Let $R$ be a ring and $M$ a right $R$-module. We call $M$, coretractable relative to $\overline{Z}(M)$ (for short, $\overline{Z}(M)$-coretractable) provided that, for every proper submodule $N$ of $M$ containing $\overline{Z}(M)$, there is a nonzero homomorphism $f:\dfrac{M}{N}\rightarrow M$. We investigate some conditions under which the two concepts coretractable and $\overline{Z}(M)$-coretractable, coincide. For a commutative semiperfect ring $R$, we show that $R$ is $\overline{Z}(R)$-coretractable if and only if $R$ is a Kasch ring. Some examples are provided to illustrate different concepts.
Moniri Hamzekolaee, A. R. (2018). A GENERALIZATION OF CORETRACTABLE MODULES. Journal of Algebraic Systems, 5(2), 163-176. doi: 10.22044/jas.2017.5736.1287
MLA
A. R. Moniri Hamzekolaee. "A GENERALIZATION OF CORETRACTABLE MODULES". Journal of Algebraic Systems, 5, 2, 2018, 163-176. doi: 10.22044/jas.2017.5736.1287
HARVARD
Moniri Hamzekolaee, A. R. (2018). 'A GENERALIZATION OF CORETRACTABLE MODULES', Journal of Algebraic Systems, 5(2), pp. 163-176. doi: 10.22044/jas.2017.5736.1287
VANCOUVER
Moniri Hamzekolaee, A. R. A GENERALIZATION OF CORETRACTABLE MODULES. Journal of Algebraic Systems, 2018; 5(2): 163-176. doi: 10.22044/jas.2017.5736.1287