TY - JOUR
ID - 1589
TI - COMPUTING THE EIGENVALUES OF CAYLEY GRAPHS OF ORDER p2q
JO - Journal of Algebraic Systems
JA - JAS
LA - en
SN - 2345-5128
AU - Ghorbani, M.
AU - Seyyed-Hadi, A.
AU - Nowroozi-Larki, F.
AD - Department of Mathematics, Faculty of Science, Shahid Rajaee Teacher Training
University, Tehran, 16785-136, I. R. Iran.
Y1 - 2020
PY - 2020
VL - 7
IS - 2
SP - 189
EP - 203
KW - symmetric graph
KW - Cayley graph
KW - normal graph
KW - arc-transitive graph
DO - 10.22044/jas.2019.7034.1344
N2 - A graph is called symmetric if its full automorphism group acts transitively on the set of arcs. The Cayley graph $\Gamma=Cay(G,S)$ on group $G$ is said to be normal symmetric if $N_A(R(G))=R(G)\rtimes Aut(G,S)$ acts transitively on the set of arcs of $\Gamma$. In this paper, we classify all connected tetravalent normal symmetric Cayley graphs of order $p^2q$ where $p>q$ are prime numbers.
UR - https://jas.shahroodut.ac.ir/article_1589.html
L1 - https://jas.shahroodut.ac.ir/article_1589_29d397f1277733df32fcf3acd511405d.pdf
ER -