Journal of Algebraic Systems

Vol. 9, No 1, (2021), pp 1-12

THE ANNIHILATOR GRAPH FOR MODULES OVER COMMUTATIVE RINGS

K. NOZARI AND SH. PAYROVI*

Abstract

Let R be a commutative ring and M be an R-module. The annihilator graph of M, denoted by $A G(M)$ is a simple undirected graph associated to M whose the set of vertices is $Z_{R}(M) \backslash$ $\operatorname{Ann}_{R}(M)$ and two distinct vertices x and y are adjacent if and only if $\operatorname{Ann}_{M}(x y) \neq \operatorname{Ann}_{M}(x) \cup \operatorname{Ann}_{M}(y)$. In this paper, we study the diameter and the girth of $A G(M)$ and we characterize all modules whose annihilator graph is complete. Furthermore, we look for the relationship between the annihilator graph of M and its zero-divisor graph.

1. Introduction

Let R be a commutative ring. The zero-divisor graph of R, denoted by $\Gamma(R)$ is a simple undirected graph whose vertices are the nonzero zero-divisors of R and two distinct vertices x and y are adjacent if and only if $x y=0$, see $[1,2,6]$. The concept of the zero-divisor graph of a ring, has been generalized for modules in many papers, see [7, 9]. Variations of the zero-divisor graph are created by changing the vertex set, the edge condition, or both. The annihilator graph of R introduced in [5] and studied in some literatures, see [8, 10, 14]. It is a variation of the zero-divisor graph that changes the edge condition. This graph,

[^0]denoted by $A G(R)$ is a graph whose vertices are the nonzero zerodivisors of R and two distinct vertices x and y are adjacent if and only if $\mathrm{Ann}_{R}(x y) \neq \mathrm{Ann}_{R}(x) \cup \mathrm{Ann}_{R}(y)$.

By relying this fact we introduce the annihilator graph for a module. Let M be an R-module. The annihilator graph of M, denoted by $A G(M)$ is a simple undirected graph associated to M whose vertices are the elements of $Z_{R}(M) \backslash \operatorname{Ann}_{R}(M)$ and two distinct vertices x and y are adjacent if and only if $\operatorname{Ann}_{M}(x y) \neq \operatorname{Ann}_{M}(x) \cup \operatorname{Ann}_{M}(y)$. We investigate the interplay between the graph theoretic properties of $A G(M)$ and some algebraic properties of M.

Let $G=(V(G), E(G))$ be a simple undirected graph, where $V(G)$ is the set of vertices and $E(G)$ is the set of edges. Let $x, y \in V(G)$. We write $x \sim y$, whenever x and y are adjacent. A universal vertex is a vertex that is adjacent to all other vertices of the graph. We say that G is connected if there is a path between any two distinct vertices. For vertices x and y of G, we define $\mathrm{d}(x, y)$ to be the length of a shortest path between x and y (if there is no path, then $\mathrm{d}(x, y)=\infty$). The open neighborhood of a vertex x is defined to be the set $N(x)=\{y \in$ $V(G): \mathrm{d}(x, y)=1\}$. The diameter of G is $\operatorname{diam}(G)=\sup \{\mathrm{d}(x, y):$ x and y are vertices of $G\}$. The graph G is complete if any two distinct vertices are adjacent and a complete graph with n vertices is denoted by K_{n}. A complete bipartite graph G is a graph whose vertices can be partitioned into two disjoint nonempty sets A and B such that two distinct vertices are adjacent if and only if they are in distinct sets and it is denoted by $K_{|A|,|B|}$. The girth of G, denoted by $\operatorname{gr}(G)$ is the length of a shortest cycle in $G(\operatorname{gr}(G)=\infty$ if G contains no cycle $)$.

Throughout this paper, R denotes a commutative ring with nonzero identity and M is an R-module. Recall that $\operatorname{Ann}_{R}(M)=\{r \in R$: $r M=0\}, Z_{R}(M)=\{r \in R: r m=0$ for some nonzero $m \in M\}$ and $\operatorname{Ass}_{R}(M)=\left\{\mathfrak{p} \in \operatorname{Spec}(R): \mathfrak{p}=\operatorname{Ann}_{R}(m)\right.$ for some nonzero $\left.m \in M\right\}$. For $x \in R, \operatorname{Ann}_{M}(x)=\{m \in M: x m=0\}$. The reader is referred to [15], for notations and terminologies not given in this paper.

2. The annihilator graph for modules

In this section we define a simple undirected graph $A G(M)$ and we study the relations between graph theoretic properties of $A G(M)$ and module theoretic properties of M.

Definition 2.1. Let M be an R-module. The annihilator graph of M, denoted by $A G(M)$ is a simple undirected graph associated to M whose the set of vertices is $Z_{R}(M) \backslash \operatorname{Ann}_{R}(M)$ and two distinct vertices x and y are adjacent if and only if $\operatorname{Ann}_{M}(x y) \neq \operatorname{Ann}_{M}(x) \cup \operatorname{Ann}_{M}(y)$.

Lemma 2.2. Let M be an R-module and x, y be distinct vertices of $A G(M)$. Then the following statements are true:
(i) If $\mathrm{Ann}_{M}(x) \nsubseteq \operatorname{Ann}_{M}(y)$ and $\operatorname{Ann}_{M}(y) \nsubseteq \operatorname{Ann}_{M}(x)$, then x, y are adjacent in $A G(M)$.
(ii) If x, y are not adjacent in $A G(M)$, then either $\operatorname{Ann}_{M}(x) \subseteq$ $\operatorname{Ann}_{M}(y)$ or $\operatorname{Ann}_{M}(y) \subseteq \operatorname{Ann}_{M}(x)$.
(iii) If x, y are not adjacent in $A G(M)$, then either $\operatorname{Ann}_{R}(x M) \subseteq$ $\mathrm{Ann}_{R}(y M)$ or $\mathrm{Ann}_{R}(y M) \subseteq \mathrm{Ann}_{R}(x M)$.
(iv) x, y are not adjacent in $A G(M)$ if and only if either $\operatorname{Ann}_{M}(x y)$ $=\operatorname{Ann}_{M}(x)$ or $\operatorname{Ann}_{M}(x y)=\operatorname{Ann}_{M}(y)$.
Proof. (i) Suppose that x, y are not adjacent in $A G(M)$. Thus $\operatorname{Ann}_{M}(x)$ $\cup \operatorname{Ann}_{M}(y)=\operatorname{Ann}_{M}(x y)$. So $\operatorname{Ann}_{M}(x y)=\operatorname{Ann}_{M}(x)$ or $\operatorname{Ann}_{M}(x y)=$ $\operatorname{Ann}_{M}(y)$. Hence, $\operatorname{Ann}_{M}(x) \subseteq \operatorname{Ann}_{M}(y)$ or $\operatorname{Ann}_{M}(y) \subseteq \operatorname{Ann}_{M}(x)$ which is a contradiction.
(ii) It is contrapositive of part (i).
(iii) Suppose that x, y are not adjacent in $A G(M)$. It follows that either $\operatorname{Ann}_{M}(x) \subseteq \operatorname{Ann}_{M}(y)$ or $\operatorname{Ann}_{M}(y) \subseteq \operatorname{Ann}_{M}(x)$, by (ii). Let $\operatorname{Ann}_{M}(x) \subseteq \operatorname{Ann}_{M}(y)$ and $r \in \operatorname{Ann}_{R}(x M)$. Then $r x M=0$ and so $r M \subseteq \operatorname{Ann}_{M}(x)$. Hence, $r M \subseteq \operatorname{Ann}_{M}(y)$ and then $r y M=0$. Therefore, $r \in \mathrm{Ann}_{R}(y M)$. So $\mathrm{Ann}_{R}(x M) \subseteq \mathrm{Ann}_{R}(y M)$.
(iv) It is obvious by the proof of part (i).

