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ON THE REFINEMENT OF THE UNIT AND
UNITARY CAYLEY GRAPHS OF RINGS

M. REZAGHOLIBEIGI AND A. R. NAGHIPOUR*

ABSTRACT. Let R be a ring (not necessarily commutative) with
nonzero identity. We define I'(R) to be the graph with vertex set
R in which two distinct vertices x and y are adjacent if and only if
there exist unit elements u, v of R such that z 4+ uyv is a unit of R.
In this paper, basic properties of I'(R) are studied. We investigate
connectivity and the girth of I'(R), where R is a left Artinian
ring. We also determine when the graph I'(R) is a cycle graph.
We prove that if I'(R) = I'(M,,(F)) then R = M, (F), where R
is a ring and F is a finite field. We show that if R is a finite
commutative semisimple ring and S is a commutative ring such
that I'(R) = I'(S), then R = S. Finally, we obtain the spectrum
of I'(R), where R is a finite commutative ring.

1. INTRODUCTION

Throughout this paper, R is a ring (not necessarily commutative)
with nonzero identity. We denote the group of units of R, the Jacobson
radical of R and the set of n x n matrices with entries in R by U(R),
J(R) and M,(R), respectively. As usual, Z, will denote the integers
modulo n and for a set X, | X| will denote the cardinal of X.

The unit graph G(R) is the graph with vertex set R in which two
distinct vertices = and y are adjacent if and only if z +y € U(R). The
unit graph was first investigated by Grimaldi for Z, (see [I1]). The
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unit graphs for an arbitrary ring R were introduced in [1] and their
properties were investigated in [7, 12, 22, 23] 28].

The unitary Cayley graph G g is the graph with vertex set R such that
two distinct vertices « and y are adjacent if and only if x —y € U(R).

Unitary Cayley graphs were introduced in [10] and their properties
were investigated in [2, 15, 16, 17, 21,
In [14], Khashyarmanesh and Khorsandl provided a generalization

of the unit and unitary Cayley graphs as follows: Let R be a com-
mutative ring and let G be a multiplicative subgroup of U(R) and S
be a non-empty subset of G such that S™' = {s7!|]s € S} C S. Then
I'(R, G, S) is the (simple) graph with vertex set R in which two distinct
elements z,y € R are adjacent if and only if there exists s € S such that
z+sy € G. Asaspecial case of I'(R, G, S), the graph I'(R,U(R), U(R))
was first introduced and studied in [20]. In this paper, we extend the
definition of the graph I'(R, U(R),U(R)) for an arbitrary ring R (not

necessary commutative).

Definition. Let R be a ring. Then I'(R) is the (simple) graph with
vertex set R in which two distinct elements x,y € R are adjacent if
and only if there exist u,v € U(R) such that z + uyv € U(R).

If we omit the word “distinct”, we obtain the graph I'(R); this graph
may have loops (see Figure 1).

For the sake of completeness, first we state some definitions and
notions used throughout to keep this paper as self contained as possible.
For a graph G, let V(G) denotes the set of vertices, and let E(G)
denotes the set of edges. For z € V(G) we denote by Ng(x) the set of
all vertices of G adjacent to x. Also, the degree of x, denoted deg.(z),
is the size of Ng(z). For two vertices x and y of G, a walk between
x and y is an ordered list of vertices (not necessarily distinct) z =
X0, T1,...,Tn_1, T, =y such that x;  is adjacent to x; forv =1,... n.
We denote this walk by t—x1— -+ —ux,_1—vy. Also a path between
x and y is a walk between x and y without repeated vertices. A cycle
is a path vo—x1— -+ —x,_1—ux, with an extra edge xro—uz,. The
length of a walk, path or cycle is the number of edges (counting repeats
for walks). We denote the cycle graph with n vertices by C,,.
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Figure 1. The graphs I'(R) of the specific rings R (for two graphs G
and H, the notation G = H, means that every vertex of GG is

connected to every vertex of H).

