TY - JOUR
ID - 360
TI - ON ANNIHILATOR PROPERTIES OF INVERSE SKEW POWER SERIES RINGS
JO - Journal of Algebraic Systems
JA - JAS
LA - en
SN - 2345-5128
AU - Habibi, M.
AD - Department of Mathematics, University of Tafresh, P.O.Box 39518-79611, Tafresh, Iran.
Y1 - 2015
PY - 2015
VL - 2
IS - 2
SP - 109
EP - 124
KW - Inverse skew power series extensions
KW - Radical property
KW - Semicommutative rings
DO - 10.22044/jas.2015.360
N2 - Let $alpha$ be an automorphism of a ring $R$. The authors [On skew inverse Laurent-serieswise Armendariz rings, Comm. Algebra 40(1) (2012) 138-156] applied the concept of Armendariz rings to inverse skew Laurent series rings and introduced skew inverse Laurent-serieswise Armendariz rings. In this article, we study on aspecial type of these rings and introduce strongly Armendariz rings of inverse skew power series type. We determine the radicals of the inverse skew Laurent series ring $R((x^{-1};alpha))$, in terms of those of $R$. We also prove that several properties transfer between $R$ and the inverse skew Laurent series extension $R((x^{-1};alpha))$, in case $R$ is a strongly Armendariz ring of inverse skew power series type.
UR - https://jas.shahroodut.ac.ir/article_360.html
L1 - https://jas.shahroodut.ac.ir/article_360_3c473d1d286abc25947c292a6b305359.pdf
ER -