A permutation with no fixed points is called a derangement. The subset $\mathcal{D}$ of a permutation group is derangement if all elements of $\mathcal{D}$ are derangement. Let $G$ be a permutation group, a derangement graph is one with vertex set $G$ and derangement set $\mathcal{D}$ as connecting set. In this paper, we determine the spectrum of derangement graphs of order a product of three primes.
Ghorbani, M., & Rajabi-Parsa, M. (2019). ON THE SPECTRUM OF DERANGEMENT GRAPHS OF ORDER A PRODUCT OF THREE PRIMES. Journal of Algebraic Systems, 6(2), 81-89. doi: 10.22044/jas.2018.6636.1328
MLA
Modjtaba Ghorbani; Mina Rajabi-Parsa. "ON THE SPECTRUM OF DERANGEMENT GRAPHS OF ORDER A PRODUCT OF THREE PRIMES", Journal of Algebraic Systems, 6, 2, 2019, 81-89. doi: 10.22044/jas.2018.6636.1328
HARVARD
Ghorbani, M., Rajabi-Parsa, M. (2019). 'ON THE SPECTRUM OF DERANGEMENT GRAPHS OF ORDER A PRODUCT OF THREE PRIMES', Journal of Algebraic Systems, 6(2), pp. 81-89. doi: 10.22044/jas.2018.6636.1328
VANCOUVER
Ghorbani, M., Rajabi-Parsa, M. ON THE SPECTRUM OF DERANGEMENT GRAPHS OF ORDER A PRODUCT OF THREE PRIMES. Journal of Algebraic Systems, 2019; 6(2): 81-89. doi: 10.22044/jas.2018.6636.1328