The girth of G, denoted by gr(G) is the length of a shortest cycle in
G (gr(G) = oo if G has no cycles). A graph G is called connected if
for any two distinct vertices z and y of G there is a path between x
and y. Otherwise, G is called disconnected. A graph in which each pair
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of distinct vertices is joined by an edge is called complete graph. We
denote the complete graph on n vertices by K,,. A complete bipartite
graph is a simple graph in which the vertices can be partitioned into
two disjoint sets V' and W such that each vertex in V' is adjacent to
each vertex in W. If |V| = m and |W| = n, the complete bipartite
graph is denoted by K, .

A clique (resp. coclique) in G is a set of pairwise adjacent (resp.
nonadjacent) vertices of G. A mazimum clique is a clique of the largest
possible size in G. The clique number w(G) of a graph G is the number
of vertices in a maximum clique in G. A coloring of G is a labeling
of the vertices with colors such that no two adjacent vertices have the
same color. The smallest number of colors needed to color the vertices
of a graph G is called its chromatic number, and denoted by x(G).

The union of two graphs G and H is the graph G U H with the
vertex set V(G) UV (H) and the edge set E(G)U E(H). If G and H
are disjoint, we refer to their union as a disjoint union, and denote it
by G 4+ H. The disjoint union of n copies of GG is denoted by nG.

Any unexplained notation in this paper will be as in [13, 18, 29].

The plan of this paper is as follows: In Section 2, we give some basic
properties of I'(R). We determine when I'(R) is a connected graph
(see Theorem 2.2). We also determine when I'(R) is a cycle graph (see
Theorem 2.4). For an Artinian ring R, we completely characterize the
girth of I'(R) (see Theorem 2.5). For two finite rings R and S, the
question of when I'(R) = I'(S) implies R = S is very interesting and
this kind of question has been studied extensively in [1, 2, 3, 15, 24]. In
Section 3, we show that if I'(R) = I'(M,,(F)) then R = M, (F), where
R is a ring and F' is a finite field (see Theorem 3.5). We show that if
R is finite commutative semisimple ring and S is a commutative ring
such that I'(R) = I'(S), then R = S (see Theorem 3.9). Finally, we
find the spectrum of I'(R), where R is a finite commutative ring.

2. Basic PROPERTIES OF I'(R)

In this section we study some basic properties of unit graphs. The
following lemma immediately follows from |18, Proposition 4.8].

Lemma 2.1. Let R be a ring and let x,y € R. Then the following
statements hold:
(1) If v+ J(R) and y + J(R) are adjacent in F(%), then every
element of x + J(R) is adjacent to every element of y + J(R)
in I'(R).
(2) If x and y are adjacent in I'(R), then x + J(R) is adjacent to
y+ J(R) in F(%).
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The following theorem contains a necessary and sufficient condition
for I'(R) to be connected.

Theorem 2.2. Let R be an Artinian ring. Then the following three
condition are equivalent:

(1) The graph I'(R) is connected.
(2) The factor ring % has at most one summand isomorphic to
Zs.
(3) Every element of R is a sum of two or three units.
Proof. (1) = (2) Assume to the contrary that % = 7o X Lo or
% = 7o X Lo x S, where S is a subring of %. If % = 7o X s,
then there is not any path between (0,0) and (0,1) (see Figure 1).

Similarly if % = Zo X Lo x S, then there is not any path between

(0,0,0) and (0,1,0). So F(%) is disconnected and therefore I'(R) is
disconnected, by Lemma 2.1(2), which is a contradiction.

