We show some results about local homology modules and local cohomology modules concerning to being in a serre sub category of the category of R-modules. Also for an ideal I of R we define the concept of CI condition on a serre category, which seems dual to CI condition of Melkerson [1]. As a main result we show that for any minimax R-module M of any serre category S that satisifies CI (CI) condition the local homology module HiI(M) (local cohomology module HIi(M) 2 S) for all i ≥ 0.
Faramarzi, S. O., & Barghsouz, Z. (2020). SERRE SUBCATEGORY, LOCAL HOMOLOGY AND LOCAL COHOMOLOGY. Journal of Algebraic Systems, 7(2), 301-314. doi: 10.22044/jas.2019.7430.1366
MLA
S. O. Faramarzi; Z. Barghsouz. "SERRE SUBCATEGORY, LOCAL HOMOLOGY AND LOCAL COHOMOLOGY", Journal of Algebraic Systems, 7, 2, 2020, 301-314. doi: 10.22044/jas.2019.7430.1366
HARVARD
Faramarzi, S. O., Barghsouz, Z. (2020). 'SERRE SUBCATEGORY, LOCAL HOMOLOGY AND LOCAL COHOMOLOGY', Journal of Algebraic Systems, 7(2), pp. 301-314. doi: 10.22044/jas.2019.7430.1366
VANCOUVER
Faramarzi, S. O., Barghsouz, Z. SERRE SUBCATEGORY, LOCAL HOMOLOGY AND LOCAL COHOMOLOGY. Journal of Algebraic Systems, 2020; 7(2): 301-314. doi: 10.22044/jas.2019.7430.1366