Lemma 2.3. Let M be an R-module and x, y be distinct vertices of $A G(M)$. Let $x \notin r\left(\operatorname{Ann}_{R}(M)\right)=\left\{x \in R: x^{t} \in \operatorname{Ann}_{R}(M)\right.$ for some $t \in$ $\mathbb{N}\}$ and $\operatorname{Ann}_{M}(x)$ be a prime submodule of M. Then x, y are adjacent in $A G(M)$ if and only if $\operatorname{Ann}_{M}(y) \nsubseteq \operatorname{Ann}_{M}(x)$.
Proof. Assume that $\operatorname{Ann}_{M}(y) \nsubseteq \operatorname{Ann}_{M}(x)$ and $m \in \operatorname{Ann}_{M}(y) \backslash \operatorname{Ann}_{M}(x)$. Then $y m=0 \in \operatorname{Ann}_{M}(x)$. Since $\operatorname{Ann}_{M}(x)$ is a prime submodule of M, $x y M=0$. So $\operatorname{Ann}_{M}(x) \cup \operatorname{Ann}_{M}(y) \neq \operatorname{Ann}_{M}(x y)$. Conversely, suppose that $\operatorname{Ann}_{M}(x) \cup \operatorname{Ann}_{M}(y) \neq \operatorname{Ann}_{M}(x y)$. Thus there exists $m \in M$ such that $x y m=0$ but $x m \neq 0 \neq y m$. If $\operatorname{Ann}_{M}(y) \subseteq \operatorname{Ann}_{M}(x)$, then $x m \in \operatorname{Ann}_{M}(x)$ and $m \notin \operatorname{Ann}_{M}(x)$ which implies that $x^{2} M=0$ and it is a contradiction. Hence, $\operatorname{Ann}_{M}(y) \nsubseteq \operatorname{Ann}_{M}(x)$.
Theorem 2.4. Let M be an R-module and x, y be distinct vertices of $A G(M)$. Then the following statements are equivalent:
(i) x, y are adjacent in $A G(M)$.
(ii) $x M \cap \operatorname{Ann}_{M}(y) \neq 0$ and $y M \cap \operatorname{Ann}_{M}(x) \neq 0$.
(iii) $x \in Z_{R}(y M)$ and $y \in Z_{R}(x M)$.

Proof. (i) \Rightarrow (ii) Let x, y be distinct vertices of $A G(M)$. Then there exists $m \in M$ such that $x y m=0$ but $x m \neq 0 \neq y m$. So $x M \cap$ $\operatorname{Ann}_{M}(y) \neq 0$ and $y M \cap \operatorname{Ann}_{M}(x) \neq 0$.
(ii) \Rightarrow (i) By the hypothesis there exist $m, m^{\prime} \in M$ such that xym = $x y m^{\prime}=0, x m \neq 0$ and $y m^{\prime} \neq 0$. If $m=m^{\prime}$ or $y m \neq 0$ or $x m^{\prime} \neq 0$, then there is nothing to prove. Now assume that $m \neq m^{\prime}, y m=0$ and $x m^{\prime}=0$. Thus $x y\left(m+m^{\prime}\right)=0$ but $x\left(m+m^{\prime}\right)=x m \neq 0$ and $y\left(m+m^{\prime}\right)=y m^{\prime} \neq 0$. So x, y are adjacent in $A G(M)$.
(ii) \Leftrightarrow (iii) It is clear.

Let M be an R-module. A submodule Q of M is said to be primary submodule of M precisely when $M / Q \neq 0$, and for each $a \in Z_{R}(M / Q)$, there exists $n \in \mathbb{N}$ such that $a^{n}(M / Q)=0$. It is well known that if Q is primary submodule of M, then $\operatorname{Ann}_{R}(M / Q)$ is a primary ideal of R. In the following we offer a sufficient and necessary condition for completeness of $A G(M)$, whenever M is Noetherian. We begin with the following lemma.

Lemma 2.5. Let M be a Noetherian R-module and let $0=\cap_{i=1}^{n} Q_{i}$ be a minimal primary decomposition of the zero submodule of M with $r\left(\operatorname{Ann}_{R}\left(M / Q_{i}\right)\right)=\mathfrak{p}_{i}$, for each $i=1, \cdots, n$. Suppose that \mathfrak{p}_{j} is a minimal member of $\left\{\mathfrak{p}_{1}, \cdots, \mathfrak{p}_{n}\right\}=\operatorname{Ass}_{R}(M)$ with respect to inclusion. Then there exists $a_{j} \in R$ such that $Q_{j}=\operatorname{Ann}_{M}\left(a_{j}\right)$.
Proof. Let $0=\cap_{i=1}^{n} Q_{i}$ be a minimal primary decomposition of the zero submodule of M with $r\left(\operatorname{Ann}_{R}\left(M / Q_{i}\right)\right)=\mathfrak{p}_{i}$, for each $i=1, \cdots, n$. Suppose that $\mathfrak{p}_{j}=r\left(\operatorname{Ann}_{R}\left(M / Q_{j}\right)\right)$ is a minimal element of $\operatorname{Ass}_{R}(M)$, for some j with $1 \leq j \leq n$. Then $\cap_{i=1, i \neq j}^{n} \operatorname{Ann}_{R}\left(M / Q_{i}\right) \nsubseteq \mathfrak{p}_{j}$. Suppose that $a_{j} \in \cap_{i=1, i \neq j}^{n} \operatorname{Ann}_{R}\left(M / Q_{i}\right) \backslash \mathfrak{p}_{j}$. We show that $\operatorname{Ann}_{M}\left(a_{j}\right)=Q_{j}$. We have $\operatorname{Ann}_{M}\left(a_{j}\right)=\left(0:_{M} a_{j}\right)=\left(\cap_{i=1}^{n} Q_{i}:_{M} a_{j}\right)=\cap_{i=1}^{n}\left(Q_{i}:_{M}\right.$ $\left.a_{j}\right)=\left(Q_{j}:_{M} a_{j}\right)$. It is clear that $Q_{j} \subseteq\left(Q_{j}:_{M} a_{j}\right)$. If there exists $m \in\left(Q_{j}:_{M} a_{j}\right)$ with $m \notin Q_{j}$, then $a_{j}^{t} M \subseteq Q_{j}$ for some $t \in \mathbb{N}$ and so $a_{j} \in \mathfrak{p}_{j}$ which is a contradiction. Hence, $Q_{j}=\operatorname{Ann}_{M}\left(a_{j}\right)$.

