Document Type : Original Manuscript
Authors
Faculty of Sciences, Department of Mathematics, University of Mohaghegh Ardabili, P.O. Box 56199-11367, Ardabil, Iran.
Abstract
Let R be a commutative Noetherian ring, I an ideal of R and M a non-zero R-module. In this paper we calculate the extension of annihilator of local
cohomology modules H^t_I(M), t≥0, under the ring extension R⊂R[X] (resp.
R⊂R[[X]]). By using this extension we will present some of the faithfulness conditions
of local cohomology modules, and show that if the Lynch's conjecture, in [11], holds in
R[[X]], then it will holds in R.
Keywords
- K. Bahmanpour, Annihilators of local cohomology modules, Comm. Algebra, 43
(2015), 2509–2515. - K. Bahmanpour, A note on Lynch’s conjecture, Comm. Algebra, 45 (2017), 2738–2745.
- K. Bahmanpour, J. A’zami and G. Ghasemi, On the annihilators of local cohomology modules, J. Algebra, 363 (2012), 8–13.
- K. Bahmanpour and M. Seidali Samani, On the cohomological dimension of finitely generated modules, Bull. Korean Math. Soc., 55 (2018), 311–317.
- M. P. Brodmann and R. Y. Sharp, Local Cohomology; An Algebraic Introduction with Geometric Applications, Cambridge University Press, Cambridge, 1998.
- W. Bruns and J. Herzog, Cohen-Macaulay Rings, Cambridge Studies in Advanced Mathematics, Vol. 39, Cambridge University Press, Cambridge, 1998.
- K. Divaani-Aazar, R. Naghipour and M. Tousi, Cohomological dimension of certain algebraic varieties, Proc. Amer. Math. Soc., 130 (2002), 3537–3544.
- C. Faith, Associated primes in commutative polynomial rings, Comm. Algebra, 28 (2000), 3983–3986.
- A. Grothendieck, Local cohomology, Notes by R. Hartshorne, Lecture Notes in Math., Vol. 862, Springer, New York, 1966.
- C. Huneke and J. Koh, Cofiniteness and vanishing of local cohomology modules, Math. Proc. Cambridge Philos. Soc., 110 (1991), 421–429.
- L. R. Lynch, Annihilators of top local cohomology, Comm. Algebra, 40 (2012), 542–551.
- H. Matsumura, Commutative Ring Theory, Cambridge University Press, Cambridge, 1986.
- P. Schenzel, Cohomological annihilators, Math. Proc. Cambridge Philos. Soc., 91 (1982), 345–350.
- P. Schenzel, On the use of local cohomology in algebra and geometry, Six lectures on commutative algebra, Bellaterra 1996, 241–292.