(2) = (3) By [18, Proposition 4.8], it is enough to show that every
element of % is a sum of two or three units. It is easy to see that if S
and T are rings in which every element can be expressed as the sum of

two units, then the ring S x T" has this property. Therefore, if % has
no summand isomorphic to Z,, then we are done by [20, Theorem 1].
If%EZQ, then0=1+1and 1 =141+ 1 and (3) holds for %.
% which does not contain a
summand isomorphic to Z,. Let s € S. By [20, Theorem 1] there are
unit elements uy, uy € U(S) such that s = uy 4+ up. Also there are unit
elements vy, vy € U(S) such that u; = vy + vy. Therefore, we have

(0,s) = (Liuy)+ (1, us),
(1,s) (Lv1) + (1, v9) + (1, ug).
Hence (3) holds for %.
(3) = (1) Let x be a nonzero element of R. If x = uy + uy, where
uy,uz € U(R), then we have the walk 0—u;—uy + ug between 0 and
x. If x = uy + ug + uz, where uy,us, u3 € U(R), then we have the

walk 0—u;—uy + ug—uy + us + uz between 0 and z. Hence I'(R) is
connected. O

If % = 7o x S, where S is a subring of

The following theorem determines when I'(R) is a complete bipartite
graph.

Theorem 2.3. Let R be a ring with a mazimal ideal m such that
|Z| = 2. Then I'(R) is a complete bipartite graph if and only if R is a
local ring.
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Proof. Let I'(R) be a complete bipartite graph with bipartition {V3, V5}.
Let x,y € R such that x+y € U(R). Since x and y are adjacent, with-
out loss of generality, we may assume that z € Vy and y € V5. If 0 € V7,
then y € U(R). If 0 € V,, then x € U(R). Therefore z +y € U(R)
implies that x € U(R) or y € U(R). It follows from [18, Theorem 19.1]
that R is a local ring.

Conversely, suppose that R is a ring with a maximal ideal m. Set
Vi:=mand V5 :=1+m. Then V(I'(R)) = V1 U V5. Since 0 and 1 are
adjacent in % = Zo, then Lemma 2.1(1) implies that every elements of
m is adjacent to every elements of 1 + m. It easy to see that V; =:m
is coclique. Now let x,y € m and let 1 + x and 1 + y are two adjacent
elements of 1 + m. Then there exist u,v € U(R) and z € m such
(142)+u(l+y)v =14 z. It follows that uv = z —x —uyv € m, which
is a contradiction. Therefore I'(R) is a complete bipartite graph. O

In the following theorem, we determine when I'(R) is a cycle graph.

Theorem 2.4. Let R be a ring. Then T'(R) is a cycle graph if and
only if R is isomorphic to one of the following rings:

Z37Z4,{(8 2>|6L,b€Z2}.

Proof. Let I'(R) be a cycle graph. Then we have |R| = |[V(I'(R))| < oo.
If [U(R)| > 3, then degp g (0) = 3 and hence I'(R) is not a cycle graph.
We show that |U(R)| # 1. Suppose on the contrary that U(R) = {1}.
Since T'(R) is a cycle graph, it has a path of length 2. Let z—y—=z
be a path of length 2 in I'(R). Then z +y =1 and y + z = 1. Hence
x = z, which is a contradiction. So |U(R)| # 1 and hence |U(R)| = 2.
It follows from [3, Corollary 4.5] that R is isomorphic to one of the
following rings.

(1) Ry = Zs.
2) Ry = 7.

(3) Rgz{(g 2)|a,b€Zz}.
(4) R4:{(8 i)]a,b,cezg}.

The graphs I'(Zs3), I'(Z4) and T'(R3) are cycle graphs and the graphs
['(Zy x Z4) and T'(Ry) are not cycle graphs (see Figures 1 and 2). We
have Npz,xz,)(1,1) = {(0,0),(0,1),(0,2)}, and so I'(Zy x Z3) is not
cycle. Also, it is easy to see that I'(Zy x R3) = 2Cy and I'(Zy X Ry) =
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4Cy. So the graphs I'(Zy x R3) and I'(Zy x R4) are not cycle graphs.
This completes the proof. 0

oo b oo b bl b

o) b b BB

['(R,) I'(R,)

oo

Figure 2. The graphs I'(R3) and I'(Ry).
Theorem 2.5. Let R be an Artinian ring. Then gr(I'(R)) € {3,4, co}.

