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ON THE REFINEMENT OF THE UNIT AND
UNITARY CAYLEY GRAPHS OF RINGS

M. REZAGHOLIBEIGI AND A. R. NAGHIPOUR∗

Abstract. Let R be a ring (not necessarily commutative) with
nonzero identity. We define Γ(R) to be the graph with vertex set
R in which two distinct vertices x and y are adjacent if and only if
there exist unit elements u, v of R such that x+uyv is a unit of R.
In this paper, basic properties of Γ(R) are studied. We investigate
connectivity and the girth of Γ(R), where R is a left Artinian
ring. We also determine when the graph Γ(R) is a cycle graph.
We prove that if Γ(R) ∼= Γ(Mn(F )) then R ∼= Mn(F ), where R
is a ring and F is a finite field. We show that if R is a finite
commutative semisimple ring and S is a commutative ring such
that Γ(R) ∼= Γ(S), then R ∼= S. Finally, we obtain the spectrum
of Γ(R), where R is a finite commutative ring.

1. Introduction

Throughout this paper, R is a ring (not necessarily commutative)
with nonzero identity. We denote the group of units of R, the Jacobson
radical of R and the set of n× n matrices with entries in R by U(R),
J(R) and Mn(R), respectively. As usual, Zn will denote the integers
modulo n and for a set X, |X| will denote the cardinal of X.

The unit graph G(R) is the graph with vertex set R in which two
distinct vertices x and y are adjacent if and only if x+ y ∈ U(R). The
unit graph was first investigated by Grimaldi for Zn (see [11]). The
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unit graphs for an arbitrary ring R were introduced in [4] and their
properties were investigated in [7, 12, 22, 23, 28].

The unitary Cayley graph GR is the graph with vertex set R such that
two distinct vertices x and y are adjacent if and only if x− y ∈ U(R).
Unitary Cayley graphs were introduced in [10] and their properties
were investigated in [2, 15, 16, 17, 21, 25].

In [14], Khashyarmanesh and Khorsandi provided a generalization
of the unit and unitary Cayley graphs as follows: Let R be a com-
mutative ring and let G be a multiplicative subgroup of U(R) and S
be a non-empty subset of G such that S−1 = {s−1|s ∈ S} ⊆ S. Then
Γ(R,G, S) is the (simple) graph with vertex set R in which two distinct
elements x, y ∈ R are adjacent if and only if there exists s ∈ S such that
x+sy ∈ G. As a special case of Γ(R,G, S), the graph Γ(R,U(R), U(R))
was first introduced and studied in [26]. In this paper, we extend the
definition of the graph Γ(R,U(R), U(R)) for an arbitrary ring R (not
necessary commutative).

Definition. Let R be a ring. Then Γ(R) is the (simple) graph with
vertex set R in which two distinct elements x, y ∈ R are adjacent if
and only if there exist u, v ∈ U(R) such that x+ uyv ∈ U(R).

If we omit the word “distinct”, we obtain the graph Γ(R); this graph
may have loops (see Figure 1).

For the sake of completeness, first we state some definitions and
notions used throughout to keep this paper as self contained as possible.
For a graph G, let V (G) denotes the set of vertices, and let E(G)
denotes the set of edges. For x ∈ V (G) we denote by NG(x) the set of
all vertices of G adjacent to x. Also, the degree of x, denoted degG(x),
is the size of NG(x). For two vertices x and y of G, a walk between
x and y is an ordered list of vertices (not necessarily distinct) x =
x0, x1, . . . , xn−1, xn = y such that xi−1 is adjacent to xi for i = 1, . . . , n.
We denote this walk by x−−x1−− · · ·−−xn−1−−y. Also a path between
x and y is a walk between x and y without repeated vertices. A cycle
is a path x0−−x1−− · · ·−−xn−1−−xn with an extra edge x0−−xn. The
length of a walk, path or cycle is the number of edges (counting repeats
for walks). We denote the cycle graph with n vertices by Cn.
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K Figure 1. The graphs Γ(R) of the specific rings R (for two graphs G

and H, the notation G == H, means that every vertex of G is
connected to every vertex of H).

The girth of G, denoted by gr(G) is the length of a shortest cycle in
G (gr(G) = ∞ if G has no cycles). A graph G is called connected if
for any two distinct vertices x and y of G there is a path between x
and y. Otherwise, G is called disconnected. A graph in which each pair
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of distinct vertices is joined by an edge is called complete graph. We
denote the complete graph on n vertices by Kn. A complete bipartite
graph is a simple graph in which the vertices can be partitioned into
two disjoint sets V and W such that each vertex in V is adjacent to
each vertex in W . If |V | = m and |W | = n, the complete bipartite
graph is denoted by Km,n.

