Let be a ring and a right -module. We call , coretractable relative to (for short, -coretractable) provided that, for every proper submodule of containing , there is a nonzero homomorphism . We investigate some conditions under which the two concepts coretractable and -coretractable, coincide. For a commutative semiperfect ring , we show that is -coretractable if and only if is a Kasch ring. Some examples are provided to illustrate different concepts.
Moniri Hamzekolaee, A. R. (2018). A GENERALIZATION OF CORETRACTABLE MODULES. Journal of Algebraic Systems, 5(2), 163-176. doi: 10.22044/jas.2017.5736.1287
MLA
Moniri Hamzekolaee, A. R. . "A GENERALIZATION OF CORETRACTABLE MODULES", Journal of Algebraic Systems, 5, 2, 2018, 163-176. doi: 10.22044/jas.2017.5736.1287
HARVARD
Moniri Hamzekolaee, A. R. (2018). 'A GENERALIZATION OF CORETRACTABLE MODULES', Journal of Algebraic Systems, 5(2), pp. 163-176. doi: 10.22044/jas.2017.5736.1287
CHICAGO
A. R. Moniri Hamzekolaee, "A GENERALIZATION OF CORETRACTABLE MODULES," Journal of Algebraic Systems, 5 2 (2018): 163-176, doi: 10.22044/jas.2017.5736.1287
VANCOUVER
Moniri Hamzekolaee, A. R. A GENERALIZATION OF CORETRACTABLE MODULES. Journal of Algebraic Systems, 2018; 5(2): 163-176. doi: 10.22044/jas.2017.5736.1287