Proof. First, suppose that J(R) # 0 and z,y are two distinct elements
of J(R). Since every element of J(R) is adjacent to every element
of UR), x—(1 + 2)—y— (1 + y) is a cycle in gr(I'(R)). Therefore
gr(l'(R)) = 3. Now assume that J(R) = 0. So the Wedderburn-Artin
Theorem [18, Theorem 3.5] implies that R = M, (D) X - -+ x M,,(D;),
where Dy, ..., D, are division rings and ny, ..., n; are positive integers.
If R = Zs, then gr(I'(R)) = oo. If Ris adivision ring and |R| > 3, then,
for any two nonzero distinct elements x and y of R, 0—az—y form a
triangle in I'(R). So gr(I'(R)) = 3. Now assume that R = M, (D),
where n > 2 and D is a division ring. If Char(D) = 2, then by [20,
Theorem 1|, we have I = U + V', where I is the identity matrix and
U,V are two invertible (unit) matrices. Hence the vertices {0,U, V'}
form a triangle in I'(R). If Char(D) # 2, then the vertices {0,1,U}
form a triangle in I'(R), where U = (u;;) is a lower triangular matrix
such u;; = up,y = 1 for i = 1,2,...,n and the other vertices are zero.
So gr(I'(R)) = 3. Now we consider the following three cases:

Case 1: R = [[._, Zy, where t > 2. Then T'(R) = 2"'K,. Therefore
I'(R) is disconnected and gr(I'(R)) = oc.

Case 2: R = [[._, M,,(D;), where t > 2 and M, (D;) is not iso-
morphic to Zy. Assume that the vertices {4;, B;, C;} form a triangle
in M,,(D;) for i with 1 < i < ¢t. Then the vertices {(Ai, ..., A:),
(By,...,Bt), (Ch,...,C)} form a triangle in I'(R) and so gr(I'(R)) = 3.
Case 3: R = [[{,Zy x [[;_ M,,(D;), where k,1 > 1 and M, (D;)

is not isomorphic to Zy. In this case, it is easy to see that I'(R) is a
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bipartite graph and hence gr(I'(R)) > 4. We consider the following
two cases:

Subcase 1: Char(D;) = 2. Let I = U + V, where [ is the identity
matrix and U, V' are two distinct invertible matrices in M,,(D;) . Then
we have the following cycle

0,...,0,0,...,00— (1,...,1,1,....,1)— (0,...,0,0,...,0,V)—
(1,...,1,1,...,1,U).

Subcase 2: Char(D;) # 2. Let U = (u;;) be a lower triangular matrix
in M,,,(D;) such w;; = u,y = 1fori=1,2,...,nand 0 otherwise. Then
we have the following cycle

(0,...,0,0,...,0)— (1,...,1,1,...,I,U)— (0,...,0,0,...,0,U)—
(1,...,1,1,....1).

So gr(I'(R)) = 4. O

The maximum (respectively minimum) vertex degree in a graph G is
denoted by A(G) (respectively §(G)). We denote by Ay(G), the second
greatest degree of G. We end this section by the following theorems
which is used in the next section.

Theorem 2.6. Let R = Ry X --- X R, be a finite commutative ring,
where R; is a local ring with maximal ideal m;. Let % > 2 for every
i. Then the following are hold: Z

(1) A(T(R)) = |R| = 1 and §(I'(R)) = |U(R)].

(2) degr(g)(z) = A(I'(R)) if and only if x € U(R).

(3) degppy(z) = 0(L'(R)) if and only if v € J(R).

Proof. The assertions follow from [26, Theorems 2.2 and 2.3] O

Theorem 2.7. Let R = Ry X --- X R, be a finite commutative ring,
where R; is a local ring with maximal ideal m;. Assume that there exists
t with 1 <t <n such that |%| =2 for every i <t and |R;/m;| > 2 for
every i > t. Then the following statements hold:

(1) AC(R)) = BB B IR By and

O(L(R)) = T - BT (R )| [U(Ra)].

(2) degr(p)(x) = A(I'(R)) if and only if v € Ry X -+ X Ry x U(Ryy1) X
X U(Ry).

(3) degp gy () = (L'(R)) if and only if v € Ryx- - X Ry XMy X - - Xmy,.