Let M be an R-module. Then the zero submodule is a primary submodule of M if and only if $Z_{R}(M)=r\left(\operatorname{Ann}_{R}(M)\right)$.

Theorem 2.6. Let M be a Noetherian R-module. Then $A G(M)$ is a complete graph if and only if $Z_{R}(M)=r\left(\operatorname{Ann}_{R}(M)\right)$.
Proof. \Rightarrow Let $0=\cap_{j=1}^{n} Q_{i}$ be a minimal primary decomposition of the zero submodule of M with $r\left(\operatorname{Ann}_{R}\left(M / Q_{i}\right)\right)=\mathfrak{p}_{i}$, for each $i=1, \cdots, n$. Let \mathfrak{p}_{j} be a minimal element of $\operatorname{Ass}_{R}(M)$, for some $1 \leq j \leq n$. Then by Lemma 2.5, there exists $a_{j} \in \cap_{i=1, i \neq j}^{n} \operatorname{Ann}_{R}\left(M / Q_{i}\right) \backslash \mathfrak{p}_{j}$ such that $Q_{j}=\operatorname{Ann}_{M}\left(a_{j}\right)$. Suppose that $c \in Z_{R}(M) \backslash \operatorname{Ann}_{R}(M)$ and $c \neq a_{j}$. By the hypothesis c, a_{j} are adjacent in $A G(M)$. So $\operatorname{Ann}_{M}\left(a_{j}\right) \cup \operatorname{Ann}_{M}(c) \neq$ $\operatorname{Ann}_{M}\left(a_{j} c\right)$. Thus there exists $m \in M$ such that $a_{j} c m=0$ but $a_{j} m \neq 0$. Hence, $c^{t} M \subseteq Q_{j}$ for some $t \in \mathbb{N}$ so $c^{t} \in \operatorname{Ann}_{R}\left(M / Q_{j}\right) \subseteq \mathfrak{p}_{j}$. Therefore,
$Z_{R}(M)=\mathfrak{p}_{j} \cup\left\{a_{j}\right\}$. Let $\mathfrak{p}_{j} \subset \mathfrak{p}_{k}$, for some $1 \leq k \leq n$. Since $\mathfrak{p}_{k} \subseteq$ $Z_{R}(M)=\mathfrak{p}_{j} \cup\left\{a_{j}\right\}, \mathfrak{p}_{k}=\mathfrak{p}_{j} \cup\left\{a_{j}\right\}$ which is a contradiction. Hence, $n=1$ and so 0 is a primary submodule of M. So $\operatorname{Ass}_{R}(M)=\left\{\mathfrak{p}_{j}\right\}$ and consequently $Z_{R}(M)=r\left(\operatorname{Ann}_{R}(M)\right)$.
\Leftarrow Let $Z_{R}(M)=r\left(\operatorname{Ann}_{R}(M)\right)$ and let $x, y \in Z_{R}(M) \backslash \operatorname{Ann}_{R}(M)$ be two distinct vertices of $A G(M)$. Then $\operatorname{Ann}_{M}(x)$ and $\operatorname{Ann}_{M}(y)$ are essential submodules of M by [3, Theorem 5]. So $x M \cap \operatorname{Ann}_{M}(y) \neq$ 0 and $y M \cap \operatorname{Ann}_{M}(x) \neq 0$. Hence, x, y are adjacent in $A G(M)$ by Theorem 2.4.

The following example has been presented to show that the property of being Noetherian is a necessary condition in Theorem 2.6.

Example 2.7. Consider $M=\mathbb{Z}_{p \infty}$ as a \mathbb{Z}-module, where p is a prime integer. It is easy to see that $A G(M)$ is a complete graph but $Z_{\mathbb{Z}}(M)=$ $p \mathbb{Z}$ and $r\left(\operatorname{Ann}_{\mathbb{Z}}(M)\right)=0$.

Proposition 2.8. Let M be an R-module and x, y be distinct vertices of $A G(M)$. If $\operatorname{Ann}_{M}(x)=\operatorname{Ann}_{M}(y)$, then $N_{A G(M)}(x)=N_{A G(M)}(y)$.

Proof. Let $z \in Z_{R}(M) \backslash \operatorname{Ann}_{R}(M)$ and $z \in N_{A G(M)}(x)$. Then there exists $m \in M$ such that $x z m=0$ but $x m \neq 0 \neq z m$. So $z m \in \operatorname{Ann}_{M}(y)$ and $y m \neq 0 \neq z m$. It means that y, z are adjacent in $A G(M)$. Hence, $z \in N_{A G(M)}(y)$. The reverse inclusion can be proved similarly.

3. Relation between the zero-divisor graph and the ANNIHILATOR GRAPH

Let M be an R-module. The zero-divisor graph of M, denoted by $\Gamma(M)$ is a simple undirected graph associated to M whose vertices are the elements of $Z_{R}(M) \backslash \operatorname{Ann}_{R}(M)$ and two distinct vertices x and y are adjacent if and only if $x y M=0$, see [11].

Lemma 3.1. Let M be an R-module and x, y be distinct vertices of $A G(M)$. Then the following statements are true:
(i) If x, y are adjacent in $\Gamma(M)$, then x, y are adjacent in $A G(M)$. In particular, if P is a path in $\Gamma(M)$, then P is a path in $A G(M)$.
(ii) If $d_{\Gamma(M)}(x, y)=3$, then x, y are adjacent in $A G(M)$.

Proof. (i) Suppose that x, y are adjacent in $\Gamma(M)$. Thus $x y M=0$ and so $\operatorname{Ann}_{M}(x y)=M$; but $\operatorname{Ann}_{M}(x) \neq M$ and $\operatorname{Ann}_{M}(y) \neq M$. Hence, $\operatorname{Ann}_{M}(x y) \neq \operatorname{Ann}_{M}(x) \cup \operatorname{Ann}_{M}(y)$ and x, y are adjacent in $A G(M)$.
(ii) Suppose that $d_{\Gamma(M)}(x, y)=3$. Thus $x y M \neq 0$ and there exist $a, b \in Z_{R}(M) \backslash \operatorname{Ann}_{R}(M) \cup\{x, y\}$ such that $a x M=0, a b M=0$ and
$b y M=0$. If $\operatorname{Ann}_{M}(x) \subseteq \operatorname{Ann}_{M}(y)$, then in view of $a x M=0$ it follows that $a M \subseteq \operatorname{Ann}_{M}(x) \subseteq \operatorname{Ann}_{M}(y)$. Thus $a y M=0$ which contradicts to the hypothesis. Hence, $\mathrm{Ann}_{M}(x) \nsubseteq \mathrm{Ann}_{M}(y)$. By a similar argument one can show that $\operatorname{Ann}_{M}(y) \nsubseteq \operatorname{Ann}_{M}(x)$. Therefore, x, y are adjacent in $A G(M)$ by Lemma 2.2(i).