A clique (resp. coclique) in G is a set of pairwise adjacent (resp.
nonadjacent) vertices of G. A maximum clique is a clique of the largest
possible size in G. The clique number w(G) of a graph G is the number
of vertices in a maximum clique in G. A coloring of G is a labeling
of the vertices with colors such that no two adjacent vertices have the
same color. The smallest number of colors needed to color the vertices
of a graph G is called its chromatic number, and denoted by χ(G).

The union of two graphs G and H is the graph G ∪ H with the
vertex set V (G) ∪ V (H) and the edge set E(G) ∪ E(H). If G and H
are disjoint, we refer to their union as a disjoint union, and denote it
by G+H. The disjoint union of n copies of G is denoted by nG.

Any unexplained notation in this paper will be as in [13, 18, 29].
The plan of this paper is as follows: In Section 2, we give some basic

properties of Γ(R). We determine when Γ(R) is a connected graph
(see Theorem 2.2). We also determine when Γ(R) is a cycle graph (see
Theorem 2.4). For an Artinian ring R, we completely characterize the
girth of Γ(R) (see Theorem 2.5). For two finite rings R and S, the
question of when Γ(R) ∼= Γ(S) implies R ∼= S is very interesting and
this kind of question has been studied extensively in [1, 2, 3, 15, 24]. In
Section 3, we show that if Γ(R) ∼= Γ(Mn(F )) then R ∼= Mn(F ), where
R is a ring and F is a finite field (see Theorem 3.5). We show that if
R is finite commutative semisimple ring and S is a commutative ring
such that Γ(R) ∼= Γ(S), then R ∼= S (see Theorem 3.9). Finally, we
find the spectrum of Γ(R), where R is a finite commutative ring.

2. Basic Properties of Γ(R)

In this section we study some basic properties of unit graphs. The
following lemma immediately follows from [18, Proposition 4.8].
Lemma 2.1. Let R be a ring and let x, y ∈ R. Then the following
statements hold:

(1) If x + J(R) and y + J(R) are adjacent in Γ( R
J(R)

), then every
element of x + J(R) is adjacent to every element of y + J(R)
in Γ(R).

(2) If x and y are adjacent in Γ(R), then x + J(R) is adjacent to
y + J(R) in Γ( R

J(R)
).
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The following theorem contains a necessary and sufficient condition
for Γ(R) to be connected.

Theorem 2.2. Let R be an Artinian ring. Then the following three
condition are equivalent:

(1) The graph Γ(R) is connected.
(2) The factor ring R

J(R)
has at most one summand isomorphic to

Z2.
(3) Every element of R is a sum of two or three units.

Proof. (1) =⇒ (2) Assume to the contrary that R
J(R)

∼= Z2 × Z2 or
R

J(R)
∼= Z2 × Z2 × S, where S is a subring of R

J(R)
. If R

J(R)
∼= Z2 × Z2,

then there is not any path between (0, 0) and (0, 1) (see Figure 1).
Similarly if R

J(R)
∼= Z2 × Z2 × S, then there is not any path between

(0, 0, 0) and (0, 1, 0). So Γ( R
J(R)

) is disconnected and therefore Γ(R) is
disconnected, by Lemma 2.1(2), which is a contradiction.

(2) =⇒ (3) By [18, Proposition 4.8], it is enough to show that every
element of R

J(R)
is a sum of two or three units. It is easy to see that if S

and T are rings in which every element can be expressed as the sum of
two units, then the ring S×T has this property. Therefore, if R

J(R)
has

no summand isomorphic to Z2, then we are done by [20, Theorem 1].
If R

J(R)
∼= Z2, then 0 = 1 + 1 and 1 = 1 + 1 + 1 and (3) holds for R

J(R)
.

If R
J(R)

∼= Z2×S, where S is a subring of R
J(R)

which does not contain a
summand isomorphic to Z2. Let s ∈ S. By [20, Theorem 1] there are
unit elements u1, u2 ∈ U(S) such that s = u1 + u2. Also there are unit
elements v1, v2 ∈ U(S) such that u1 = v1 + v2. Therefore, we have

(0, s) = (1, u1) + (1, u2),

(1, s) = (1, v1) + (1, v2) + (1, u2).

Hence (3) holds for R
J(R)

.
(3) =⇒ (1) Let x be a nonzero element of R. If x = u1 + u2, where

u1, u2 ∈ U(R), then we have the walk 0−−u1−−u1 + u2 between 0 and
x. If x = u1 + u2 + u3, where u1, u2, u3 ∈ U(R), then we have the
walk 0−−u1−−u1 + u2−−u1 + u2 + u3 between 0 and x. Hence Γ(R) is
connected. □

The following theorem determines when Γ(R) is a complete bipartite
graph.

Theorem 2.3. Let R be a ring with a maximal ideal m such that
|R
m
| = 2. Then Γ(R) is a complete bipartite graph if and only if R is a

local ring.
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Proof. Let Γ(R) be a complete bipartite graph with bipartition {V1, V2}.
Let x, y ∈ R such that x+y ∈ U(R). Since x and y are adjacent, with-
out loss of generality, we may assume that x ∈ V1 and y ∈ V2. If 0 ∈ V1,
then y ∈ U(R). If 0 ∈ V2, then x ∈ U(R). Therefore x + y ∈ U(R)
implies that x ∈ U(R) or y ∈ U(R). It follows from [18, Theorem 19.1]
that R is a local ring.

