Let R be a commutative Noetherian ring, I an ideal of R and M a non-zero R-module. In this paper we calculate the extension of annihilator of local cohomology modules H^t_I(M), t≥0, under the ring extension R⊂R[X] (resp. R⊂R[[X]]). By using this extension we will present some of the faithfulness conditions of local cohomology modules, and show that if the Lynch's conjecture, in [11], holds in R[[X]], then it will holds in R.
Seidali Samani, M. and Bahmanpour, K. (2020). ANNIHILATOR OF LOCAL COHOMOLOGY MODULES UNDER THE RING EXTENSION R⊂R[X]. Journal of Algebraic Systems, 8(1), 95-102. doi: 10.22044/jas.2019.8232.1401
MLA
Seidali Samani, M. , and Bahmanpour, K. . "ANNIHILATOR OF LOCAL COHOMOLOGY MODULES UNDER THE RING EXTENSION R⊂R[X]", Journal of Algebraic Systems, 8, 1, 2020, 95-102. doi: 10.22044/jas.2019.8232.1401
HARVARD
Seidali Samani, M., Bahmanpour, K. (2020). 'ANNIHILATOR OF LOCAL COHOMOLOGY MODULES UNDER THE RING EXTENSION R⊂R[X]', Journal of Algebraic Systems, 8(1), pp. 95-102. doi: 10.22044/jas.2019.8232.1401
CHICAGO
M. Seidali Samani and K. Bahmanpour, "ANNIHILATOR OF LOCAL COHOMOLOGY MODULES UNDER THE RING EXTENSION R⊂R[X]," Journal of Algebraic Systems, 8 1 (2020): 95-102, doi: 10.22044/jas.2019.8232.1401
VANCOUVER
Seidali Samani, M., Bahmanpour, K. ANNIHILATOR OF LOCAL COHOMOLOGY MODULES UNDER THE RING EXTENSION R⊂R[X]. Journal of Algebraic Systems, 2020; 8(1): 95-102. doi: 10.22044/jas.2019.8232.1401