Lemma 3.2. Let M be an R-module and x, y be distinct vertices of $A G(M)$. If $\operatorname{Ann}_{M}(x)$ and $\mathrm{Ann}_{M}(y)$ are distinct prime submodules of M, then x, y are adjacent in $\Gamma(M)$ and so are adjacent in $A G(M)$.

Proof. Assume that $P_{1}=\operatorname{Ann}_{M}(x), P_{2}=\operatorname{Ann}_{M}(y)$ are two distinct prime submodules of M and $m \in P_{1} \backslash P_{2}$. Thus $x m=0 \in P_{2}$ which implies that $x M \subseteq P_{2}=\operatorname{Ann}_{M}(y)$. Hence, $x y M=0$ and so x, y are adjacent in $\Gamma(M)$. The second assertion follows by Lemma 3.1(i).

Let M be an R-module and $\operatorname{Spec}_{R}(M)$ denote the set of prime submodules of M. Then $m-\operatorname{Ass}_{R}(M)=\left\{P \in \operatorname{Spec}_{R}(M): P=\right.$ $\operatorname{Ann}_{M}(a)$ for some $\left.0 \neq a \in R\right\}$.

Corollary 3.3. Let M be an R-module such that for every edge of $A G(M), x \sim y$ say, either $\operatorname{Ann}_{M}(x) \in m-\operatorname{Ass}_{R}(M)$ or $\operatorname{Ann}_{M}(y) \in$ $m-\operatorname{Ass}_{R}(M)$. Then $\Gamma(M)=A G(M)$.

Proof. In view of Lemma 3.1(i), $\Gamma(M)$ is a subgraph of $A G(M)$. Let x, y be distinct adjacent vertices of $A G(M)$ and let either $A n n_{M}(x) \in$ $m-\operatorname{Ass}_{R}(M)$ or $\operatorname{Ann}_{M}(y) \in m-\operatorname{Ass}_{R}(M)$. Without loss of generality we may assume that $\operatorname{Ann}_{M}(x) \in m-\operatorname{Ass}_{R}(M)$. Thus $\operatorname{Ann}_{M}(x y) \neq$ $\operatorname{Ann}_{M}(x) \cup \operatorname{Ann}_{M}(y)$. Hence, there is $m \in M$ such that $x y m=0$ but $x m \neq 0 \neq y m$. Therefore, $y m \in \operatorname{Ann}_{M}(x)$ and $m \notin \operatorname{Ann}_{M}(x)$. So $x y M=0$ since $\operatorname{Ann}_{M}(x)$ is a prime submodule of M and x and y are adjacent in $\Gamma(M)$.

Theorem 3.4. Let M be an R-module and $\Gamma(M)$ be a connected graph. Then $A G(M)$ is a connected graph and $\operatorname{diam}(A G(M)) \leqslant 2$.

Proof. Suppose that x, y are distinct non-adjacent vertices of $A G(M)$. Thus by Lemma 2.2(ii), either $\operatorname{Ann}_{M}(x) \subseteq \operatorname{Ann}_{M}(y)$ or $\operatorname{Ann}_{M}(y) \subseteq$ $\operatorname{Ann}_{M}(x)$. Without loss of generality we may assume that $\operatorname{Ann}_{M}(x) \subseteq$ $\operatorname{Ann}_{M}(y)$. Thus $\mathrm{Ann}_{R}(x M) \subseteq \operatorname{Ann}_{R}(y M)$, by Lemma 2.2(iii). Since x is not an isolated vertex of $\Gamma(M)$, thus there exists $z \in \operatorname{Ann}_{R}(x M) \backslash$ $\operatorname{Ann}_{R}(M)$ such that $x z M=0$. So $y z M=0$. Hence, $x \sim z \sim y$ is a path in $\Gamma(M)$ and so is a path in $A G(M)$.

Theorem 3.5. Let M be a Noetherian R-module and $\Gamma(M)$ be a connected graph. Then $\operatorname{gr}(A G(M)) \in\{3,4, \infty\}$.

Proof. If $\Gamma(M)=A G(M)$, then in view of [11, Teorem 3.3], $\operatorname{gr}(A G(M))$ $\in\{3,4, \infty\}$. Now, suppose that $\Gamma(M) \neq A G(M)$ and x, y are two distinct adjacent vertices of $A G(M)$ such that they are non-adjacent in $\Gamma(M)$. Since $\Gamma(M)$ is a connected graph, there exist $a, b \in Z_{R}(M) \backslash$ $\operatorname{Ann}_{R}(M) \cup\{x, y\}$ such that $a x M=b y M=0$. If $a=b$, then $x \sim a \sim y$ is a path in $\Gamma(M)$ and so $x \sim a \sim y \sim x$ is a cycle in $A G(M)$ of length three. So we may assume that $a \neq b$. If $a b M=0$, then $x \sim a \sim b \sim y$ is a path in $\Gamma(M)$. Thus $x \sim a \sim b \sim y \sim x$ is a cycle in $A G(M)$ of length four. If $a b M \neq 0$, then $x \sim a b \sim y$ is a path in $\Gamma(M)$ and so $x \sim a b \sim y \sim x$ is a cycle in $A G(M)$ of length three. Therefore, $\operatorname{gr}(A G(M)) \in\{3,4, \infty\}$.

Consider \mathbb{Z}_{8} as a \mathbb{Z}_{8}-module. It is easy to see that $\operatorname{gr}\left(A G\left(\mathbb{Z}_{8}\right)\right)=3$ and $\operatorname{gr}\left(\Gamma\left(\mathbb{Z}_{8}\right)\right)=\infty$.

Theorem 3.6. Let M be a Noetherian R-module and $A G(M)$ be a complete graph. Then $c \in Z_{R}(M) \backslash \operatorname{Ann}_{R}(M)$ is a universal vertex of $\Gamma(M)$ if and only if $\mathrm{Ann}_{M}(c)$ is a prime submodule of M.
Proof. Let $c \in Z_{R}(M) \backslash \operatorname{Ann}_{R}(M)$ be a universal vertex of $\Gamma(M)$. We show that $\operatorname{Ann}_{M}(c)$ is a prime submodule of M. Assume that $x \in$ $R, m \in M \backslash \operatorname{Ann}_{M}(c)$ and $x m \in \operatorname{Ann}_{M}(c)$. By [11, Theorem 2.1], $Z_{R}(M)=\operatorname{Ann}_{R}(c M)$ and $x \in Z_{R}(M)$ thus $x M \subseteq \operatorname{Ann}_{M}(c)$ as desired. Hence, $\operatorname{Ann}_{M}(c)$ is a prime submodule of M.

