1. PRIMARY ZARISKI TOPOLOGY ON THE PRIMARY SPECTRUM OF A MODULE

H. Bijari; K. Khashyarmanesh; H. Fazaeli Moghim

Volume 8, Issue 1 , Summer and Autumn 2020, , Pages 53-68

Abstract
  ‎‎Let $R$ be a commutative ring with identity and let $M$ be an $R$-module‎. ‎We define the primary spectrum of $M$‎, ‎denoted by $\mathcal{PS}(M)$‎, ‎to be the set of all primary submodules $Q$ of $M$ such that $(\operatorname{rad}Q:M)=\sqrt{(Q:M)}$‎. ‎In this ...  Read More

2. ZARISKI-LIKE SPACES OF CERTAIN MODULES

H. Fazaeli Moghim; F. Rashedi

Volume 1, Issue 2 , Winter and Spring 2014, , Pages 101-115

Abstract
  Let $R$ be a commutative ring with identity and $M$ be a unitary $R$-module. The primary-like spectrum $Spec_L(M)$ is the collection of all primary-like submodules $Q$ such that $M/Q$ is a primeful $R$-module. Here, $M$ is defined to be RSP if $rad(Q)$ is a prime submodule for all $Q\in Spec_L(M)$. This ...  Read More