1. H. Abdollahzadeh Ahangar, M. Chellali, S. M. Sheikholeslami, On the Roman domination in graphs, Discrete Appl. Math., 232 (2017), 1–7.
2. R. A. Beeler, T. W. Haynesa and S. T. Hedetniemi, Double Roman domination, Discrete Appl. Math., 211 (2016), 23–29.
3. M. Chellali, T. W. Haynes, S. T. Hedetniemi, A. MacRae, Roman f2g-domination, Discrete Appl. Math., 204 (2016), 22–28.
4. E. J. Cockayane, P. M. Dreyer Jr., S. M. Hedetniemi and S. T. Hedetniemi, On Roman domination in graphs, Discrete Math., 278 (2004), 11–22.
5. N. Jafari Rad and H. Rahbani, Some progress on the Roman domination in graphs, Discuss. Math. Graph Theory, 39 (2019), 41–53.
6. M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, W. H. Freeman, New York, 1979.
7. T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination
in Graphs, Marcel Dekker, In c., New York, 1998.
8. M. A. Henning, A characterization of Roman trees, Discuss. Math. Graph Theory, 22 (2002), 325–334.
9. M. Liedloff, T. Kloks, J. Liu and S.-L. Pen, Efficient algorithms for Roman domination on some classes of graphs, Discrete Appl. Math., 156 (2008), 3400– 3415.
10. C. S. Revelle and K. E. Rosing, Defendens imperium romanum: a classical problem in military strategy, Amer. Math. Monthly 107 (2000), 585–594.
11. I. Stewart, Defend the roman empire!, Sci. Amer., 281 (1999), 136–139.
12. J. Yue, M. Wei, M. Li and G. Liu, On the Roman domination of graphs, Appl. Math. Comput., 338 (2018), 669–675.
13. X. Zhang, Z. Li, H. Jiang and Z. Shao, Double Roman domination in trees, Inform. Process. Lett., 134 (2018), 31–34.