We investigated maximal Prym varieties on finite fields by attaining their upper bounds on the number of rational points. This concept gave us a motivation for defining a generalized definition of maximal curves i.e. maximal morphisms. By MAGMA, we give some non-trivial examples of maximal morphisms that results in non-trivial examples of maximal Prym varieties.
Farhadi Sangdehi, M. (2018). MAXIMAL PRYM VARIETY AND MAXIMAL MORPHISM. Journal of Algebraic Systems, 6(1), 1-12. doi: 10.22044/jas.2017.6012.1301
MLA
M. Farhadi Sangdehi. "MAXIMAL PRYM VARIETY AND MAXIMAL MORPHISM". Journal of Algebraic Systems, 6, 1, 2018, 1-12. doi: 10.22044/jas.2017.6012.1301
HARVARD
Farhadi Sangdehi, M. (2018). 'MAXIMAL PRYM VARIETY AND MAXIMAL MORPHISM', Journal of Algebraic Systems, 6(1), pp. 1-12. doi: 10.22044/jas.2017.6012.1301
VANCOUVER
Farhadi Sangdehi, M. MAXIMAL PRYM VARIETY AND MAXIMAL MORPHISM. Journal of Algebraic Systems, 2018; 6(1): 1-12. doi: 10.22044/jas.2017.6012.1301