Conversely, suppose that R is a ring with a maximal ideal m. Set
V1 := m and V2 := 1 +m. Then V (Γ(R)) = V1 ∪ V2. Since 0 and 1 are
adjacent in R

m
∼= Z2, then Lemma 2.1(1) implies that every elements of

m is adjacent to every elements of 1 + m. It easy to see that V1 =: m
is coclique. Now let x, y ∈ m and let 1 + x and 1 + y are two adjacent
elements of 1 + m. Then there exist u, v ∈ U(R) and z ∈ m such
(1+x)+u(1+y)v = 1+z. It follows that uv = z−x−uyv ∈ m, which
is a contradiction. Therefore Γ(R) is a complete bipartite graph. □

In the following theorem, we determine when Γ(R) is a cycle graph.

Theorem 2.4. Let R be a ring. Then Γ(R) is a cycle graph if and
only if R is isomorphic to one of the following rings:

Z3,Z4,

{(
a b
0 a

)
| a, b ∈ Z2

}
.

Proof. Let Γ(R) be a cycle graph. Then we have |R| = |V (Γ(R))| < ∞.
If |U(R)| ≥ 3, then degΓ(R)(0) = 3 and hence Γ(R) is not a cycle graph.
We show that |U(R)| ̸= 1. Suppose on the contrary that U(R) = {1}.
Since Γ(R) is a cycle graph, it has a path of length 2. Let x−−y−−z
be a path of length 2 in Γ(R). Then x + y = 1 and y + z = 1. Hence
x = z, which is a contradiction. So |U(R)| ̸= 1 and hence |U(R)| = 2.
It follows from [8, Corollary 4.5] that R is isomorphic to one of the
following rings.

(1) R1 = Z3.
(2) R2 = Z4.

(3) R3 =

{(
a b
0 a

)
| a, b ∈ Z2

}
.

(4) R4 =

{(
a b
0 c

)
| a, b, c ∈ Z2

}
.

(5) Si = Z2 ×Ri, 1 ≤ i ≤ 4.
The graphs Γ(Z3), Γ(Z4) and Γ(R3) are cycle graphs and the graphs
Γ(Z2 × Z4) and Γ(R4) are not cycle graphs (see Figures 1 and 2). We
have NΓ(Z2×Z3)(1, 1) = {(0, 0), (0, 1), (0, 2)}, and so Γ(Z2 × Z3) is not
cycle. Also, it is easy to see that Γ(Z2 ×R3) ∼= 2C4 and Γ(Z2 ×R4) ∼=
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4C4. So the graphs Γ(Z2 × R3) and Γ(Z2 × R4) are not cycle graphs.
This completes the proof. □
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Figure 2. The graphs Γ(R3) and Γ(R4).

Theorem 2.5. Let R be an Artinian ring. Then gr(Γ(R)) ∈ {3, 4,∞}.

Proof. First, suppose that J(R) ̸= 0 and x, y are two distinct elements
of J(R). Since every element of J(R) is adjacent to every element
of U(R), x−−(1 + x)−−y−−(1 + y) is a cycle in gr(Γ(R)). Therefore
gr(Γ(R)) = 3. Now assume that J(R) = 0. So the Wedderburn-Artin
Theorem [18, Theorem 3.5] implies that R ∼= Mn1(D1)×· · ·×Mnt(Dt),
where D1, . . . , Dt are division rings and n1, . . . , nt are positive integers.
If R ∼= Z2, then gr(Γ(R)) = ∞. If R is a division ring and |R| ≥ 3, then,
for any two nonzero distinct elements x and y of R, 0−−x−−y form a
triangle in Γ(R). So gr(Γ(R)) = 3. Now assume that R ∼= Mn(D),
where n ≥ 2 and D is a division ring. If Char(D) = 2, then by [20,
Theorem 1], we have I = U + V , where I is the identity matrix and
U, V are two invertible (unit) matrices. Hence the vertices {0, U, V }
form a triangle in Γ(R). If Char(D) ̸= 2, then the vertices {0, I, U}
form a triangle in Γ(R), where U = (uij) is a lower triangular matrix
such uii = un1 = 1 for i = 1, 2, . . . , n and the other vertices are zero.
So gr(Γ(R)) = 3. Now we consider the following three cases:
Case 1: R ∼=