Proof. The assertions follow from [26, Theorems 2.2 and 2.3]. O
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3. ISOMORPHISMS
We begin this section by the following remark.

Remark 3.1. Let R be aring and x,y € R. Then, in I'(R), the following
are equivalent:

(1) x is adjacent to y.

(2) x is adjacent to uyv for some unit elements u,v € U(R).

(3) z is adjacent to uyv for all unit elements u,v € U(R).

Notation. Let E;; the n x n matrix that has 1 in the (7, j)-th entry
and zero elsewhere. For each 2 <t < n, we set

J = Ey + E3p + -+ + Ey—1y.

Theorem 3.2. Let R = M,(F), where F is a field and (n,|F|) #
(1,2) and let A,B € R. Then, A is adjacent to B if and only if
rank(A) + rank(B) > n.

Proof. Let rank(A) 4+ rank(B) > n. By [20, Theorem 1], there are unit
elements U, and U; such that A = U; 4+ Uy. Therefore A is adjacent to
U,. Tt follows from Remark 3.1 that A is adjacent to every unit element
of R. So, if A or B is unit, then A is adjacent to B. Now suppose that
A and B be nonunits of R. Let n; = rank(A) and ny = rank(B). Then
by [13, Proposition 2.11], there are unit elements Uy, Us, V3, V5 of R
such that
A=U, {Igl 8 ]vl, B="U, {8 122 }v2
We consider two cases:

Case 1: rank(A) + rank(B) = n. In this situation, again by using
Remark 3.1, we have that A is adjacent to B.

Case 2: rank(A) + rank(B) > n. There are unit elements Us, V3 of R
such that

Jmt 0
B = U3 |: O ] :| ‘/é?
n—ni

where t = (ny + ny) — n. We have

I, 0 Jut C[umt+,, 0
R K A e SR ELC

It follows that A and B are adjacent.

Conversely, suppose that rank(A) + rank(B) < n. There are unit
elements U, and V[ such that
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0 0
n1

It is easy to see that [8 IO ] and {8 IO ] are not adjacent and

hence A and B are not adjacent. This completes the proof.

Let A, B € M, (F), where F' is a field. Recall from [13, Definition
1.8] that the matrices A and B are called equivalent if there exist two
invertible matrices U,V € M, (F) such that A = UBV'. It is easy is see
this definition of “equivalent” gives an equivalence relation on M, (F).
By [13, Theorem 2.6(ii)], the matrices A and B are equivalent matrices
if and only if rank(A) = rank(B). Let Ry be the set of all matrices of
rank k, for 0 < k < n. The number of n X n matrices of rank k over a
finite field of order ¢ is given by

(¢" = D(¢" =) -~ (¢" = ¢" 1))
(" =D(¢* = q)---(¢" = ¢*)
This result was established by Landsberg in [19].

Theorem 3.3. Let R = M, (F), where F is a field. Then

Tn+Tpo1+ -+ 712 ifn is even

X(I'(R)) =w([(R)) = { Po A Tt o e+ 1 ifnis odd

Proof. We consider the partition V(I'(R)) = RyUR,U---UR,,. Let n be
an even number. By Theorem 3.2 the set R,UR,, 1UR,,_1U-- ~UR% isa
clique. So x(I'(R)) > w(I'(R)) > rp+7rp_1++ - -+rz. On the other hand,
RoyURU- - -URg,l is a coclique and every vertex of RgyUR;U- - -UR%,l is
not adjacent to every vertex of Rx. So 1,+7y,-1+4---+rz colors provide
a proper coloring for I'(R). It follows that x(I'(R)) = w(['(R)) =
Fntrp_1+--+rz. Nowlet n be an odd number. Again by Theorem 3.2
the set R, UR,,_iUR,,_1U- URn+1 U{ZB} is a clique, where x € Rn 1.