Suppose that $c \in Z_{R}(M) \backslash \operatorname{Ann}_{R}(M)$ and $\operatorname{Ann}_{M}(c)$ is a prime submodule of M. We show that c is a universal vertex of $\Gamma(M)$. Let $x \in Z_{R}(M) \backslash \operatorname{Ann}_{R}(M)$ be a vertex of $\Gamma(M)$ and $x \neq c$. In view of the assumption $A G(M)$ is a complete graph so there exists $m \in \operatorname{Ann}_{M}(c x)$ such that $x m \neq 0 \neq c m$. Thus $x m \in \operatorname{Ann}_{M}(c)$ and $c m \neq 0$. Hence, $x c M=0$ and so c, x are adjacent in $\Gamma(M)$.
Corollary 3.7. Let M be a Noetherian R-module and $A G(M)$ be a complete graph with $\left|Z_{R}(M) \backslash \mathrm{Ann}_{R}(M)\right| \geqslant 3$. If $\Gamma(M)$ is a star graph, then $\left|m-\operatorname{Ass}_{R}(M)\right|=1$.

Proof. Let $Z_{R}(M) \backslash \operatorname{Ann}_{R}(M)=\{a, b, c, \cdots\}$ and let $\Gamma(M)$ be a star graph. If $P_{1}=\operatorname{Ann}_{M}(a)$ and $P_{2}=\operatorname{Ann}_{M}(b)$ are prime submodules of M, then by Theorem 3.6, a and b are universal vertices of $\Gamma(M)$ which is a contradiction. Thus $\left|m-\operatorname{Ass}_{R}(M)\right| \leq 1$. Since M is Noetherian, $\left|m-\operatorname{Ass}_{R}(M)\right| \geq 1$.

Consider \mathbb{Z}_{8} as a \mathbb{Z}-module. It is easy to check that $A G\left(\mathbb{Z}_{8}\right)$ is a complete graph and $m-\operatorname{Ass}_{\mathbb{Z}}\left(\mathbb{Z}_{8}\right)=\{2 \mathbb{Z}\}$ but $\Gamma\left(\mathbb{Z}_{8}\right)$ is not a star graph. Note that 4 is a universal vertex of $\Gamma\left(\mathbb{Z}_{8}\right)$. Also, $2 \sim 12$ in $\Gamma\left(\mathbb{Z}_{8}\right)$.

Theorem 3.8. Let M be an R-module and $\Gamma(M)$ be a star graph with the universal vertex c. Then the following statements are true:
(i) If $c \notin r\left(\operatorname{Ann}_{R}(M)\right)$, then $\Gamma(M)=K_{1}$.
(ii) If $c \in r\left(\operatorname{Ann}_{R}(M)\right)$, then $\Gamma(M)=K_{1,1}$ or $R c=c Z_{R}(M) \cup\{c\}$.

Proof. (i) In [11, Theorem 2.1], it has been proved that $Z_{R}(M)=$ $\operatorname{Ann}_{R}(c M) \cup\{c\}$ and $c=c^{2}$. If there exists $a \in R \backslash Z_{R}(M)$ such that $a c \neq c$, then $a c$ and x are adjacent for all $x \in Z_{R}(M) \backslash \operatorname{Ann}_{R}(M)$ which is a contradiction. So $a c=c$ and $\Gamma(M)=K_{1}$. Let $a c=c$, for all $a \in R \backslash Z_{R}(M)$. Then $R c=c Z_{R}(M) \cup c\left(R \backslash Z_{R}(M)\right)=c Z_{R}(M) \cup\{c\}=$ $c \operatorname{Ann}_{R}(c M) \cup\{c\}$. In this case we have $R=\mathbb{Z}_{2} \oplus R^{\prime}$ and $M=\oplus \mathbb{Z}_{2} \oplus M^{\prime}$, where R^{\prime} is a subring of R and M^{\prime} is an R-submodule of M. Moreover $c=(1,0)$ and $\mathrm{Ann}_{R}(c M)=0 \times R^{\prime}$, see [11, Theorem 2.2]. Thus $c \mathrm{Ann}_{R}(c M)=c\left(0 \times R^{\prime}\right)=\{(0,0)\}$. Hence, $R c=\{(0,0), c=(1,0)\}$.
(ii) It is easy to see that $c \neq c^{2}$. If $c^{2} \notin \operatorname{Ann}_{R}(M)$, then $\Gamma(M)=K_{1}$. Let $c^{2} M=0$. If there exists $a \in R \backslash Z_{R}(M)$ such that $a c \neq c$, then $\Gamma(M)=K_{1,1}$. Suppose that $a c=c$ for each $a \in R \backslash Z_{R}(M)$. Thus $R c=c Z_{R}(M) \cup c\left(R \backslash Z_{R}(M)\right)=c Z_{R}(M) \cup\{c\}$.

A proper submodule P of M is said to be a weakly prime submodule whenever $0 \neq r m \in P$ with $r \in R$ and $m \in M$, then either $m \in P$ or $r \in \operatorname{Ann}_{R}(M / P)$.