∏t
i=1 Z2, where t ≥ 2. Then Γ(R) ∼= 2t−1K2. Therefore

Γ(R) is disconnected and gr(Γ(R)) = ∞.
Case 2: R ∼=

∏t
i=1Mni

(Di), where t ≥ 2 and Mni
(Di) is not iso-

morphic to Z2. Assume that the vertices {Ai, Bi, Ci} form a triangle
in Mni

(Di) for i with 1 ≤ i ≤ t. Then the vertices {(A1, . . . , At),
(B1, . . . , Bt), (C1, . . . , Ct)} form a triangle in Γ(R) and so gr(Γ(R)) = 3.
Case 3: R ∼=

∏k
i=1 Z2 ×

∏l
j=1Mnj

(Dj), where k, l ≥ 1 and Mnj
(Dj)

is not isomorphic to Z2. In this case, it is easy to see that Γ(R) is a
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bipartite graph and hence gr(Γ(R)) ≥ 4. We consider the following
two cases:
Subcase 1: Char(Dl) = 2. Let I = U + V , where I is the identity
matrix and U, V are two distinct invertible matrices in Mnl

(Dl) . Then
we have the following cycle

(0, . . . , 0, 0, . . . , 0)−− (1, . . . , 1, I, . . . , I)−− (0, . . . , 0, 0, . . . , 0, V )−−
(1, . . . , 1, I, . . . , I, U).

Subcase 2: Char(Dl) ̸= 2. Let U = (uij) be a lower triangular matrix
in Mnl

(Dl) such uii = un1 = 1 for i = 1, 2, . . . , n and 0 otherwise. Then
we have the following cycle

(0, . . . , 0, 0, . . . , 0)−− (1, . . . , 1, I, . . . , I, U)−− (0, . . . , 0, 0, . . . , 0, U)−−
(1, . . . , 1, I, . . . , I).

So gr(Γ(R)) = 4. □

The maximum (respectively minimum) vertex degree in a graph G is
denoted by ∆(G) (respectively δ(G)). We denote by ∆2(G), the second
greatest degree of G. We end this section by the following theorems
which is used in the next section.

Theorem 2.6. Let R = R1 × · · · × Rn be a finite commutative ring,
where Ri is a local ring with maximal ideal mi. Let |Ri

mi
| > 2 for every

i. Then the following are hold:
(1) ∆(Γ(R)) = |R| − 1 and δ(Γ(R)) = |U(R)|.
(2) degΓ(R)(x) = ∆(Γ(R)) if and only if x ∈ U(R).
(3) degΓ(R)(x) = δ(Γ(R)) if and only if x ∈ J(R).

Proof. The assertions follow from [26, Theorems 2.2 and 2.3] □

Theorem 2.7. Let R = R1 × · · · × Rn be a finite commutative ring,
where Ri is a local ring with maximal ideal mi. Assume that there exists
t with 1 ≤ t ≤ n such that |Ri

mi
| = 2 for every i ≤ t and |Ri/mi| > 2 for

every i > t. Then the following statements hold:
(1) ∆(Γ(R)) = |R1|

2
|R2|
2

· · · |Rt|
2
|Rt+1| · · · |Rn| and

δ(Γ(R)) = |R1|
2

|R2|
2

· · · |Rt|
2
|U(Rt+1)| · · · |U(Rn)|.

(2) degΓ(R)(x) = ∆(Γ(R)) if and only if x ∈ R1× · · ·×Rt×U(Rt+1)×
· · · × U(Rn).
(3) degΓ(R)(x) = δ(Γ(R)) if and only if x ∈ R1×· · ·×Rt×mt+1×· · ·×mn.

Proof. The assertions follow from [26, Theorems 2.2 and 2.3]. □
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3. Isomorphisms

We begin this section by the following remark.

Remark 3.1. Let R be a ring and x, y ∈ R. Then, in Γ(R), the following
are equivalent:
(1) x is adjacent to y.
(2) x is adjacent to uyv for some unit elements u, v ∈ U(R).
(3) x is adjacent to uyv for all unit elements u, v ∈ U(R).

Notation. Let Eij the n × n matrix that has 1 in the (i, j)-th entry
and zero elsewhere. For each 2 ≤ t ≤ n, we set

Jn,t := E21 + E32 + · · ·+ Et(t−1).

Theorem 3.2. Let R = Mn(F ), where F is a field and (n, |F |) ̸=
(1, 2) and let A,B ∈ R. Then, A is adjacent to B if and only if
rank(A) + rank(B) ≥ n.

Proof. Let rank(A) + rank(B) ≥ n. By [20, Theorem 1], there are unit
elements U1 and U2 such that A = U1 +U2. Therefore A is adjacent to
U1. It follows from Remark 3.1 that A is adjacent to every unit element
of R. So, if A or B is unit, then A is adjacent to B. Now suppose that
A and B be nonunits of R. Let n1 = rank(A) and n2 = rank(B). Then
by [13, Proposition 2.11], there are unit elements U1, U2, V1, V2 of R
such that

A = U1

[
In1 0
0 0

]
V1, B = U2

[
0 0
0 In2

]
V2.

