G) such that G = G1×· · ·×Gn.
Then,

WW (G) =
1

2
|V |2

n∑
i=1

[
d(ui|Gi) + d2(ui|Gi)

|Vi|
+ 2

n∏
i=1

d(ui|Gi)

|vi|2
].

3. Relations between Gutman index and the (first)
edge-hyper Wiener index

In this section, we give some bounds on WW0e(G) in terms of order
and size of a graph G, and characterize the extremal graphs. We also
bring some relations between Gutman index and the (first) edge-hyper
Wiener index.

Lemma 3.1. Let G be a connected graph of order n. Then

WW0e(G) ≥ (n− 1)(n− 2),

with equality holding if and only if G is a star.

Proof. First note that G has at least n − 1 edges, and the distance
between any two edges is at least 1. Hence

WW0e(G) =
∑

{f,g}⊆E(G)

(de(f, g)+d2e(f, g)) ≥ 2

(
|E(G)|

2

)
≥ (n−1)(n−2).
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If the equality holds, then G must have n − 1 edges, and therefore G
is a tree. Moreover, the line graph of G is complete, since the distance
between any two edges is 1. Hence, G is a star, as desired. □

Definition 3.2. Let G be a connected graph and c be a real valued
weight function on the vertices of G. Then, the hyper Wiener index of
G with respect to c is

WW (G, c) =
∑

{x,y}⊆V

c(x)c(y)(d(x, y) + d2(x, y)).

The (first) edge-hyper Wiener index of a graph is connected to its
Gutman index, which is defined as:

Gut(G) =
1

2

∑
u,v∈V (G)

deg(u)deg(v)d(u, v).

We have the Gutman type index, as well

Gutλ(G) =
1

2

∑
u,v∈V (G)

deg(u)deg(v)dλ(u, v).

Evidently, if λ = 1, then Gutλ(G) coincides with the ordinary Gutman
index Gut(G) (see also [14]).

Theorem 3.3. Let G be a connected graph of order n. Then

|8(WW0e(G) +W
(2)
0e (G))− 2(Gut(G) + 2Gut(2)(G))| ≤ 3n4.

Proof. Consider the graph H obtained from G be subdividing each
edge once. Consider the following functions a and b on V (H), defined
as follows:

a(v) =

{
deg(v) v ∈ V (G),
0 v ∈ V (H) \ V (G),

b(v) =

{
0 v ∈ V (G),
2 v ∈ V (H) \ V (G).

Since for any two vertices u, v of G, we have dH(u, v) = 2dG(u, v), it
follows that

WW (H, a) =
∑

{x,y}⊆V (H)

a(x)a(y)(dH(x, y) + d2H(x, y)) (3.1)

=
∑

{x,y}⊆V (G)

2deg(x)deg(y)(dG(x, y) + 2d2G(x, y))

= 2Gut(G) + 4Gut(2)(G).

Denote the vertex of degree 2 in V (H)−V (G) that subdivides the edge
f ∈ E(G) by vf . Then,b(x) ̸= 0 only if x = vf , for some edge f of G.
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For any two edges f, g of G, we have dH(vf , vg) = 2dG(f, g), and hence

WW (H, b) =
∑

{x,y}⊆V (H)−V (G)

b(x)b(y)(dH(x, y) + d2H(x, y)) (3.2)

=
∑

{f,g}⊆E(G)

4(2deG(f, g) + 4d2eG(f, g))

=
∑

{f,g}⊆E(G)

[4(2deG(f, g) + 2d2eG(f, g)) + 8d2eG(f, g)]

= 8WW0e(G) + 8W
(2)
0e (G).

We now compare WW (H, a) and WW (H, b). Clearly, the weight func-
tion a is obtained from the weight function b by moving one weight
unit of a vertex vuw to vertex u and the other weight unit to vertex w
for all uv ∈ E(G). Hence, no weight has been moved over a distance of
more than one, so no distance between two weights has been changed
by more than 2. Since, we have 2|E(G)| weight units in total, the
sum of the distances between the weight units has changed by at most
2
(
2|E(G)|

2

)
. Hence,

|WW (H, a)−WW (H, b)| ≤ 6

(
2|E(G)|

2

)
≤ 3n4,

which in view of Eq. (3.1) and Eq. (3.2), completes the proof. □

Theorem 3.4. [3] Let G be a connected graph of order n. Then

Gut(G) ≤ 24

55
n5 +O(n

9
2 ),

and the coefficient of n5 is best possible.

Corollary 3.5. Let G be a connected graph of order n. Then

Gut(2)(G) ≤ 24

56
n6 +O(n

11
2 ),

and the coefficient of n6 is best possible.

