Document Type : Original Manuscript
Authors
Department of Pure Mathematics, Faculty of Mathematical Sciences, University of Kashan, P.O. Box 87317–53153, Kashan, I. R. Iran.
Abstract
The commuting graph of a finite group $G$, $\mathcal{C}(G)$, is a simple graph with vertex set $G$ in which two vertices $x$ and $y$ are adjacent if and only if $xy = yx$. The aim of this paper is to compute the distance Laplacian spectrum and the distance Laplacian energy of the commuting graph of $CA$-groups.
Keywords
- F. Ali, M. Salman and S. Huang, On the commuting graph of dihedral group, Comm. Algebra, 44 (6) (2016), 2389–2401.
- 2. M. Aouchiche and P. Hansen, Two Laplacians for the distance matrix of a graph, Linear Algebra Appl., 439 (2013), 21–3
- M. Aouchiche and P. Hansen, Distance spectra of graphs: A survey, Linear Algebra Appl., 458 (2014), 301–386.
- M. Aouchiche and P. Hansen, Some properties of the distance Laplacian eigenvalues of a graph, Czech. Math. J., 64 (139) (2014), 751–761.
- M. Aouchiche and P. Hansen, Distance Laplacian eigenvalues and chromatic number in graphs, Filomat, 31 (9) (2017), 2545–2555.
- A. R. Ashrafi and M. Torktaz, On the commuting graph of CA-groups, submitted.
- N. Biggs, Algebraic Graph Theory, Second edition, Cambridge University Press, Cambridge, 1993.
- A. E. Brouwer and W. H. Haemers, Eigenvalues and perfect matchings, Linear Algebra Appl., 395 (2005), 155–162.
- H. Lin and B. Zhou, On the distance Laplacian spectral radius of graphs, Linear Algebra Appl., 475 (2015), 265–275.
- M. Mirzargar, P. P. Pach and A. R. Ashrafi, The automorphism group of commuting graph of a finite group, Bull. Korean Math. Soc., 51 (4) (2014), 1145–1153.
- M. Mirzargar and A. R. Ashrafi, Some distance-based topological indices of a non-commuting graph, Hacet. J. Math. Stat., 41 (6) (2012), 515–526.
- M. Torktaz and A. R. Ashrafi, Spectral properties of the commuting graphs of certain groups, AKCE Int. J. Graphs Combin., 16 (2019), 300–309.
- The GAP Team, Gap – Groups, Algorithms, and Programming, version 4.7.5 http://www.gap-system.org, 2014.
- J. Yang, L. You and I. Gutman, Bounds on the distance Laplacian energy of graphs, Kragujevac J. Math., 37 (2) (2013), 245–255.