So X(F(R)) > w(l(R)) > rp+rn—1 T -+ 7201 +1. On the other hand
RyURU---U Rn 1 is a cochque and every vertex of Rn 1 is adjacent
to every vertex of Ro URU---U Rn 1. S0 T, Frp1 -+ Tat1 +1
colors provide a proper colormg for F (R). It follows that X(F(R)) =
w(l'(R)) =rp+raa+ -+ 1o + 1 O

Theorem 3.4. Let F' and E be two finite fields and m,n be two natural
numbers. If T'(M,(F)) 2T (M,,(E)), then m =n and FF = E.
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Proof. Let |F| = p" and |E| = ¢°, for some prime numbers p,q and
natural numbers r, s. Since |['(M,(F))| = |T(M,,(E))|, we have p™* =
¢™ . So p = q and rn? = sm2. On the other hand,

P[0T -1 = ATCM(F)) = AT (M (E)))

=1
gmim=1) = s
= p 7 ]]0* -0,
=1

It follows that rn(n — 1) = sm(m — 1) and hence rn = sm. Son =m
and 7 = s. O]

Now we are in position to give one of the main results of this paper.

Theorem 3.5. Let R = M, (F), where F is a finite field and S is a
ring. If T'(R) = T'(S), then S = M, (F).

Proof. 1t is clear that S is a finite ring. If R = Z,, then S = Z, and we
are done. So assume that R 2 Z,. We show that S is semisimple. First
we note that if z,y € S and x —y € J(R), then by [18, Lemma 4.3],
we have Npg)(2) = Nresy(y). Let f: T'(R) — I'(S) be an isomorphism
and let a = f(0). Then

a+ J(S) € {z € S|degp(g)(z) = degp(s(a)}.
On the other hand, by Theorem 3.2, we have

1 = [{z € R[degp(g (z) = degr)(0)}|
= |z € S|degpg(z) = degr(g)(a)}|.
Hence J(R) = 0, and so S is a semisimple ring. Let |F| = p" and
S = M, (F1) x -+ x M, (Fg) and |F;| = p}* such that p?”? < pQQ"% <
s < pzkni. Since |R| = |S], we have

2 2
rn2 r1ny TENY

P =D X X Py
It follows that p = p; = py = ... = pj, and rn® = 3°F_ r;n?. We have
P =2 = Ay(D(R)) = Ay(D(R)) = pmip=ms . (p+k — 1) — 1.

It follows that Y, ,rn? = 0. So S = M,,(F)) and Theorem 3.4
completes the proof. O

Let G and H be two graphs. The tensor product (sometimes called
category product) of G and H, G ® H, is a graph with the vertex set
V(G) x V(H), such that two vertices (z1,y1) and (z2,y9) are adjacent
if and only if x; is adjacent to x5 in G and y; is adjacent to y» in H.
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Let R = Ry x Ry X --- X R, be a direct product of rings and z =
(1,22, ...y xn),y = (Y1,Y2,---,Yn) € R, where z and y are distinct.
Now, according to our definition, it is not hard to see that x is adjacent
to y in I'(R), if and only if z; is adjacent to y; in ['(R;), forall 1 < i < n.
Hence we have the following immediate lemma.

Lemrria 3.6. Let R_: Ry X Ry X -+ x R, be a direct product of rings.
Then I'(R) = @, I'(R;).

It is well known that every Artinian commutative ring can be ex-
pressed as a direct product of Artinian local rings, and this decomposi-
tion is unique up to permutations of such local rings (see [5, Theorem
8.7]).

For a finite commutative ring R, we have the following result about
the loops of T'(R).

Theorem 3.7. Let R = Ry X --- X R, be a finite commutative ring,
where R; is a local ring with mazximal ideal m;. Then

(1) If =2 for some 1 < i <mn, then T(R) = '(R).
(2) If |%| # 2 for every 1 <i <, then only the elements of U(R) has
a loop in T(R).