We consider two cases:
Case 1: rank(A) + rank(B) = n. In this situation, again by using
Remark 3.1, we have that A is adjacent to B.
Case 2: rank(A) + rank(B) > n. There are unit elements U3, V3 of R
such that

B = U3

[
Jn1,t 0
0 In−n1

]
V3,

where t = (n1 + n2)− n. We have[
In1 0
0 0

]
+

[
Jn1,t 0
0 In−n1

]
=

[
Jn1,t + In1 0

0 In−n1

]
∈ U(R).

It follows that A and B are adjacent.

Conversely, suppose that rank(A) + rank(B) < n. There are unit
elements U0 and V0 such that
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A = U0

[
0 0
0 In1

]
V0.

It is easy to see that
[
0 0
0 In1

]
and

[
0 0
0 In2

]
are not adjacent and

hence A and B are not adjacent. This completes the proof. □

Let A,B ∈ Mn(F ), where F is a field. Recall from [13, Definition
1.8] that the matrices A and B are called equivalent if there exist two
invertible matrices U, V ∈ Mn(F ) such that A = UBV . It is easy is see
this definition of “equivalent” gives an equivalence relation on Mn(F ).
By [13, Theorem 2.6(ii)], the matrices A and B are equivalent matrices
if and only if rank(A) = rank(B). Let Rk be the set of all matrices of
rank k, for 0 ≤ k ≤ n. The number of n× n matrices of rank k over a
finite field of order q is given by

rk = |Rk| =
((qn − 1)(qn − q) · · · (qn − qk−1))2

(qk − 1)(qk − q) · · · (qk − qk−1)
.

This result was established by Landsberg in [19].

Theorem 3.3. Let R = Mn(F ), where F is a field. Then

χ(Γ(R)) = ω(Γ(R)) =

{
rn + rn−1 + · · ·+ rn

2
if n is even

rn + rn−1 + · · ·+ rn+1
2

+ 1 if n is odd

Proof. We consider the partition V (Γ(R)) = R0∪R1∪· · ·∪Rn. Let n be
an even number. By Theorem 3.2 the set Rn∪Rn−1∪Rn−1∪· · ·∪Rn

2
is a

clique. So χ(Γ(R)) ≥ ω(Γ(R)) ≥ rn+rn−1+· · ·+rn
2
. On the other hand,

R0∪R1∪· · ·∪Rn
2
−1 is a coclique and every vertex of R0∪R1∪· · ·∪Rn

2
−1 is

not adjacent to every vertex of Rn
2
. So rn+rn−1+· · ·+rn

2
colors provide

a proper coloring for Γ(R). It follows that χ(Γ(R)) = ω(Γ(R)) =
rn+rn−1+· · ·+rn

2
. Now let n be an odd number. Again by Theorem 3.2

the set Rn∪Rn−1∪Rn−1∪· · ·∪Rn+1
2
∪{x} is a clique, where x ∈ Rn−1

2
.

So χ(Γ(R)) ≥ ω(Γ(R)) ≥ rn+rn−1+ · · ·+rn+1
2
+1. On the other hand,

R0 ∪R1 ∪ · · · ∪Rn−1
2

is a coclique and every vertex of Rn−1
2

is adjacent
to every vertex of R0 ∪ R1 ∪ · · · ∪ Rn−1

2
. So rn + rn−1 + · · ·+ rn+1

2
+ 1

colors provide a proper coloring for Γ(R). It follows that χ(Γ(R)) =
ω(Γ(R)) = rn + rn−1 + · · ·+ rn+1

2
+ 1. □

Theorem 3.4. Let F and E be two finite fields and m,n be two natural
numbers. If Γ(Mn(F )) ∼= Γ(Mm(E)), then m = n and F ∼= E.
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Proof. Let |F | = pr and |E| = qs, for some prime numbers p, q and
natural numbers r, s. Since |Γ(Mn(F ))| = |Γ(Mm(E))|, we have prn

2
=

qsm
2 . So p = q and rn2 = sm2. On the other hand,

pr
n(n−1)

2

n∏
i=1

(pir − 1) = ∆(Γ(Mn(F ))) = ∆(Γ(Mm(E)))

= ps
m(m−1)

2

m∏
i=1

(pis − 1).

It follows that rn(n− 1) = sm(m− 1) and hence rn = sm. So n = m
and r = s. □

Now we are in position to give one of the main results of this paper.

Theorem 3.5. Let R = Mn(F ), where F is a finite field and S is a
ring. If Γ(R) ∼= Γ(S), then S ∼= Mn(F ).

Proof. It is clear that S is a finite ring. If R ∼= Z2, then S ∼= Z2 and we
are done. So assume that R ̸∼= Z2. We show that S is semisimple. First
we note that if x, y ∈ S and x − y ∈ J(R), then by [18, Lemma 4.3],
we have NΓ(S)(x) = NΓ(S)(y). Let f : Γ(R) → Γ(S) be an isomorphism
and let a = f(0). Then

a+ J(S) ⊆ {x ∈ S| degΓ(S)(x) = degΓ(S)(a)}.
On the other hand, by Theorem 3.2, we have

1 = |{x ∈ R| degΓ(R)(x) = degΓ(R)(0)}|
= |{x ∈ S| degΓ(S)(x) = degΓ(R)(a)}|.

