An M-polysymmetrical hyperring $(R,+,\cdot )$ is an algebraic system, where $(R,+)$ is an M-polysymmetrical hypergroup, $(R,\cdot )$ is a semigroup and $\cdot$ is bilaterally distributive over $+$. In this paper, we introduce the concept of hyperideals of an M-polysymmetrical hyperring and by using this concept, we construct an ordinary quotient ring. Finally, the fundamental theorem of homomorphism is derived in the context of M-polysymmetrical hyperrings.
Madani, M. A., Mirvakili, S., & Davvaz, B. (2019). HYPERIDEALS IN M-POLYSYMMETRICAL HYPERRINGS. Journal of Algebraic Systems, 7(1), 33-50. doi: 10.22044/jas.2018.6969.1342
MLA
M. A. Madani; S. Mirvakili; B. Davvaz. "HYPERIDEALS IN M-POLYSYMMETRICAL HYPERRINGS", Journal of Algebraic Systems, 7, 1, 2019, 33-50. doi: 10.22044/jas.2018.6969.1342
HARVARD
Madani, M. A., Mirvakili, S., Davvaz, B. (2019). 'HYPERIDEALS IN M-POLYSYMMETRICAL HYPERRINGS', Journal of Algebraic Systems, 7(1), pp. 33-50. doi: 10.22044/jas.2018.6969.1342
VANCOUVER
Madani, M. A., Mirvakili, S., Davvaz, B. HYPERIDEALS IN M-POLYSYMMETRICAL HYPERRINGS. Journal of Algebraic Systems, 2019; 7(1): 33-50. doi: 10.22044/jas.2018.6969.1342