Corollary 3.6. Let G be a connected graph of order n. Then

WW0e(G) ≤ 22

56
n6 +O(n

11
2 ),

and the coefficient of n6 is best possible.

Definition 3.7. Let G be a graph with vertex set V = V (G) and edge
set E = E(G), and let N∗ denote the set of non-negative integers. The
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following notations are used

d : V × V → N∗

D : E × E → N∗

d′ : V × E → N∗

D′ : E × V → N∗,

where distance between u, v ∈ V , denoted by d(u, v), is defined as the
length of a shortest path between u and v and for edges e = ab and
f = xy,

d′(u, e) = D′(e, u) = min{d(u, a), d(u, b)},
and

D(e, f) = min{D′(e, x), D′(e, y)}.
Similarly, we define,

d′
2
(u, e) = D′2(e, u) = min{d2(u, a), d2(u, b)},

and
D2(e, f) = min{D′2(e, x), D′2(e, y)}.

This allows us to define the vertex-edge Wiener index of a graph as:

WWev(G) =
1

2

∑
f∈E(G)

∑
v∈V (G)

(d′(v, f) + d′
2
(v, f)).

In the next theorem, we give an upper bound for the first edge-hyper
Wiener index of a graph, in terms of its Gutman index and size.

Theorem 3.8. Let G be a connected graph of size m. Then we have

WW0e(G) ≤ 1

4
(3Gut(G) +Gut2(G)) +m(m− 2).

Proof. Let f = uv and g = xy be any two edges of G. By the definition
of D(f, g) and D2(f, g), it is obvious that

1

4
(d(u, x) + d(u, y) + d(v, x) + d(v, y))− 1

≤D(f, g)

≤1

4
(d(u, x) + d(u, y) + d(v, x) + d(v, y)),

and

D2(f, g) + 2D(f, g) + 1

≤ 1

16
(d(u, x) + d(u, y) + d(v, x) + d(v, y))2

+
1

2
(d(u, x) + d(u, y) + d(v, x) + d(v, y)) + 1.
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Then,

WW0e(G) =
∑

{f,g}⊆E(G)

(de(f, g) + d2e(f, g))

≤
∑

{f,g}⊆E(G)

(
1

4
(d(u, x) + d(u, y) + d(v, x) + d(v, y)) + 1)

+
∑

{f,g}⊆E(G)

1

16
(d2(u, x) + d2(u, y) + d2(v, x) + d2(v, y))

+
∑

{f,g}⊆E(G)

3

16
(d2(u, x) + d2(u, y) + d2(v, x) + d2(v, y))

+
∑

{f,g}⊆E(G)

1

2
(d(u, x) + d(u, y) + d(v, x) + d(v, y))

+
∑

{f,g}⊆E(G)

1

=
1

4

∑
uv∈E(G)

(d(u)d(v)− 1)(d(u, v) + d2(u, v))

+
1

4

∑
uv/∈E(G)

d(u)d(v)(d(u, v) + d2(u, v)) +
∑

{f,g}⊆E(G)

2

+
1

2

∑
uv∈E(G)

(d(u)d(v)− 1)d(u, v)

+
1

2

∑
uv/∈E(G)

d(u)d(v)d(u, v)

=
1

4

∑
{u,v}⊆V (G)

d(u)d(v)(d(u, v) + d2(u, v))

− 1

4

∑
uv⊆E(G)

(d(u, v) + d2(u, v))

+
1

2

∑
{u,v}⊆V (G)

d(u)d(v)d(u, v)− 1

2

∑
uv⊆E(G)

d(u, v)

+
∑

{f,g}⊆E(G)

2

=
1

4
(3Gut(G) +Gut2(G)) +m(m− 2).
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□
Lemma 3.9. Let T be a tree with n vertices. Then

WWev(T ) = WW (T )− (n− 1)W (T ) + (n− 2)

(
n

2

)
.

Proof. Consider v ∈ V (G). Define f : E(T ) → V (T )−v such that f(e)
is the end vertex of e with greater distance to v. Then, f is bijective
and so d′(v, T ) = d(v, T )− (n− 1). This implies that

WWev(T ) =
1

2

∑
v∈V (T )

(d′(v, T ) + d′
2
(v, T ))

=
1

2

∑
v∈V (T )

(d(v, T ) + d2(v, T )− 2(n− 1)d(v, T )

+ (n− 1)2 − (n− 1))

= WW (T )− (n− 1)W (T ) + (n− 2)

(
n

2

)
.