Hence J(R) = 0, and so S is a semisimple ring. Let |F | = pr and
S ∼= Mn1(F1)× · · · ×Mnk

(Fk) and |Fi| = prii such that p
r1n2

1
1 ≤ p

r2n2
1

2 ≤
· · · ≤ p

rkn
2
k

k . Since |R| = |S|, we have

prn
2

= p
r1n2

1
1 × · · · × p

rkn
2
k

k .

It follows that p = p1 = p2 = . . . = pk and rn2 =
∑k

i=1 rin
2
i . We have

prn
2 − 2 = ∆2(Γ(R)) = ∆2(Γ(R)) = pr1n

2
1pr2n

2
2 . . . (prkn

2
k − 1)− 1.

It follows that
∑

i=1 rin
2
i = 0. So S = Mnk

(Fk) and Theorem 3.4
completes the proof. □

Let G and H be two graphs. The tensor product (sometimes called
category product) of G and H, G ⊗ H, is a graph with the vertex set
V (G)× V (H), such that two vertices (x1, y1) and (x2, y2) are adjacent
if and only if x1 is adjacent to x2 in G and y1 is adjacent to y2 in H.



62 REZAGHOLIBEIGI AND NAGHIPOUR

Let R = R1 × R2 × · · · × Rn be a direct product of rings and x =
(x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ R, where x and y are distinct.
Now, according to our definition, it is not hard to see that x is adjacent
to y in Γ(R), if and only if xi is adjacent to yi in Γ(Ri), for all 1 ≤ i ≤ n.
Hence we have the following immediate lemma.
Lemma 3.6. Let R = R1 ×R2 × · · · ×Rn be a direct product of rings.
Then Γ(R) ∼=

⊗n
i=1 Γ(Ri).

It is well known that every Artinian commutative ring can be ex-
pressed as a direct product of Artinian local rings, and this decomposi-
tion is unique up to permutations of such local rings (see [5, Theorem
8.7]).

For a finite commutative ring R, we have the following result about
the loops of Γ(R).
Theorem 3.7. Let R = R1 × · · · × Rn be a finite commutative ring,
where Ri is a local ring with maximal ideal mi. Then
(1) If |Ri

mi
| = 2 for some 1 ≤ i ≤ n, then Γ(R) = Γ(R).

(2) If |Ri

mi
| ̸= 2 for every 1 ≤ i ≤ n, then only the elements of U(R) has

a loop in Γ(R).
Proof. Follows easily from [26, Proposision 1.1]. □
Lemma 3.8. Let R and S be two finite commutative rings. Then
Γ(R) ∼= Γ(S) if and only if Γ(R) ∼= Γ(S).
Proof. It is easy to see that if Γ(R) ∼= Γ(S) then Γ(R) ∼= Γ(S).
Conversely, suppose that Γ(R) ∼= Γ(S). Let

R ∼= R1 ×R2 × · · · ×Rn,

S ∼= S1 × S2 × · · · × Sm,

where Ri and Sj are local rings with maximal ideals mi and ni for all
1 ≤ i ≤ n and 1 ≤ j ≤ m. We consider the following cases:
Case 1: There exists 1 ≤ i ≤ n such that |Ri|

|mi| = 2. In this case, we
claim that there exists 1 ≤ j ≤ m such that |Sj |

|nj | = 2. Suppose on the
contrary that |Sj |

|nj | ̸= 2 for every 1 ≤ j ≤ m. Then by [26, Theorem
3.1], we have

2 = w(Γ(R)) = w(Γ(S)) = |U(S)|+m.

It follows that m = 1 and |U(S)| = 1. It is not hard to see that S ∼= Z2,
which is a contradiction. Now Theorem 3.7 implies that Γ(R) ∼= Γ(S).
Case 2: There exists 1 ≤ i ≤ m such that |Si|

|ni| = 2. This case is exactly
similar to Case 1.
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Case 3: |Ri|
|mi| ̸= 2 and |Sj |

|nj | ̸= 2 for all 1 ≤ i ≤ n and 1 ≤ j ≤ m. By
Theorem 2.6 and [26, Theorem 3.1], we have

|U(R)| = δ(Γ(R)) = δ(Γ(S)) = |U(S)|,

|U(R)|+ n = w(Γ(R)) = w(Γ(S)) = |U(S)|+m.

So we have n = m. Now we consider two subcases:
Subcase 1: S is a field. In this case, we have

|U(R)| = δ(Γ(R)) = δ(Γ(S)) = |S| − 1.

