Let be a commutative Noetherian ring with non-zero identity and an ideal of . Let be a finite --module of finite projective dimension and an arbitrary finite --module. We characterize the membership of the generalized local cohomology modules in certain Serre subcategories of the category of modules from upper bounds. We define and study the properties of a generalization of cohomological dimension of generalized local cohomology modules. Let be a Serre subcategory of the category of --modules and be an integer such that belongs to for all . Then, for any ideal , it is also shown that the module belongs to .
Aghapournahr, M. (2013). UPPER BOUNDS FOR FINITENESS OF GENERALIZED LOCAL COHOMOLOGY MODULES. Journal of Algebraic Systems, 1(1), 1-9. doi: 10.22044/jas.2013.169
MLA
Aghapournahr, M. . "UPPER BOUNDS FOR FINITENESS OF GENERALIZED LOCAL COHOMOLOGY MODULES", Journal of Algebraic Systems, 1, 1, 2013, 1-9. doi: 10.22044/jas.2013.169
HARVARD
Aghapournahr, M. (2013). 'UPPER BOUNDS FOR FINITENESS OF GENERALIZED LOCAL COHOMOLOGY MODULES', Journal of Algebraic Systems, 1(1), pp. 1-9. doi: 10.22044/jas.2013.169
CHICAGO
M. Aghapournahr, "UPPER BOUNDS FOR FINITENESS OF GENERALIZED LOCAL COHOMOLOGY MODULES," Journal of Algebraic Systems, 1 1 (2013): 1-9, doi: 10.22044/jas.2013.169
VANCOUVER
Aghapournahr, M. UPPER BOUNDS FOR FINITENESS OF GENERALIZED LOCAL COHOMOLOGY MODULES. Journal of Algebraic Systems, 2013; 1(1): 1-9. doi: 10.22044/jas.2013.169