@article {
author = {Hashemi, E. and Khalilnezhad, Kh. and Ghadiri, M.},
title = {BAER AND QUASI-BAER PROPERTIES OF SKEW PBW EXTENSIONS},
journal = {Journal of Algebraic Systems},
volume = {7},
number = {1},
pages = {1-24},
year = {2019},
publisher = {Shahrood University of Technology},
issn = {2345-5128},
eissn = {2345-511X},
doi = {10.22044/jas.2018.6762.1333},
abstract = {A ring $R$ with an automorphism $\sigma$ and a $\sigma$-derivation $\delta$ is called $\delta$-quasi-Baer (resp., $\sigma$-invariant quasi-Baer) if the right annihilator of every $\delta$-ideal (resp., $\sigma$-invariant ideal) of $R$ is generated by an idempotent, as a right ideal. In this paper, we study Baer and quasi-Baer properties of skew PBW extensions. More exactly, let $A=\sigma(R)\left\langle x_{1},\ldots,x_{n}\right\rangle $ be a skew PBW extension of derivation type of a ring $R$. (i) It is shown that $ R$ is $\Delta$-quasi-Baer if and only if $ A$ is quasi-Baer.(ii) $ R$ is $\Delta$-Baer if and only if $ A$ is Baer, when $R$ has IFP. Also, let $A=\sigma (R)\left\langle x_1, \ldots , x_n\right\rangle$ be a quasi-commutative skew PBW extension of a ring $R$. (iii) If $R$ is a $\Sigma$-quasi-Baer ring, then $A $ is a quasi-Baer ring. (iv) If $A $ is a quasi-Baer ring, then $R$ is a $\Sigma$-invariant quasi-Baer ring. (v) If $R$ is a $\Sigma$-Baer ring, then $A $ is a Baer ring, when $R$ has IFP. (vi) If $A $ is a Baer ring, then $R$ is a $\Sigma$-invariant Baer ring. Finally, we show that if $A = \sigma (R)\left\langle x_1, \ldots , x_n\right\rangle $ is a bijective skew PBW extension of a quasi-Baer ring $R$, then $A$ is a quasi-Baer ring.},
keywords = {Delta-quasi-Baer rings,Sigma-quasi-Baer rings,Skew PBW extensions},
url = {https://jas.shahroodut.ac.ir/article_1436.html},
eprint = {https://jas.shahroodut.ac.ir/article_1436_dcec6514a4a543ebb30256aaf152b2ad.pdf}
}