Lemma 3.9. Let M be an R-module and $x \in Z_{R}(M) \backslash \operatorname{Ann}_{R}(M)$. Then $\operatorname{Ann}_{M}(x)$ is a weakly prime submodule of M if and only if $N_{\Gamma(M)}(x)=$ $N_{A G(M)}(x)$.
Proof. $\Rightarrow)$ It is enough to show that $N_{A G(M)}(x) \subseteq N_{\Gamma(M)}(x)$. Suppose that x, y are adjacent in $A G(M)$. Then there exists $m \in \operatorname{Ann}_{M}(x y)$ such that $m \notin \operatorname{Ann}_{M}(x) \cup \operatorname{Ann}_{M}(y)$. So $0 \neq y m \in \operatorname{Ann}_{M}(x)$ and $m \notin \operatorname{Ann}_{M}(x)$. Since $\operatorname{Ann}_{M}(x)$ is a weakly prime submodule of M, thus $x y M=0$. Hence, x, y are adjacent in $\Gamma(M)$ and the proof is completed.
$\Leftarrow)$ Suppose that $x \in Z_{R}(M) \backslash \operatorname{Ann}_{R}(M)$ and $N_{\Gamma(M)}(x)=N_{A G(M)}(x)$. We have to show that $\operatorname{Ann}_{M}(x)$ is a weakly prime submodule of M. Let $0 \neq y m \in \operatorname{Ann}_{M}(x)$, for some $m \in M$ and $y \in R$ with $x \neq y$. If $x m=0$ we are done; otherwise $y \in Z_{R}(M) \backslash \operatorname{Ann}_{R}(M)$ and $x y m=0$. Thus $m \in \operatorname{Ann}_{M}(x y) \backslash \operatorname{Ann}_{M}(x) \cup \operatorname{Ann}_{M}(y)$. It means that x, y are adjacent in $A G(M)$ and so they are adjacent in $\Gamma(M)$. Hence, $x y M=0$ and $y M \subseteq \operatorname{Ann}_{M}(x)$, as desired. Now, assume that $0 \neq x m \in \operatorname{Ann}_{M}(x)$, for some $m \in M$. Thus $x^{2} m=0$ and so $x \neq x^{2}$. We show that $x^{2} M=0$. In this case $\left(x-x^{2}\right) m=x m \neq 0$, so $x-x^{2}$ is a vertex of $A G(M)$ and let $x \neq x-x^{2}$. Moreover $x\left(x-x^{2}\right) m=0$ thus $x, x-x^{2}$ are adjacent in $A G(M)$ so by the hypotheses $x\left(x-x^{2}\right) M=0$. Hence, $x^{2}(1-x) M=0$.

If $1-x \notin Z_{R}(M)$, then $x^{2} M=0$ and we are done. Otherwise, $1-x \in$ $Z_{R}(M)$. Since $\left(x-x^{2}\right) m \neq 0,1-x \in Z_{R}(M) \backslash \operatorname{Ann}_{R}(M)$. Hence, $1-x$ is a vertex of $A G(M)$; moreover $\mathrm{Ann}_{M}(x) \cap \mathrm{Ann}_{M}(1-x)=0$. Therefore, $\operatorname{Ann}_{M}(1-x) \nsubseteq \operatorname{Ann}_{M}(x)$ and $\mathrm{Ann}_{M}(x) \nsubseteq \mathrm{Ann}_{M}(1-x)$. So $x, 1-x$ are are adjacent in $A G(M)$, by Lemma 2.2(i). Thus $x(1-x) M=0$ which implies that $\left(x-x^{2}\right) m=x m=0$ contrary to the assumption.
Lemma 3.10. Let M be an R-module and $x \in r\left(\operatorname{Ann}_{R}(M)\right) \backslash \operatorname{Ann}_{R}(M)$. Then $\operatorname{Ann}_{M}(x)$ is a prime submodule of M if and only if $N_{\Gamma(M)}(x)=$ $N_{A G(M)}(x)$.
Proof. \Rightarrow It is clear that a prime submodule of M is a weakly prime submodule so the result follows by Lemma 3.9.
\Leftarrow Let $x \in r\left(\operatorname{Ann}_{R}(M)\right) \backslash \operatorname{Ann}_{R}(M)$. We show that $\operatorname{Ann}_{M}(x)$ is a prime submodule of M. Assume that $x m \in \operatorname{Ann}_{M}(x)$, for some $m \in M$. If $x m=0$ there is nothing to prove; so suppose that $x m \neq 0$. Thus $x \neq x^{2}$. We show that $x^{2} M=0$. If $x^{2} M \neq 0$, then $x^{2} \in$ $r\left(\operatorname{Ann}_{R}(M)\right) \backslash \operatorname{Ann}_{R}(M)$ and so x, x^{2} are adjacent in $A G(M)$, see [3, Theorem 5] and Theorem 2.4, so x, x^{2} are adjacent in $\Gamma(M)$. Hence, $x^{3} M=0$. In this case $x-x^{2}$ is a vertex of $A G(M)$ and $x \neq x-x^{2}$. Moreover $x, x-x^{2}$ are adjacent in $A G(M)$ and so $x\left(x-x^{2}\right) M=0$. Thus $0=x^{2} M-x^{3} M=x^{2} M$ contrary to the assumption. Therefore, $x^{2} M=0$, as desired. Let $0 \neq y m^{\prime} \in \operatorname{Ann}_{M}(x)$, for some $m^{\prime} \in M$ and $y \in R$ with $x \neq y$. If either $x m^{\prime}=0$ or $y M=0$, then there is nothing to prove. Otherwise, $x m^{\prime} \neq 0$ and $y \in Z_{R}(M) \backslash \operatorname{Ann}_{R}(M)$. Thus $m^{\prime} \in \operatorname{Ann}_{M}(x y) \backslash \operatorname{Ann}_{M}(x) \cup \operatorname{Ann}_{M}(y)$. It means that x, y are adjacent in $A G(M)$ and so x, y are adjacent in $\Gamma(M)$. Hence, $x y M=$ 0 and so $y M \subseteq \operatorname{Ann}_{M}(x)$ as desired. If $y m^{\prime}=0$ and $x y M \neq 0$, then $m^{\prime} \in \operatorname{Ann}_{M}(y) \backslash \operatorname{Ann}_{M}(x)$ and there exists $m^{\prime \prime} \in M$ such that $x m^{\prime \prime} \in \operatorname{Ann}_{M}(x) \backslash \operatorname{Ann}_{M}(y)$. By Lemma 2.2(i), x, y are adjacent in $A G(M)$ and so are adjacent in $\Gamma(M)$ which is a contradiction. Hence, $x y M=0$.
Corollary 3.11. Let M be an R-module. If $\Gamma(M)=A G(M)$, then $\operatorname{Ann}_{M}(x) \in m-\operatorname{Ass}_{R}(M)$, for each $x \in r\left(\operatorname{Ann}_{R}(M)\right) \backslash \operatorname{Ann}_{R}(M)$.

4. Two absorbing submodules and the annihilator graph

Let M be an R-module. A proper submodule N of M is called 2absorbing if whenever $a b m \in N$ for $a, b \in R$ and $m \in M$, then $a m \in N$ or $b m \in N$ or $a b \in \operatorname{Ann}_{R}(M / N)$. The reader is referred to $[12,13]$ for more results and examples about 2-absorbing submodules.

Theorem 4.1. Let M be an R-module. Then $\Gamma(M)=A G(M)$ if and only if 0 is a 2-absorbing submodule of M.