Proof. Follows easily from [26, Proposision 1.1]. O

B;
m;

Lemma 3.8. Let R and S be two finite commutative rings. Then
I'(R) =2 T'(S) if and only if T'(R) = T'(S).
Proof. Tt is easy to see that if [(R) = T'(S) then I'(R) = I'(S).
Conversely, suppose that I'(R) =2 I'(S). Let
RgRl XRQX XRn,
Sg81XSQX-'-XSm,

where R; and S; are local rings with maximal ideals m; and n; for all
1<i<nand1l<j<m. We consider the following cases:

Case 1: There exists 1 < ¢ < n such that ;ﬂ = 2. In this case, we
claim that there exists 1 < 5 < m such that 15— 9, Suppose on the

I
contrary that “f—’f # 2 for every 1 < j < m. Then by [26, Theorem
3.1], we have
2 =w(['(R)) =w(l'(9)) = |U(S)| +m.
It follows that m = 1 and [U(S)| = 1. Tt is not hard to see that S = Z,
which is a contradiction. Now Theorem 3.7 implies that I'(R) = I'(S).

Case 2: There exists 1 < ¢ < m such that ﬁ?“ = 2. This case is exactly
similar to Case 1.
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Case 3: ‘Ril%Qand%#ZforaHlSignandlgjgm. By
J

|mi
Theorem 2.6 and [20, Theorem 3.1], we have

[U(R)| = o(I'(R)) = o(I'(S)) = [U(S)],
[UR)|+n = wl(R)) = w(l(5)) = [U(S)] +m.

So we have n = m. Now we consider two subcases:
Subcase 1: S is a field. In this case, we have

[U(R)| = 6(I'(R)) = o(I'(5)) = |S] — 1.

It follows that |[U(R)| = |R| — 1. Therefore R is also a field. Since two
finite fields are isomorphic if and only if they have the same number of
elements, we must have R 2 S and hence I'(R) = T'(S).

Subcase 2: S is not a field. Let f : I'(R) — I'(S) be a graph isomor-
phism. By Lemma 3.7(2), it is enough to show that f(U(R)) C U(S).
Suppose on the contrary that f(u) = (1, z2,...,x,) € U(S), for some
u € U(R). Without loss of generality, we may assume that there exists
2 < k < n such that z; € n; for every 1 < i < k and z; € U(S;) for
every k+ 1 < i <n. We have

R -1 = degr(R) (u) = degp(s)(f(u))
= [UEHINUS)I- - [US)[Sk1] - - - 1Snl-

By Theorem 2.6(1), we have |R| — 1 = A(I'(R)) = A(I'(S)) = |S| -1
and so

[S1[[S2] -+« [Su| = 1= [USOIU(S2)] - - - [U(Sk)||Sk41] - - [Snl-
Hence
[ Skt =+ - [Sul(IS1][S2] -+ - [Sk] = [U(SOIIU(Sa)] -+ - [U(Sk)]) = 1.

By [2, Proposition 2.1], we must have z; € n; for every 1 < i < n.
Hence

[S1[|S2] -+ [Sul = [USH[U(S2)]- - - [U(Sn)] = 1.
So |U(S)| = |S|—1 and hence S is a field, which is a contradiction. [

Now we are ready to state another main result of this section.

Theorem 3.9. Let R and S be two finite commutative rings such that
R is semisimple. If T'(R) = T'(S), then R = S.

Proof. First we claim that S is a semisimple ring. By [, Page 41], we
may assume
R = ZQXZQX---XZ%xleF2><-~~><Fn,

—
r times
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where F; is a field for all 1 <i <nand 3 < f; = |F| < fir1 = |Fisa]
forall1<i:<mn-—1, and

SgRlXRQX---XRtXRt+1X"-XRm7

where R; is a local ring with maximal ideal m; and 1 < ¢ < m is an
integer number such that = 2 for every ¢ <t and % > 2 for every
i > t. Since I'(R) = I'(.S), hence the number of connected components
of I'(R) should be equal to the number of connected components of
['(S). Therefore, by [0, Corollary 5.10], we have 2! = 27! and so
r =t. On the other hand,

{z € T(R)| degrg) ()
{z € T'(S)| degr(s)(x)

