A graph is called symmetric if its full automorphism group acts transitively on the set of arcs. The Cayley graph $\Gamma=Cay(G,S)$ on group $G$ is said to be normal symmetric if $N_A(R(G))=R(G)\rtimes Aut(G,S)$ acts transitively on the set of arcs of $\Gamma$. In this paper, we classify all connected tetravalent normal symmetric Cayley graphs of order $p^2q$ where $p>q$ are prime numbers.
Ghorbani, M., Seyyed-Hadi, A., & Nowroozi-Larki, F. (2020). COMPUTING THE EIGENVALUES OF CAYLEY GRAPHS OF ORDER p2q. Journal of Algebraic Systems, 7(2), 189-203. doi: 10.22044/jas.2019.7034.1344
MLA
M. Ghorbani; A. Seyyed-Hadi; F. Nowroozi-Larki. "COMPUTING THE EIGENVALUES OF CAYLEY GRAPHS OF ORDER p2q", Journal of Algebraic Systems, 7, 2, 2020, 189-203. doi: 10.22044/jas.2019.7034.1344
HARVARD
Ghorbani, M., Seyyed-Hadi, A., Nowroozi-Larki, F. (2020). 'COMPUTING THE EIGENVALUES OF CAYLEY GRAPHS OF ORDER p2q', Journal of Algebraic Systems, 7(2), pp. 189-203. doi: 10.22044/jas.2019.7034.1344
VANCOUVER
Ghorbani, M., Seyyed-Hadi, A., Nowroozi-Larki, F. COMPUTING THE EIGENVALUES OF CAYLEY GRAPHS OF ORDER p2q. Journal of Algebraic Systems, 2020; 7(2): 189-203. doi: 10.22044/jas.2019.7034.1344