Proof. $\Rightarrow)$ Let $\Gamma(M)=A G(M), x, y \in R$ and $m \in M$ be such that $x y m=0$. First of all assume that $x=y$. In this case $x^{2} m=0$. If $x m=0$ we are done; otherwise $x \in Z_{R}(M) \backslash \operatorname{Ann}_{R}(M)$. By Lemma 3.9, $\operatorname{Ann}_{M}(x)$ is a weakly prime submodule of $M . x^{2} m=0$ and $x m \neq 0$ imply that $x^{2} M=0$. Hence, 0 is a 2 -absorbing submodule of M. Now suppose that $x \neq y$. If either $x m=0$ or $y m=0$, we are done. Let $x m \neq 0$ and $y m \neq 0$. Then $x, y \in Z_{R}(M) \backslash \operatorname{Ann}_{R}(M)$ and $m \in$ $\operatorname{Ann}_{M}(x y) \backslash \operatorname{Ann}_{M}(x) \cup \operatorname{Ann}_{M}(y)$. It means that x, y are adjacent in $A G(M)$ and so they are adjacent in $\Gamma(M)$. So $x y M=0$ which implies that 0 is a 2 -absorbing submodule of M.
$\Leftarrow)$ It is enough to show that an arbitrary edge of $A G(M)$ is an edge of $\Gamma(M)$. Let $x, y \in Z_{R}(M) \backslash \operatorname{Ann}_{R}(M)$ be distinct adjacent vertices of $A G(M)$. Then there exists $m \in M$ such that xym $=0$ but $x m \neq 0 \neq y m$. Hence, $x y M=0$ since 0 is a 2 -absorbing submodule of M. Therefore, x and y are adjacent in $\Gamma(M)$.

The following corollary is a generalization of [5, Theorem 3.6].
Corollary 4.2. Let M be an R-module. If $\Gamma(M)=A G(M)$, then $|\operatorname{MinAss}(M)| \leq 2$.

Proof. It follows easily by Theorem 4.1, [12, Theorem 2.3] and [4, Theorem 2.4].

Theorem 4.3. Let N be a 2-absorbing submodule of a Noetherian R module M such that $r\left(N:_{R} M\right)=\mathfrak{p} \cap \mathfrak{q}$, where \mathfrak{p} and \mathfrak{q} are distinct prime ideals of R that are minimal over $N:_{R} M$. Then $\operatorname{Ass}_{R}(M / N)$ is union of two totally ordered sets.

Proof. Let $N=\cap_{i=1}^{n} Q_{i}$ be a minimal primary decomposition of N with $r\left(\operatorname{Ann}_{R}\left(M / Q_{i}\right)\right)=\mathfrak{p}_{i}$, for each $1 \leqslant i \leqslant n$. Then $r\left(N:_{R} M\right)=$ $\cap_{i=1}^{n} r\left(Q_{i}:_{R} M\right)=\cap_{i=1}^{n} \mathfrak{p}_{\mathfrak{i}}$ and so $\mathfrak{p} \cap \mathfrak{q}=\cap_{i=1}^{n} \mathfrak{p}_{\mathfrak{i}}$. Without loss of generality we may assume that $\mathfrak{p}=\mathfrak{p}_{1}$ and $\mathfrak{q}=\mathfrak{p}_{2}$. Suppose that $3 \leqslant k, t \leqslant n$ and $k \neq t$. By the definition of a minimal primary decomposition there exist $m_{k} \in \cap_{i \neq k} Q_{i} \backslash Q_{k}$ and $m_{t} \in \cap_{i \neq t} Q_{i} \backslash Q_{t}$. Thus $r\left(N:_{R} m_{k}\right)=r\left(\cap_{i=1}^{n} Q_{i}:_{R} m_{k}\right)=\cap_{i=1}^{n} r\left(Q_{i}:_{R} m_{k}\right)=r\left(Q_{k}:_{R} m_{k}\right)=$ $r\left(Q_{k}:_{R} M\right)=\mathfrak{p}_{k}$ and $r\left(N:_{R} m_{t}\right)=r\left(\cap_{i=1}^{n} Q_{i}:_{R} m_{t}\right)=r\left(Q_{t}:_{R} m_{t}\right)=$ $r\left(Q_{t}:_{R} M\right)=\mathfrak{p}_{t}$. Let $\mathfrak{p}_{t} \nsubseteq \mathfrak{p}_{k}$; we show that $\mathfrak{p}_{k} \subseteq \mathfrak{p}_{t}$. By the hypotheses we may assume that $\mathfrak{p}_{1} \subseteq \mathfrak{p}_{k}$ moreover we can assume that $\mathfrak{p}_{t} \nsubseteq \mathfrak{p}_{k} \cup \mathfrak{p}_{2}$. Suppose that $a \in \mathfrak{p}_{k}$ and $b \in \mathfrak{p}_{t} \backslash \mathfrak{p}_{k} \cup \mathfrak{p}_{2}$. So there exists $s \in \mathbb{N}$ such that $a^{s} m_{k} \in N, b^{s} m_{t} \in N$ and $b^{s} m_{k} \notin N$. If $a^{s}\left(m_{k}+m_{t}\right) \in N$, then $a \in \mathfrak{p}_{t}$ and the proof is completed. Now, let $a^{s}\left(m_{k}+m_{t}\right) \notin N$. Then $a^{s} b^{s} \in N:_{R} M$ since $b^{s}\left(m_{k}+m_{t}\right) \notin N$ and $a^{s} b^{s}\left(m_{k}+m_{t}\right) \in N$. From $a b \in \mathfrak{p}_{1} \cap \mathfrak{p}_{2}$ and $b \notin \mathfrak{p}_{1} \cup \mathfrak{p}_{2}$ it follows that $a \in \mathfrak{p}_{1} \cap \mathfrak{p}_{2}$. So $a^{s} M \subseteq N$ and
$a^{s} m_{t} \in N$ which implies that $a \in \mathfrak{p}_{t}$. Hence, $\operatorname{Ass}_{R}(M / N)$ is union of two totally ordered sets such as $\operatorname{Ass}_{R}(M / N)=\left\{\mathfrak{p}=\mathfrak{p}_{1}\right\} \cup\left\{\mathfrak{p}_{2}, \mathfrak{p}_{3}, \ldots, \mathfrak{p}_{n}\right\}$ or $\operatorname{Ass}_{R}(M / N)=\left\{\mathfrak{q}=\mathfrak{p}_{2}\right\} \cup\left\{\mathfrak{p}_{1}, \mathfrak{p}_{3}, \ldots, \mathfrak{p}_{n}\right\}$.

In [10, Theorem 2.5], it is shown that $\Gamma(R)=A G(R)$ whenever for every edges of $A G(R), x \sim y$ say, either $\operatorname{Ann}_{R}(x) \in \operatorname{Ass}(R)$ or $\operatorname{Ann}_{R}(y) \in \operatorname{Ass}(R)$. Also the following question is posed: Let R be a non-reduced ring and $x \sim y$ be an edge of $A G(R)$. If $\Gamma(R)=A G(R)$, then is it true either $\operatorname{Ann}_{R}(x) \in \operatorname{Ass}(R)$ or $\operatorname{Ann}_{R}(y) \in \operatorname{Ass}(R)$?