It follows that |U(R)| = |R| − 1. Therefore R is also a field. Since two
finite fields are isomorphic if and only if they have the same number of
elements, we must have R ∼= S and hence Γ(R) ∼= Γ(S).
Subcase 2: S is not a field. Let f : Γ(R) → Γ(S) be a graph isomor-
phism. By Lemma 3.7(2), it is enough to show that f(U(R)) ⊆ U(S).
Suppose on the contrary that f(u) = (x1, x2, . . . , xn) ̸∈ U(S), for some
u ∈ U(R). Without loss of generality, we may assume that there exists
2 ≤ k ≤ n such that xi ∈ ni for every 1 ≤ i ≤ k and xi ∈ U(Si) for
every k + 1 ≤ i ≤ n. We have

|R| − 1 = degΓ(R)(u) = degΓ(S)(f(u))

= |U(S1)||U(S2)| . . . |U(Sk)||Sk+1| . . . |Sn|.
By Theorem 2.6(1), we have |R| − 1 = ∆(Γ(R)) = ∆(Γ(S)) = |S| − 1
and so

|S1||S2| · · · |Sn| − 1 = |U(S1)||U(S2)| · · · |U(Sk)||Sk+1| · · · |Sn|.
Hence

|Sk+1| · · · |Sn|(|S1||S2| · · · |Sk| − |U(S1)||U(S2)| · · · |U(Sk)|) = 1.

By [2, Proposition 2.1], we must have xi ∈ ni for every 1 ≤ i ≤ n.
Hence

|S1||S2| · · · |Sn| − |U(S1)||U(S2)| · · · |U(Sn)| = 1.

So |U(S)| = |S|−1 and hence S is a field, which is a contradiction. □
Now we are ready to state another main result of this section.

Theorem 3.9. Let R and S be two finite commutative rings such that
R is semisimple. If Γ(R) ∼= Γ(S), then R ∼= S.

Proof. First we claim that S is a semisimple ring. By [18, Page 41], we
may assume

R ∼= Z2 × Z2 × · · · × Z2︸ ︷︷ ︸
r times

×F1 × F2 × · · · × Fn,
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where Fi is a field for all 1 ≤ i ≤ n and 3 ≤ fi = |Fi| ≤ fi+1 = |Fi+1|
for all 1 ≤ i ≤ n− 1, and

S ∼= R1 ×R2 × · · · ×Rt ×Rt+1 × · · · ×Rm,

where Ri is a local ring with maximal ideal mi and 1 ≤ t ≤ m is an
integer number such that |Ri

mi
| = 2 for every i ≤ t and |Ri

mi
| > 2 for every

i > t. Since Γ(R) ∼= Γ(S), hence the number of connected components
of Γ(R) should be equal to the number of connected components of
Γ(S). Therefore, by [9, Corollary 5.10], we have 2r−1 = 2t−1 and so
r = t. On the other hand,

|{x ∈ Γ(R)| degΓ(R)(x) = δ(Γ(R))}| =
|{x ∈ Γ(S)| degΓ(S)(x) = δ(Γ(S))}|.

It follows that
|Z2 × · · · × Z2︸ ︷︷ ︸

t times
×{0} × · · · × {0}| = |R1 × · · · ×Rt ×mt+1 × · · · ×mm|.

By [2, Proposition 2.1], we have R1
∼= R1

∼= . . . ∼= Rt
∼= Z2 and

mt+1 = . . . = mm = {0}. Hence S is a semisimple ring. Assume that
S ∼= Z2 × · · · × Z2︸ ︷︷ ︸

t times
×E1 × E2 × · · · × Em,

where Ei is a field for all 1 ≤ i ≤ m and 3 ≤ ei = |Ei| ≤ ei+1 = |Ei+1|
for all 1 ≤ i ≤ m− 1. Since Γ(R) ∼= Γ(S), we have

2tf1f2 . . . fn = 2te1e2 . . . em. (3.1)
On the other hand, we have

f1f2 . . . fn−1(fn − 1) = ∆2(Γ(R)) = ∆2(Γ(S)) (3.2)
= e1e2 . . . em−1(em − 1).

Comparing (3.1) and (3.2) we deduce that fn = em and hence Fn
∼= Em.

By the Cancelation Theorem ([9, Proposition 9.6]) and Lemma 3.8, we
have

Γ(Zt
2 × F1 × · · · × Fn−1) ∼= Γ(Zt

2)⊗ Γ(F1)⊗ · · · ⊗ Γ(Fn−1)
∼= Γ(Zt

2)⊗ Γ(E1)⊗ · · · ⊗ Γ(Em−1)
∼= Γ(Zt

2 × E1 × · · · × Em−1)

By repeating this argument, we conclude that n = m and Fi
∼= Ei for

every 1 ≤ i ≤ n. Hence R ∼= S. □



REFINEMENT OF THE UNIT AND UNITARY CAYLEY GRAPHS 65

We end this section by the following conjecture.
Conjecture 1. Let R and S be two finite rings such that Γ(R) ∼= Γ(S).
Then R

J(R)
∼= S

J(S)
.

