Volume 10 (2022-2023)
Volume 9 (2021-2022)
Volume 8 (2020-2021)
Volume 7 (2019-2020)
Volume 6 (2018-2019)
Volume 5 (2017-2018)
Volume 4 (2016-2017)
Volume 3 (2015-2016)
Volume 2 (2014-2015)
Volume 1 (2013-2014)
NEW BOUNDS AND EXTREMAL GRAPHS FOR DISTANCE SIGNLESS LAPLACIAN SPECTRAL RADIUS

A. Alhevaz; M. Baghipur; S. Paul

Volume 8, Issue 2 , January 2021, , Pages 231-250

https://doi.org/10.22044/jas.2020.9540.1469

Abstract
  The distance signless Laplacian spectral radius of a connected graph $G$ is the largest eigenvalue of the distance signless Laplacian matrix of $G$, defined as $D^{Q}(G)=Tr(G)+D(G)$, where $D(G)$ is the distance matrix of $G$ and $Tr(G)$ is the diagonal matrix of vertex transmissions of $G$. In this ...  Read More

MORE ON EDGE HYPER WIENER INDEX OF GRAPHS

A. Alhevaz; M. Baghipur

Volume 4, Issue 2 , January 2017, , Pages 135-153

https://doi.org/10.22044/jas.2017.854

Abstract
  ‎Let G=(V(G),E(G)) be a simple connected graph with vertex set V(G) and edge‎ ‎set E(G)‎. ‎The (first) edge-hyper Wiener index of the graph G is defined as‎: ‎$$WW_{e}(G)=\sum_{\{f,g\}\subseteq E(G)}(d_{e}(f,g|G)+d_{e}^{2}(f,g|G))=\frac{1}{2}\sum_{f\in E(G)}(d_{e}(f|G)+d^{2}_{e}(f|G)),$$‎ ...  Read More