The following theorem is an affirmative answer to this question.
Theorem 4.4. Let M be a Noetherian R-module. Then the following statements are equivalent:
(i) For each edge of $A G(M), x \sim y$ say, $\operatorname{Ann}_{M}(x) \in m-\operatorname{Ass}_{R}(M)$ or $\operatorname{Ann}_{M}(y) \in m-\operatorname{Ass}_{R}(M)$.
(ii) $\Gamma(M)=A G(M)$.
(iii) For each $x \in Z_{R}(M) \backslash \operatorname{Ann}_{R}(M), \operatorname{Ann}_{M}(x)$ is a weakly prime submodule of M.

Proof. It is enough to prove (ii) \Rightarrow (i). Let $x \sim y$ be an edge of $A G(M)$. Since $\Gamma(M)=A G(M)$ by Theorem 4.1 the zero submodule of M is 2-absorbing. Thus $r\left(\operatorname{Ann}_{R}(M)\right)=\mathfrak{p}$ or $r\left(\operatorname{Ann}_{R}(M)\right)=\mathfrak{p}_{1} \cap \mathfrak{p}_{2}$, where $\mathfrak{p}_{1}, \mathfrak{p}_{2}$ are prime ideals of R that are minimal over $\operatorname{Ann}_{R}(M)$. If $r\left(\operatorname{Ann}_{R}(M)\right)=\mathfrak{p}$, then by $x y M=0$ it follows that $x y \in \operatorname{Ann}_{R}(M) \subseteq \mathfrak{p}$. So $x \in \mathfrak{p}$ or $y \in \mathfrak{p}$. Hence, $\operatorname{Ann}_{M}(x) \in m-\operatorname{Ass}_{R}(M)$ or $\operatorname{Ann}_{M}(y) \in m-$ $\operatorname{Ass}_{R}(M)$. Now, let $r\left(\operatorname{Ann}_{R}(M)\right)=\mathfrak{p}_{1} \cap \mathfrak{p}_{2}$. If either x or y belongs to $r\left(\operatorname{Ann}_{R}(M)\right)$, there is nothing to prove. So assume that $x \in \mathfrak{p}_{1} \backslash \mathfrak{p}_{2}$ and $y \in \mathfrak{p}_{2} \backslash \mathfrak{p}_{1}$. Then by using Theorem 4.3 we get either $\operatorname{Ann}_{M}(x)=Q_{2}$ or $\operatorname{Ann}_{M}(y)=Q_{1}$. Without loss of generality suppose that $\operatorname{Ann}_{M}(x)=$ Q_{2}. We show that the primary submodule $\operatorname{Ann}_{M}(x)=Q_{2}$ is prime. Let $a \in R, m \in M \backslash \operatorname{Ann}_{M}(x)$ and $a m \in \operatorname{Ann}_{M}(x)=Q_{2}$. Then $a \in \mathfrak{p}_{2}$ and so $a x \in \mathfrak{p}_{1} \mathfrak{p}_{2} \subseteq \operatorname{Ann}_{R}(M)$ which implies that $a M \subseteq \operatorname{Ann}_{M}(x)$. Therefore, $\operatorname{Ann}_{M}(x)$ is a prime submodule of M.

Acknowledgments

The authors would like to thank the referee for a careful reading of our paper and insightful comments which saved us from several errors.

References

1. D.F. Anderson and P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217 (1999), 434-447.
2. D.F. Anderson and S.B. Mulay, On the diameter and girth of a zero-divisor graph, J. Algebra, 210 (2007), 543-550.
3. S. Babaei, Sh. Payrovi and E. Sengelen Sevim, On the annihilator submodules and the annihilator essential graph, Acta Math. Vietnam., 44 (2019), 905-914.
4. A. Badawi, On the 2-absorbing ideals of commutative rings, Bull. Aust. Math. Soc., 75 (2007), 417-429.
5. A. Badawi, On the annihilator graph of a commutative ring, Comm. Algebra, 42 (2014), 108-121.
6. I. Beck, Coloring of commutative rings, J. Algebra, 116 (1988), 208-226.
7. M. Behboodi, Zero-divisor graph for modules over commutative rings, J. Commut. Algebra, 4 (2012), 175-197.
8. S. Dutta and C. Lanong, On annihilator graph of a finite commutative ring, Trans. Comb., 6 (2017), 1-11.
9. A.R. Naghipour, The zero-divisor graph of a module, J. Algebr. Syst., 4 (2017), 155-171.
10. M.J. Nikmehr, R. Nikandish and M. Bakhtyiari, More on the annihilator graph of a commutative ring, Hokkaido Math. J., 46 (2017), 1-12.
11. K. Nozari and Sh. Payrovi, A generalization of zero-divisor graph for modules, Publ. Inst. Math., 106 (2019), 39-46 •
12. Sh. Payrovi and S. Babaei, On 2-absorbing submodules, Algebra Colloq., 19 (2012), 913-920.
13. Sh. Payrovi and S. Babaei, On the 2-absorbing submodules, Iran. J. Math. Sci. Inform., 10 (2015), 131-137.
14. Sh. Payrovi and S. Babaei, On the compressed annihilator graph of a commutative ring, Indian J. Pure and Appl. Math., 49 (2018), 177-186.
15. R.Y. Sharp, Steps in Commutative Algebra, Cambridge University Press, Cambridge, 2000.

K. Nozari

Department of Mathematics, Imam Khomeini International University, P.O.Box 34149-16818, Qazvin, Iran.
Email: k.nozari@edu.ikiu.ac.ir

Sh. Payrovi

Department of Mathematics, Imam Khomeini International University, P.O.Box 34149-16818, Qazvin, Iran.
Email: shpayrovi@sci.ikiu.ac.ir

Journal of Algebraic Systems

THE ANNIHILATOR GRAPH FOR MODULES OVER COMMUTATIVE RINGS

K．NOZARI AND SH．PAYROVI

$$
\begin{aligned}
& \text { گراف پوچساز براى مدولها روى حلقههاى جابجايى } \\
& \text { 'كتايون نوذرى و }{ }^{\text {「شيرويه پیروى }}
\end{aligned}
$$

〒，آروه رياضى، دانشكده علوم پايه، دانشكاه بين المللى امام خمينى، قزوين، ايران
فرض كنيد R يكى حلقه جابجايى و M يكى R－مدول باشد．گراف پوچساز M با با نماد $A G(M)$ نشان
 دو راس x و y از آن مجاورند هركاه
 مىكنيم．علاوهبرآن، رابطه بين گراف پوجساز M و گراف مقسوم عليه صفر آن را بدست مىآوريم．
كلمات كليدى: گراف پو چساز، گراف مقسوم عليه صفر، زيرمدولههاى اول.

[^0]: DOI: 10.22044/jas.2020.9194.1448.
 MSC(2010): Primary: 13A15; Secondary: 05C99.
 Keywords: Annihilator graph, zero-divisor graph, prime submodule. Received: 15 December 2019, Accepted: 3 July 2020.

 * Corresponding author.