By
m;

o(T(R))}H =
o(T(9))}

It follows that
| Zg % -+ X Lo x{0} x -+ x {0} = |Ry X -+ X Ry X mypq X -+ X my,|.
t times
, Proposition 2.1], we have Ry & Ry & ... 2 R, & Z, and
=...=m,, = {0}. Hence S is a semisimple ring. Assume that
S = o X+ XLoXE X Eyx--- X E,,
T tmes

where E; is a field for all 1 <i < m and 3 <e; = |E;| < e;11 = |Eiyq]
for all 1 <7 <m — 1. Since I'(R) = I'(S), we have

By |
m

2 fifo . fo=2100... . (3.1)
On the other hand, we have
Jifa. .. fn—l(fn - 1) = A2(P(R)) = A2(F(S)) (3-2)
= €169 ... em,l(em — 1)

Comparing (3.1) and (3.2) we deduce that f,, = e, and hence F,, = E,,.
By the Cancelation Theorem ([9, Proposition 9.6]) and Lemma 3.8, we
have

[(Zhx Fy x -~ x F,_) = T(Zb)
>~ T(Z)
~ [(ZYx By x - X Ep_y)

By repeating this argument, we conclude that n = m and F; = FE; for
every 1 <4 <n. Hence R = S. O
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We end this section by the following conjecture.
Conjecture 1. Let R and S be two finite rings such that I'(R) = I'(5).
Then % = %

4. THE SPECTRUM OF I'(R)

The eigenvalues of a graph are eigenvalues of its adjacency matrix,
and the spectrum of a graph is the collection of its eigenvalues together
with multiplicities. If A\, Ao, ..., Ay are distinct eigenvalues of a graph
G and mq, ma, ..., m; the corresponding multiplicities, then we denote
the spectrum of G by

Spec(T(R)) ()\1 Ay .. /\k)'

my Mo ... TN

Let R be a finite commutative ring and n, m be two natural integer
numbers. Let I, € M,(R) denote the identity matrix and let J, ,, be
the n x m matrix with all entries equal to 1. If a € R, then it is easy to
see that the characteristic polynomial of a.J, is equal to A" 1(\ — na).

Theorem 4.1. Let R be a finite commutative local ring with maximal
ideal m such that |E| > 2. Then

Spec(I(R)) = (|R|0_2 1 Zf)

where a,b are roots of the equation \> — |U(R)|\ — |m||U(R)|.

Proof. Let n = |R|, m = |m| and M be the adjacency matrix of I'(R)
in such away that, the elements of U(R) labeled by 1,...,n —m and
the elements of m labeled by (n —m) +1,...,n.

A—1 -1 —1... =1 ]-1-1-1-1...-1]

~1 A—=1-1... =1 |-1-1-1-1...-1

~1 -1 ... A-1-1-1-1-1..-1

detOM,—M)=| -1 -1 —1... =1|X 0 0 0 ... 0
~1 -1 —=1... =10 X 0 0 ...0

~1 -1 —1... =110 0 XA 0 ...0

| 1 -1 -1... =10 0 0 ... X




66 REZAGHOLIBEIGI AND NAGHIPOUR

Let A=A,y — e, B=—Jo—im, C = —Jppnem and D = AI,,.
If A # 0, then by Schur complement formula (see for example, [27,
Exercise 2.10(4)]), we have det(\,, — M) = det(D)det(A — BD7'C).
It is easy to see that

A—a —a —-a —a —a
—-a A—a —a —a -+ —a
A—BDlCc=| —a —a A—a —a —a |
—a —a —-a —a A—a
where a = 1+ 5. It follows that det(A, — M) = X" *(X\* — |U(R)|X —
|m||U(R)|). This completes the proof. O

Let R be a commutative local ring with maximal ideal m such that
|Z| = 2. Then by Theorem 2.3, I'(R) £ K, ,, where n = ‘—};'. Therefore
by [0, Theorem 3.4(ii)], we have

Spec(T'(R)) = Spec(I'(R)) = <2n0 5 71L —1n>

So by Lemma 3.6 and [0, Lemma 3.25], we can calculate the spectrum
of T(R).
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