4. The spectrum of Γ(R)

The eigenvalues of a graph are eigenvalues of its adjacency matrix,
and the spectrum of a graph is the collection of its eigenvalues together
with multiplicities. If λ1, λ2, . . . , λk are distinct eigenvalues of a graph
G and m1,m2, . . . ,mk the corresponding multiplicities, then we denote
the spectrum of G by

Spec(Γ(R)) =

(
λ1 λ2 . . . λk

m1 m2 . . . mk

)
.

Let R be a finite commutative ring and n,m be two natural integer
numbers. Let In ∈ Mn(R) denote the identity matrix and let Jn,m be
the n×m matrix with all entries equal to 1. If a ∈ R, then it is easy to
see that the characteristic polynomial of aJn is equal to λn−1(λ− na).

Theorem 4.1. Let R be a finite commutative local ring with maximal
ideal m such that |R

m
| > 2. Then

Spec(Γ(R)) =

(
0 a b

|R| − 2 1 1

)
,

where a, b are roots of the equation λ2 − |U(R)|λ− |m||U(R)|.

Proof. Let n = |R|, m = |m| and M be the adjacency matrix of Γ(R)
in such away that, the elements of U(R) labeled by 1, . . . , n −m and
the elements of m labeled by (n−m) + 1, . . . , n.

det(λIn −M) =



λ− 1 −1 −1 . . . −1 −1 −1 −1 −1 . . . −1
−1 λ− 1 −1 . . . −1 −1 −1 −1 −1 . . . −1
... ... . . . ... ... ... ... ... ... ...
−1 −1 . . . λ− 1 −1 −1 −1 −1 . . . −1
−1 −1 −1 . . . −1 λ 0 0 0 . . . 0
−1 −1 −1 . . . −1 0 λ 0 0 . . . 0
−1 −1 −1 . . . −1 0 0 λ 0 . . . 0
... ... ... ... ... ... ... . . .
−1 −1 −1 . . . −1 0 0 0 . . . λ


.
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Let A = λIn−m − Jn−m, B = −Jn−m,m, C = −Jm,n−m and D = λIm.
If λ ̸= 0, then by Schur complement formula (see for example, [27,
Exercise 2.10(4)]), we have det(λIn −M) = det(D) det(A − BD−1C).
It is easy to see that

A−BD−1C =


λ− a −a −a −a · · · −a
−a λ− a −a −a · · · −a
−a −a λ− a −a · · · −a
... ... ... . . . ...

−a −a −a −a · · · λ− a

 ,

where a = 1+ m
λ

. It follows that det(λIn −M) = λn−2(λ2 − |U(R)|λ−
|m||U(R)|). This completes the proof. □

Let R be a commutative local ring with maximal ideal m such that
|R
m
| = 2. Then by Theorem 2.3, Γ(R) ∼= Kn,n, where n = |R|

2
. Therefore

by [6, Theorem 3.4(ii)], we have

Spec(Γ(R)) = Spec(Γ(R)) =

(
0 n −n

2n− 2 1 1

)
.

So by Lemma 3.6 and [6, Lemma 3.25], we can calculate the spectrum
of Γ(R).
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حلقه ها یکانی کیلی و یکه گراف  های تظریف

نقی پور علیرضا و رضاقلی بیگی میثم
ایران شهرکرد، شهرکرد، دانشگاه ریاضی، علوم دانشکده

گرافی را Γ(R) باشد. ناصفر همانی عنصر با تعویض پذیر) لزوماْ (نه حلقه یک R کنیم فرض
اگر تنها و اگر متصل اند یال یک توسط y و x راس های و بوده R آن ر اسی مجموعه که می کنیم تعریف
این در باشد. R از یکه عنصر یک x + uyv که طوری به باشند موجود R از v و u یکه عنصر های
بررسی R آرتینی حلقه برای Γ(R) گراف کمر و همبندی ،Γ(R) پایه ای خواص مطالعه ضمن مقاله،
اگر که کرد خواهیم ثابت است. دور یک Γ(R) گراف چه زمانی که می کنیم تعیین همچنین می شود.
است. متناهی میدان یک F و حلقه یک R که جایی ،R ∼= Mn(F ) آن گاه ،Γ(R) ∼= Γ(Mn(F ))
که باشد تعویض پذیر حلقه یک S و نیم ساده تعویض پذیر و متناهی حلقه یک R اگر که می دهیم نشان
R متناهی و تعویض پذیر حلقه برای را Γ(R) گراف طیف پایان، در .R ∼= S آن گاه ،Γ(R) ∼= Γ(S)

می آوریم. به دست

یکانی، کیلی گراف های یکه، گراف های جیکوبسن، رادیکال ماتریسی، حلقه های حلقه، کلیدی: کلمات
طیف.

۴
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