□

4. The second edge-hyper Wiener index

Edge versions of the Wiener index, based on the distance between all
pairs of edges in a simple connected graph G, were introduced in 2009
[9]. Two possible distances between the edges g = uv and f = zt of a
graph G can be considered. Each of them gives rise to a corresponding
(first) edge-Wiener index. The first distance, is the one based on the
distance between the corresponding vertices in the line graph of G, and
obviously, its related (first) edge-Wiener index is equal to the ordinary
Wiener index of the line graph of G. The second distance de|G(g, f),
between the edges g = uv and f = zt of the graph G, is defined in [9]
as

de|G(g, f) =

{
0 if g = f
max{dG(u, z), dG(u, t), dG(v, z), dG(v, t)} if g ̸= f

.

Related to this distance, the second edge-hyper Wiener indexWW1e(G)
of G, is defined in [9] as

WW1e(G) =
∑

{g,f}⊆E(G)

(de|G(g, f) + d2e|G(g, f)).

Let NG(u) denotes the neighborhood of a vertex u in G, i.e., the set of
all vertices of G adjacent to u. The degree of u in G, is the cardinality
of NG(u) and is denoted by degG(u). Let T (G) and R(G) denote the
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number of triangles in G and the number of subgraphs of G isomorphic
to the 4-vertex complete graph K4, respectively. It is easy to see that

T (G) =
1

3

∑
uv∈E(G)

|NG(u) ∩NG(v)|,

R(G) =
1

12

∑
uv∈E(G)

∑
z∈NG(u)∩NG(v)

|NG(u) ∩NG(v) ∩NG(z)|.

Corresponding to each triangle in G, there are 3 pairs of adjacent edges
which are at distance 1 in G. So, the number of such pairs of edges
in G is equal to 3T (G). Also, corresponding to each subgraph of G
isomorphic to K4, there are 3 pairs of nonadjacent edges which are at
distance 1 in G. So, the number of such pairs of edges in G is equal to
3R(G). Hence, the total number of pairs of edges which are at distance
1 in G is equal to 3(T (G) +R(G)).

Let x be a vertex of G and g = uv be an edge of G. The distance
DG(x, g), between the vertex x and the edge g of the graph G, is defined
in [1] as

DG(x, g) = max{dG(x, u), dG(x, v)}.

In the sequel, we will let ni and ei to denote the numbers of vertices
and edges of simple connected graphs Gi, respectively, where i ∈ {1, 2}.
Our aim is to compute the second edge-hyper Wiener index of the join
of G1 and G2.

Definition 4.1. The join of two vertex-disjoint graphs G1 and G2,
denoted G1∇G2, is defined as the graph with the vertex set V (G1) ∪
V (G2) and the edge set

E(G1∇G2) = E(G1) ∪ E(G2) ∪ S,

where S = {u1u2| u1 ∈ V (G1), u2 ∈ V (G2)}. All distinct vertices of
G1∇G2 are either at distance 1 or 2.

Theorem 4.2. Let G1 and G2 be two simple connected graphs. Then

WW1e(G1∇G2) = 6[

(
n1n2

2

)
+

(
e1
2

)
+

(
e2
2

)
]− 12(n1e2 + n2e1)

+ 6n1n2(e1 + e2)− 6e1e2 − 12(n2 + 1)T (G1)

− 12(n1 + 1)T (G2)− 12(R(G1) +R(G2)).
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Proof. Let E be the set of all pairs of edges of G1∇G2. We partition
E into six disjoint sets, as follows:

E1 = {{g, f}| g, f ∈ E(G1)};
E2 = {{g, f}| g, f ∈ E(G2)};
E3 = {{g, f}| g ∈ E(G1), f ∈ E(G2)};
E4 = {{g, f}| g ∈ E(G1), f ∈ S};
E5 = {{g, f}| g ∈ E(G2), f ∈ S};
E6 = {{g, f}| g, f ∈ S}.

The second edge-hyper Wiener index ofG1∇G2 is obtained by summing
the contributions of all pairs of edges over those six sets. We proceed
to evaluate their contributions in order of increasing complexity.

The case of E3 is the simplest. Let {g, f} ∈ E3, where g = u1v1 ∈
E(G1) and f = u2v2 ∈ E(G2). Then,

de|G1∇G2(g, f) = max{dG1∇G2(u1, u2), dG1∇G2(u1, v2), dG1∇G2(v1, u2),

dG1∇G2(v1, v2)} = max{1, 1, 1, 1} = 1.

There are e1e2 such pairs of edges in E3 and each of them contributes 2
to the second edge- hyper Wiener index. Hence, the total contribution
of pairs from E3 is equal to 2e1e2.

The set E6 contains pairs of edges from S. Let {g, f} ∈ E6 and
g = u1u2, f = v1v2, where u1, v2 ∈ V (G1), u2, v2 ∈ V (G2). Then

de|G1∇G2(g, f) = max{dG1∇G2(u1, v1), dG1∇G2(u1, v2), dG1∇G2(u2, v1),

dG1∇G2(u2, v2)}
= max{dG1∇G2(u1, v1), 1, 1, dG1∇G2(u2, v2)}.

The total number of pairs of edges in E6 is equal to
(
n1n2

2

)
. Among them,

there are n1e2+n2e1+2e1e2 pairs that contribute 2 to the second edge-
hyper Wiener index, and all other pairs contribute 6. Hence, the total
contribution of pairs from E6 is also equal to

6

(
n1n2

2

)
− 4n1e2 − 4n2e1 − 8e1e2.

Now, we compute the contribution of pairs from E4. Let {g, f} ∈ E4

and g = u1v1 ∈ E(G1) and f = z1u2 ∈ S, where u1, v1, z1 ∈ V (G1), u ∈
V (G2). Then,

de|G1∇G2(g, f) = max{dG1∇G2(u1, z1), dG1∇G2(u1, u2), dG1∇G2(v1, z1),

dG1∇G2(v1, u2)}
= max{dG1∇G2(u1, z1), 1, dG1∇G2(v1, z1), 1}.
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The total number of pairs from E4 is equal to e1n1n2. Among them
there are 2e1n2+3n2T (G1) pairs that contribute 2 to the second edge-
hyper Wiener index, and all other pairs contribute 6. Hence, the total
contribution of pairs from E4 is equal to

6e1n1n2 − 8e1n2 − 12n2T (G1).

By symmetry, the total contribution of pairs from E5 is equal to

6e2n1n2 − 8e2n1 − 12n1T (G2).

Let {g, f} ∈ E1, where g = u1v1, f = z1t1. Then

de|G1∇G2(g, f) = max{dG1∇G2(u1, z1), dG1∇G2(u1, t1), dG1∇G2(v1, z1),

dG1∇G2(v1, t1)}.
The total number of pairs in E1 is equal to

(
e1
2

)
. As mentioned before,

3(T (G) + R(G)) pairs contribute 2 to the second edge-hyper Wiener
index, and all other pairs contribute 6. Hence the total contribution of
pairs from E1 is equal to

6

(
e1
2

)
− 12(T (G1) +R(G1)).

Again, the total contribution of E2 is obtained by the symmetry as

6

(
e2
2

)
− 12(T (G2) +R(G2)).

Now, by adding the contributions of E1, . . . , E6 and simplifying the
resulting expression, the result follows. □
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گراف�ها یالی هایپر-وینر شاخص درباره

باغی�پور مریم و آل�هوز عبداله
٣۶١٩٩٩۵١۶٣١-١۶ پستی: صندوق شاهرود، صنعتی دانشگاه ریاضی علوم دانشکده

مجموعه و V (G) راسی مجموعه با همبند ساده گراف یک G = (V (G), E(G)) کنید فرض
می�شود: تعریف زیر �صورت به G گراف یالی هایپر-وینر شاخص (اولین) باشد. E(G) یالی

WWe(G) =
∑

{f,g}⊆E(G)

(de(f, g|G) + d٢e(f, g|G))

=
١
٢

∑
f∈E(G)

(de(f |G) + d٢e(f |G)),

de(f |G) = و بوده E(G) در g = uv و f = xy یال�های بین فاصله de(f, g|G) جایی�که
نظریه برای را گروه�ها نظریه که می�کنیم استفاده روشی از ما مقاله این در .

∑
g∈E(G) de(f, g|G)

گراف�ها از خاص ای رده در را یالی هایپر-وینر شاخص (اولین) ریاضی محاسبه�ی و گرفته کار به گراف
اندازه برحسب یالی هایپر-وینر شاخص (اولین) برای پایین و بالا کران�هایی همچنین، می�بخشد. تسهیل
و پرداخته گراف�ها حاصل�ضرب بررسی به نیز آخر بخش در می�کنیم. ارایه گراف یک گوتمن شاخص و

می��نماییم. محاسبه گراف�ها از خاص رده�هایی برای را یالی هایپر-وینر شاخص دومین

همبندی، گوتمن، شاخص گراف، دو پیوند یالی، گراف یالی، هایپر-وینر شاخص فاصله، کلیدی: کلمات
انتقالی. یال گراف�های

۵
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